Effect of Protonated Media on Dye Diffusion in Chitosan–Cellulose-Based Cryogel Beads
Abstract
1. Introduction
2. Results and Discussion
2.1. pH Point of Zero Charge Results
2.2. Electrostatic Adsorption Mechanism
2.3. Desorption Process Results
2.4. Desorption Kinetics
3. Conclusions
4. Materials and Methods
4.1. Reagents and Materials
4.2. Synthesis of Chitosan-Based Cryogel
4.3. Material Characterizations
4.4. pH Point of Zero Charge
4.5. Adsorption Experiments
4.6. Desorption Process
4.6.1. The pH Effect on Desorption
4.6.2. Desorption Kinetics
4.7. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PSO | Pseudo Second Order |
PFO | Pseudo First Order |
Ch-C-EGDE | Beads of chitosan–cellulose and ethylene glycol diglycidyl ether |
Y5 | FD&C Yellow 5, Dye alimentary |
References
- Lin, J.; Ye, W.; Xie, M.; Seo, D.H.; Luo, J.; Wan, Y.; Van der Bruggen, B. Environmental impacts and remediation of dye-containing wastewater. Nat. Rev. Earth Environ. 2023, 4, 785–803. [Google Scholar] [CrossRef]
- Bafana, A.; Devi, S.S.; Chakrabarti, T. Azo dyes: Past, present and the future. Environ. Rev. 2011, 19, 350–370. [Google Scholar] [CrossRef]
- Samsami, S.; Mohamadi, M.; Sarrafzadeh, M.-H.; Rene, E.R.; Firoozbahr, M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf. Environ. Prot. 2020, 143, 138–163. [Google Scholar] [CrossRef]
- Kono, H.; Ogasawara, K.; Kusumoto, R.; Oshima, K.; Hashimoto, H.; Shimizu, Y. Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): Preparation, molecular dynamics, and adsorption of anionic dyes. Carbohydr. Polym. 2016, 152, 170–180. [Google Scholar] [CrossRef]
- Markandeya; Dhiman, N.; Shukla, S.P.; Kisku, G.C. Statistical optimization of process parameters for removal of dyes from wastewater on chitosan cenospheres nanocomposite using response surface methodology. J. Clean. Prod. 2017, 149, 597–606. [Google Scholar] [CrossRef]
- Esquerdo, V.M.; Quintana, T.M.; Dotto, G.L.; Pinto, L.A.A. Kinetics and mass transfer aspects about the adsorption of tartrazine by a porous chitosan sponge. React. Kinet. Mech. Catal. 2015, 116, 105–117. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Carnevale Miino, M.; Damiani, S. Treatments for color removal from wastewater: State of the art. J. Environ. Manag. 2019, 236, 727–745. [Google Scholar] [CrossRef] [PubMed]
- Romero-Casarrubias, A.; Zavala-Arce, R.E.; Salazar-Rábago, J.J.; de la Luz Jiménez-Núñez, M.; García-González, A. Adsorption study of blue no. 1, red no. 2, and yellow no. 5 by hydrotalcites of Mg/Al. MRS Adv. 2022, 7, 1139–1143. [Google Scholar] [CrossRef]
- Yaneva, Z.; Ivanova, D.; Nikolova, N.; Tzanova, M. The 21st century revival of chitosan in service to bio-organic chemistry. Biotechnol. Biotechnol. Equip. 2020, 34, 221–237. [Google Scholar] [CrossRef]
- Kosheleva, R.; Mitropoulos, A.C.; Kyzas, G.Z. 3—Effect of Grafting on Chitosan Adsorbents. In Micro and Nano Technologies; Kyzas, G.Z., Mitropoulos, A.C.B.T.-C.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 49–66. ISBN 978-0-12-814132-8. [Google Scholar]
