Development of Variable Charge Cationic Hydrogel Particles with Potential Application in the Removal of Amoxicillin and Sulfamethoxazole from Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Cationic Hydrogel Particles (CHPs)
2.2. Determination of Water Absorption Capacity
2.3. Evaluation of pH Effect on Removal and Point of Zero Charge (PZC)
2.4. Evaluation of Ionic Strength in Antibiotic Removal
2.5. Evaluation of Retention Kinetics at Different Temperatures
2.6. Effect of Initial Antibiotic Concentration at Different Temperatures
3. Conclusions
4. Materials and Methods
4.1. Reagents
4.2. Synthesis and Optimization of Cationic Hydrogel Particles (CHPs)
4.3. Characterization
4.4. Removal Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fida, M.; Li, P.; Wang, Y.; Alam, S.M.K.; Nsabimana, A. Water contamination and human health risks in Pakistan: A review. Expo. Health 2023, 15, 619–639. [Google Scholar] [CrossRef]
- Shahra, E.Q.; Wu, W. Water contaminants detection using sensor placement approach in smart water networks. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 4971–4986. [Google Scholar] [CrossRef]
- Akowanou, A.V.O.; Deguenon, H.E.J.; Balogoun, K.C.; Daouda, M.M.A.; Aina, M.P. The combined effect of three floating macrophytes in domestic wastewater treatment. Sci. Afr. 2023, 20, e01630. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Duc, P.A.; Rangasamy, G. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach. Chemosphere 2023, 313, 137323. [Google Scholar] [CrossRef] [PubMed]
- Ashiq, A.; Walpita, J.; Vithanage, M. Functionalizing non-smectic clay via methoxy-modification for enhanced removal and recovery of oxytetracycline from aqueous media. Chemosphere 2021, 276, 130079. [Google Scholar] [CrossRef]
- Palacio, D.A.; Becerra, Y.; Urbano, B.F.; Rivas, B.L. Antibiotics removal using a chitosan-based polyelectrolyte in conjunction with ultrafiltration membranes. Chemosphere 2020, 258, 127416. [Google Scholar] [CrossRef]
- Aranda, F.L.; Rivas, B.L. Removal of amoxicillin through different methods, emphasizing removal by biopolymers and its derivatives. An overview. J. Chil. Chem. Soc. 2022, 67, 5643–5655. [Google Scholar] [CrossRef]
- Hirte, K.; Seiwert, B.; Schüürmann, G.; Reemtsma, T. New hydrolysis products of the beta-lactam antibiotic amoxicillin, their pH-dependent formation and search in municipal wastewater. Water Res. 2016, 88, 880–888. [Google Scholar] [CrossRef]
- Foti, C.; Giuffrè, O. Interaction of Ampicillin and Amoxicillin with Mn2+: A Speciation Study in Aqueous Solution. Molecules 2020, 25, 3110. [Google Scholar] [CrossRef]
- Ying, G.-G.; He, L.-Y.; Ying, A.J.; Zhang, Q.-Q.; Liu, Y.-S.; Zhao, J.-L. China must reduce its antibiotic use. Environ. Sci. Technol. 2017, 51, 1072–1073. [Google Scholar] [CrossRef]
- Teixeira, S.; Delerue-Matos, C.; Santos, L. Application of experimental design methodology to optimize antibiotics removal by walnut shell based activated carbon. Sci. Total Environ. 2019, 646, 168–176. [Google Scholar] [CrossRef]
- El Hani, O.; García-Guzmán, J.J.; Palacios-Santander, J.M.; Digua, K.; Amine, A.; Cubillana-Aguilera, L. Development of a molecularly imprinted membrane for selective, high-sensitive, and on-site detection of antibiotics in waters and drugs: Application for sulfamethoxazole. Chemosphere 2024, 350, 141039. [Google Scholar] [CrossRef] [PubMed]
- Palacio, D.A.; Aranda, F.L.; Rivas, B.L. Removal of antibiotic emerging pollutants: An overview. J. Chil. Chem. Soc. 2022, 67, 5547–5561. [Google Scholar] [CrossRef]
- Wu, J.; Fang, X.; Zhu, Y.; Ma, N.; Dai, W. Well-designed TiO2@ UiO-66-NH2 nanocomposite with superior photocatalytic activity for tetracycline under restricted space. Energy Fuels 2020, 34, 12911–12917. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, J.; Wang, J.; Fan, Y.; Zhang, S.; Dai, W. A novel multifunctional p-type semiconductor@ MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline. ACS Appl. Mater. Interfaces 2020, 12, 11036–11044. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zhu, S.-R.; Wu, M.-K.; Zhao, W.-N.; Han, L. MOF-derived In2S3 nanorods for photocatalytic removal of dye and antibiotics. J. Solid State Chem. 2018, 266, 205–209. [Google Scholar] [CrossRef]