- Barbosa, M.A.; Gonçalves, I.C.; Moreno, P.M.D.; Gonçalves, R.M.; Santos, S.G.; Pêgo, A.P.; Amaral, I.F. 2.13 Chitosan ☆. Compr. Biomater. II 2017, 2, 279–305. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Rodziewicz, J.; Mielcarek, A. Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye. React. Funct. Polym. 2017, 114, 58–74. [Google Scholar] [CrossRef]
- García-González, A.; Zavala-Arce, R.E.; Avila-Pérez, P.; Rangel-Vazquez, N.A.; Salazar-Rábago, J.J.; García-Rivas, J.L.; García-Gaitán, B. Experimental and theoretical study of dyes adsorption process on chitosan-based cryogel. Int. J. Biol. Macromol. 2021, 169, 75–84. [Google Scholar] [CrossRef]
- Alvarado-Bonifacio, A.; García-Gaitán, B.; Hernandez Tenorio, C.; García-Rivas, J.L.; Recillas-Mota, M.; Zavala-Arce, R.; Jimenez, M.; Soriano-Aguilar, T. Modification of beads of chitosan and poly(vinyl alcohol) by means of glow discharge plasma for the adsorption of red 2 dye. MRS Adv. 2019, 3, 3869–3874. [Google Scholar] [CrossRef]
- Kaviya, S. Chapter 17—Recent advances in water treatment facilities for wastewater reuse in the urban water supply. In Urban Water Crisis and Management; Srivastav, A.L., Madhav, S., Bhardwaj, A.K., Valsami-Jones, E.B.T.-C.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 6, pp. 361–379. ISBN 2542-7946. [Google Scholar]
- Kumar, P.; Gihar, S.; Kumar, B.; Kumar, D. Synthesis and characterization of crosslinked chitosan for effective dye removal antibacterial activity. Int. J. Biol. Macromol. 2019, 139, 752–759. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, J.; Cao, X.; Xie, F.; Yang, H.; Wang, C.; Bittencourt, C.; Li, W. Regenerated cellulose/chitosan composite aerogel with highly efficient adsorption for anionic dyes. Int. J. Biol. Macromol. 2023, 244, 125067. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Nakagawa, K.; Chaudhary, D.; Asakuma, Y.; Tadé, M.O. Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chem. Eng. Res. Des. 2011, 89, 2356–2364. [Google Scholar] [CrossRef]
- Dragan, E.S.; Dinu, M.V. Advances in porous chitosan-based composite hydrogels: Synthesis and applications. React. Funct. Polym. 2020, 146, 104372. [Google Scholar] [CrossRef]
- Gun’ko, V.M.; Savina, I.N.; Mikhalovsky, S.V. Cryogels: Morphological, structural and adsorption characterisation. Adv. Colloid Interface Sci. 2013, 187–188, 1–46. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Galaev, I.Y.; Plieva, F.M.; Savina, I.N.; Jungvid, H.; Mattiasson, B. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 2003, 21, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, N.; Shinde, S.D.; Maingle, M.; Nikam, D.; Sahu, B. Reactive oxygen species-responsive thymine-conjugated chitosan: Synthesis and evaluation as cryogel. Int. J. Biol. Macromol. 2023, 242, 125074. [Google Scholar] [CrossRef]
- Zhu, L.; Bratlie, K.M. pH sensitive methacrylated chitosan hydrogels with tunable physical and chemical properties. Biochem. Eng. J. 2018, 132, 38–64. [Google Scholar] [CrossRef]
- Akakuru, O.U.; Louis, H.; Uwaoma, R.; Elemike, E.E.; Akakuru, O.C. Novel highly-swellable and pH-responsive slow release formulations of clotrimazole with chitosan-g-PEG/starch microparticles. React. Funct. Polym. 2019, 135, 32–43. [Google Scholar] [CrossRef]
- Liu, C.; Bai, R. Recent advances in chitosan and its derivatives as adsorbents for removal of pollutants from water and wastewater. Curr. Opin. Chem. Eng. 2014, 4, 62–70. [Google Scholar] [CrossRef]
- Bakshia, P.; Selvakumara, D.; Kadirvelub, K.; Kumara, N.S. Chitosan as an environment friendly biomaterial—A review on recent modifications and applications. Int. J. Biol. Macromol. 2019, 150, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Kubilay, S.; Demirci, S.; Can, M.; Aktas, N.; Sahiner, N. Dichromate and arsenate anion removal by PEI microgel, cryogel, and bulkgel. J. Environ. Chem. Eng. 2021, 9, 104799. [Google Scholar] [CrossRef]
- Demirci, S.; Ari, B.; Aktas, N.; Sahiner, N. pH-Responsive Amphoteric p (APTMACl-co-AMPS) Hydrogel as Effective Multiple Dye Sponge Network From Aqueous Media. Front. Mater. 2022, 9, 837701. [Google Scholar] [CrossRef]
- Sahiner, N.; Demirci, S. Poly ionic liquid cryogel of polyethyleneimine: Synthesis, characterization, and testing in absorption studies. J. Appl. Polym. Sci. 2016, 133, 43478. [Google Scholar] [CrossRef]
- Sahiner, N.; Demirci, S.; Sahiner, M.; Yilmaz, S.; Al-Lohedan, H. The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions. J. Environ. Manag. 2015, 152, 66–74. [Google Scholar] [CrossRef]
- Demirci, S.; Suner, S.S.; Yilmaz, S.; Bagdat, S.; Tokay, F.; Sahiner, N. Amine-modified halloysite nanotube embedded PEI cryogels as adsorbent nanoarchitectonics for recovery of valuable phenolic compounds from olive mill wastewater. Appl. Clay Sci. 2024, 249, 107265. [Google Scholar] [CrossRef]
- Bagdat, S.; Tokay, F.; Demirci, S.; Yilmaz, S.; Sahiner, N. Removal of Cd(II), Co(II), Cr(III), Ni(II), Pb(II) and Zn(II) ions from wastewater using polyethyleneimine (PEI) cryogels. J. Environ. Manag. 2023, 329, 117002. [Google Scholar] [CrossRef]
- Abd El-Magied, M.O.; Galhoum, A.A.; Atia, A.A.; Tolba, A.A.; Maize, M.S.; Vincent, T.; Guibal, E. Cellulose and chitosan derivatives for enhanced sorption of erbium(III). Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 580–593. [Google Scholar] [CrossRef]
- Arcos-Arévalo, A.J.; Zavala-Arce, R.E.; Ávila-Pérez, P.; García-Gaitán, B.; García-Rivas, J.L.; Jiménez-Núñez, M.d.l.L. Removal of Fluoride from Aqueous Solutions Using Chitosan Cryogels. J. Chem. 2016, 2016, 7296858. [Google Scholar] [CrossRef]
- Mel’gunov, M.S.; Ayupov, A.B. Direct method for evaluation of BET adsorbed monolayer capacity. Microporous Mesoporous Mater. 2017, 243, 147–153. [Google Scholar] [CrossRef]
- Şanlı, G.T.; Demirhan, E. Preparation and characterization of chitosan/zeolite composites for Reactive Orange 122 dye removal from aqueous media: Isotherm and kinetic studies. Biomass Convers. Biorefinery 2025, 15, 3653–3662. [Google Scholar] [CrossRef]
- Tsauria, Q.D.; Gareso, P.L.; Tahir, D. Systematic review of chitosan-based adsorbents for heavy metal and dye remediation. Integr. Environ. Assess. Manag. 2025, 2025, vjaf037. [Google Scholar] [CrossRef]
- Díaz-Flores, P.E.; Flores-Rojas, A.I.; Medellín-Castillo, N.A.; Cisneros-Ontiveros, H.G.; Cruz-Briano, S.A.; Gallegos-Almanza, A.V.; Cruz-Labana, J.D.; Espinosa-Martínez, I.A. Chitosan and zeolite-based composites: Characterization and removal of methylene blue dye from aqueous solution. MRS Adv. 2024, 9, 1713–1719. [Google Scholar] [CrossRef]
- Ul’yabaeva, G.R.; Podorozhko, E.A.; Kil’deeva, N.R.; Lozinskii, V.I. Adsorption of an Acid Textile Dye from Aqueous Solutions by a Chitosan-Containing Polyvinyl Alcohol Composite Cryogel. Fibre Chem. 2019, 51, 199–203. [Google Scholar] [CrossRef]
- Sun, W.; Chen, S.L.; Xu, M.; Wei, Y.; Fan, T.T.; Huang, L.X.; Ma, B.; Guo, J. The measurements of the intrinsic diffusivity in pores and surface diffusivity inside the porous materials in liquid phase. Chem. Eng. Sci. 2019, 51, 199–203. [Google Scholar] [CrossRef]
- Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C 2017, 79, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Azmy, E.A.M.; Hashem, H.E.; Mohamed, E.A.; Negm, N.A. Synthesis, characterization, swelling and antimicrobial efficacies of chemically modified chitosan biopolymer. J. Mol. Liq. 2019, 284, 748–754. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Ghaedi, A.M.; Vafaei, A. Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: A review. Adv. Colloid Interface Sci. 2017, 245, 20–39. [Google Scholar] [CrossRef]
- Sanchez, A.; Sibaja Ballesteros, M.; Vega-Baudrit, J.; Madrigal, S. Sintesis y caracterización de hidrogeles de quitosano obtenido a partir del camarón langostino (Pleuroncodes planipes) con potenciales aplicaciones biomedicas. Rev. Iberoam. Polímeros 2007, 8, 241–267. [Google Scholar]
- Ristić, M.M.; Petković, M.; Milovanović, B.; Belić, J.; Etinski, M. New hybrid cluster-continuum model for pKa values calculations: Case study of neurotransmitters’ amino group acidity. Chem. Phys. 2019, 516, 55–62. [Google Scholar] [CrossRef]
- Geankoplis, C.J. Transport Processes and Unit Operations (Includes Unit Operations); Prentice Hall Press: Toronto, ON, Canada, 2003. [Google Scholar]
- Kyzas, G.Z.; Bikiaris, D.N. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar. Drugs 2015, 13, 312–337. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; McKay, G. Application of kinetic models to the sorption of copper (II) on to peat. Adsorpt. Sci. Technol. 2002, 20, 797–815. [Google Scholar] [CrossRef]
- Inyang, H.I.; Onwawoma, A.; Bae, S. The Elovich equation as a predictor of lead and cadmium sorption rates on contaminant barrier minerals. Soil Tillage Res. 2016, 155, 124–132. [Google Scholar] [CrossRef]
- Patrulea, V.; Negrulescu, A.; Mincea, M.M.; Pitulice, L.D.; Spiridon, O.B.; Ostafe, V. Optimization of the Removal of Copper(II) Ions from Aqueous Solution on Chitosan and Cross-Linked Chitosan Beads. BioResources 2013, 8, 1147–1165. [Google Scholar] [CrossRef]
- Moradi, S.E.; Dadfarnia, S.; Haji Shabani, A.M.; Emami, S. Removal of congo red from aqueous solution by its sorption onto the metal organic framework MIL-100(Fe): Equilibrium, kinetic and thermodynamic studies. Desalin. Water Treat. 2015, 56, 709–721. [Google Scholar] [CrossRef]
- Ziarani, G.M.; Moradi, R.; Lashgari, N.; Kruger, H.G. Chapter 4—Azo Dyes. In Metal-Free Synthetic Organic Dyes; Ziarani, G.M., Moradi, R., Lashgari, N., Kruger, H.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 47–93. ISBN 978-0-12-815647-6. [Google Scholar]
- Doondani, P.; Panda, D.; Gomase, V.; Peta, K.R.; Jugade, R. Novel Chitosan-ZnO nanocomposites derived from Nymphaeaceae fronds for highly efficient removal of Reactive Blue 19, Reactive Orange 16, and Congo Red dyes. Environ. Res. 2024, 247, 118228. [Google Scholar] [CrossRef] [PubMed]
- Gomase, V.; Rathi, T.; Saravanan, D.; Jugade, R. Amputation of Remazol brilliant blue dye on crosslinked chitosan hydrogel: Statistical treatment and experimental evaluation. Environ. Res. 2024, 252, 118764. [Google Scholar] [CrossRef]
- Doondani, P.; Gomase, V.; Saravanan, D.; Jugade, R.M. Chitosan coated cotton-straw-biochar as an admirable adsorbent for reactive red dye. Results Eng. 2022, 15, 100515. [Google Scholar] [CrossRef]
- Nandanwar, P.M.; Saravanan, D.; Bakshe, P.; Jugade, R.M. Chitosan entrapped microporous activated carbon composite as a supersorbent for remazol brilliant blue R. Mater. Adv. 2022, 3, 5488–5496. [Google Scholar] [CrossRef]
- Nandanwar, P.; Jugade, R.; Gomase, V.; Shekhawat, A.; Bambal, A.; Saravanan, D.; Pandey, S. Chitosan-Biopolymer-Entrapped Activated Charcoal for Adsorption of Reactive Orange Dye from Aqueous Phase and CO2 from Gaseous Phase. J. Compos. Sci. 2023, 7, 103. [Google Scholar] [CrossRef]
- EL Kaim Billah, R.; Zaghloul, A.; Ahsaine, H.A.; BaQais, A.; Khadoudi, I.; El Messaoudi, N.; Agunaou, M.; Soufiane, A.; Jugade, R. Methyl orange adsorption studies on glutaraldehyde cross-linking chitosan/fluorapatite-based natural phosphate composite. Int. J. Environ. Anal. Chem. 2024, 104, 5840–5856. [Google Scholar] [CrossRef]
- Kosmulski, M. The pH dependent surface charging and points of zero charge. VIII. Update. Adv. Colloid Interface Sci. 2020, 275, 102064. [Google Scholar] [CrossRef] [PubMed]
Parameter | Units | Quantity |
---|---|---|
Sa,BET | m2/g | 10.22 |
Mean Pore volume | cm3/g | 0.013 |
Mean Diameter pore | nm | 4.96 |
pH | PFO | PSO |
---|---|---|
2.5 | qe = 0.94528 mg g−1 | qe = 0.9466 mg g−1 |
K1 = 0.183 min−1 | K2 = 5.26 g mg−1 min−1 | |
R2 = 0.9999 χ2 = 6.37 × 10−6 | R2 = 0.9999 χ2 = 4.23 × 10−6 | |
6 | qe = 0.91725 mg g−1 | qe = 0.91706 mg g−1 |
K1 = 0.209 min−1 | K2 = 1.48 × 1044 g mg−1 min−1 | |
R2 = 0.9995 χ2 = 4.38 × 10−5 | R2 = 0.9995 χ2 = 4.41 × 10−5 | |
12 | qe = 0.90963 mg g−1 | qe = 0.91175 mg g−1 |
K1 = 0.192 min−1 | K2 = 3.789 g mg−1 min−1 | |
R2 = 0.9997 χ2 = 2.02 × 10−5 | R2 = 0.9998 χ2 = 1.38 × 10−5 |
PSO | PFO | Elovich | |
---|---|---|---|
Y5 | qe = 808.42 mg g−1 | qe = 742.89 mg g−1 | α = 1352.06 mg g−1 min−1 |
K2 = 4.05 × 10−4 g mg−1 min−1 | K1 = 0.227 min−1 | β = 8.17 × 10−3 | |
R2 = 0.9916 | R2 = 0.9667 | R2 = 0.9808 | |
R2 | qe = 869.81 mg g−1 | qe = 777.77 mg g−1 | α = 517.71 mg g−1 min−1 |
K2 = 2.29 × 10−4 g mg−1 min−1 | K1 = 0.152 min−1 | β = 6.42 × 10−3 | |
R2 = 0.9850 | R2 = 0.9777 | R2 = 0.9672 | |
B1 | qe = 1505.64 mg g−1 | qe = 1383.88 mg g−1 | α = 2264.10 mg g−1 min−1 |
K2 = 2.08 × 10−4 g mg−1 min−1 | K1 = 0.218 min−1 | β = 4.33 × 10−3 | |
R2 = 0.9812 | R2 = 0.9807 | R2 = 0.9462 |
Freundlich | Langmuir | Sips | |
---|---|---|---|
Y5 | KF = 769.21 mg g−1 (mgL−1)−1/n | qmax = 946.91 mg g−1 | qmax = 945.06 mg g−1 |
n = 24.98 | KL = 6.71 L mg−1 | KS = 5.78 | |
R2 = 0.6512 | R2 = 0.8802 | n = 1.18 | |
R2 = 0.8830 | |||
R2 | KF = 1092.82 mg g−1 (mgL−1)−1/n | qmax = 1298.40 mg g−1 | qmax = 1287.90 mg g−1 |
n = 33.27 | KL = 1.12 L mg−1 | KS = 0.55 | |
R2 = 0.9560 | R2 = 0.9806 | n = 1.87 | |
R2 = 0.9847 | |||
B1 | KF = 1103.86 mg g−1 (mgL−1)−1/n | qmax = 1658.21 mg g−1 | qmax = 1605.70 mg g−1 |
n = 9.41 | KL = 3.34 L mg−1 | KS = 3.32 | |
R2 = 0.8590 | R2 = 0.9799 | n = 1.35 | |
R2 = 0.9858 |
Reference | Dye | qm (mg/g) Chitosan-Based Adsorbents |
---|---|---|
Doondani et al., 2024 [55] | RB 19, RO 16, CR | 219.6, 129.6, 118.8 |
Gomase et al., 2024 [56] | RB19 | 323.15 |
Doondani et al., 2022 [57] | RR | 125.1 |
Nandanwar et al., 2022 [58] | RBBR | 540.3 |
Nandanwar et al., 2023 [59] | RO | 34.61 |
El Kaim Billah et al., 2024 [60] | MO | 94.8 |
This study | Y5, R2, B1 | 808.4, 869.8, 1505.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-González, A.; Zavala-Arce, R.E.; Avila-Pérez, P.; Salazar-Rábago, J.J.; Garcia-Rivas, J.L.; Barrera-Díaz, C.E. Effect of Protonated Media on Dye Diffusion in Chitosan–Cellulose-Based Cryogel Beads. Gels 2025, 11, 770. https://doi.org/10.3390/gels11100770
García-González A, Zavala-Arce RE, Avila-Pérez P, Salazar-Rábago JJ, Garcia-Rivas JL, Barrera-Díaz CE. Effect of Protonated Media on Dye Diffusion in Chitosan–Cellulose-Based Cryogel Beads. Gels. 2025; 11(10):770. https://doi.org/10.3390/gels11100770
Chicago/Turabian StyleGarcía-González, Alfredo, Rosa Elvira Zavala-Arce, Pedro Avila-Pérez, Jacob Josafat Salazar-Rábago, Jose Luis Garcia-Rivas, and Carlos Eduardo Barrera-Díaz. 2025. "Effect of Protonated Media on Dye Diffusion in Chitosan–Cellulose-Based Cryogel Beads" Gels 11, no. 10: 770. https://doi.org/10.3390/gels11100770
APA StyleGarcía-González, A., Zavala-Arce, R. E., Avila-Pérez, P., Salazar-Rábago, J. J., Garcia-Rivas, J. L., & Barrera-Díaz, C. E. (2025). Effect of Protonated Media on Dye Diffusion in Chitosan–Cellulose-Based Cryogel Beads. Gels, 11(10), 770. https://doi.org/10.3390/gels11100770