- Fakhri, H.; Bagheri, H. Highly efficient Zr-MOF@ WO3/graphene oxide photocatalyst: Synthesis, characterization and photodegradation of tetracycline and malathion. Mater. Sci. Semicond. Process. 2020, 107, 104815. [Google Scholar] [CrossRef]
- Matias, P.M.; Nunes, S.C.; Rodrigues, A.C.B.; Ltayef, M.; Sellaoui, L. Efficient removal of sulfonamide and tetracycline antibiotics using triazine-based porous organic polymers. Sep. Purif. Technol. 2024, 355, 129731. [Google Scholar] [CrossRef]
- Lessa, E.F.; Gerhardt, R.; Arabidian, V.; Junior, T.R.S.A.C.; de Almeida Pinto, L.A. Synthesis of chitosan/carbon nanotubes composite films as potential removal of anionic and cationic dyes in aqueous solutions. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Alyasi, H.; Mackey, H.; McKay, G. Adsorption of Methyl Orange from Water Using Chitosan Bead-like Materials. Molecules 2023, 28, 6561. [Google Scholar] [CrossRef]
- Alsamman, M.T.; Sánchez, J. Chitosan-and alginate-based hydrogels for the adsorption of anionic and cationic dyes from water. Polymers 2022, 14, 1498. [Google Scholar] [CrossRef] [PubMed]
- Ngah, W.W.; Endud, C.; Mayanar, R. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym. 2002, 50, 181–190. [Google Scholar] [CrossRef]
- Rasool, A.; Rizwan, M.; Islam, A.; Abdullah, H.; Shafqat, S.S.; Azeem, M.K.; Rasheed, T.; Bilal, M. Chitosan-Based Smart Polymeric Hydrogels and Their Prospective Applications in Biomedicine. Starch-Stärke 2024, 76, 2100150. [Google Scholar] [CrossRef]
- Zhou, Q.; Lan, W.; Xie, J. Phenolic acid-chitosan derivatives: An effective strategy to cope with food preservation problems. Int. J. Biol. Macromol. 2024, 254, 127917. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Ahamad, T.; Ruksana; Chaudhary, A.A.; Naushad, M.; Alshehri, S.M. Fabrication of MnFe2O4 nanoparticles embedded chitosan-diphenylureaformaldehyde resin for the removal of tetracycline from aqueous solution. Int. J. Biol. Macromol. 2019, 134, 180–188. [Google Scholar] [CrossRef]
- Roy, N.; Kannabiran, K.; Mukherjee, A. Studies on photocatalytic removal of antibiotics, ciprofloxacin and sulfamethoxazole, by Fe3O4-ZnO-Chitosan/Alginate nanocomposite in aqueous systems. Adv. Powder Technol. 2022, 33, 103691. [Google Scholar] [CrossRef]
- Guan, L.; Yu, W.; Asghar, M.R.; Zhang, W.; Su, H.; Li, C.; Xing, L.; Xu, Q. Effect of graphene aerogel as a catalyst layer additive on performance of direct methanol fuel cell. Fuel 2024, 360, 130503. [Google Scholar] [CrossRef]
- Guisán, J. Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes. Enzym. Microb. Technol. 1988, 10, 375–382. [Google Scholar] [CrossRef]
- Farris, S.; Song, J.; Huang, Q. Alternative Reaction Mechanism for the Cross-Linking of Gelatin with Glutaraldehyde. J. Agric. Food Chem. 2010, 58, 998–1003. [Google Scholar] [CrossRef]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 2004, 37, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Billah, R.E.K.; Islam, M.A.; Nazal, M.K.; Bahsis, L.; Soufiane, A.; Abdellaoui, Y.; Achak, M. A novel glutaraldehyde cross-linked chitosan@acid-activated bentonite composite for effectivePb (II) and Cr (VI) adsorption: Experimental and theoretical studies. Sep. Purif. Technol. 2024, 334, 126094. [Google Scholar] [CrossRef]
- Li, T.-T.; Liu, Y.-G.; Peng, Q.-Q.; Hu, X.-J.; Liao, T.; Wang, H.; Lu, M. Removal of lead (II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling. Chem. Eng. J. 2013, 214, 189–197. [Google Scholar] [CrossRef]
- Monteiro Jr, O.A.; Airoldi, C. Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 1999, 26, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Worzakowska, M. TG/DSC/FTIR/QMS analysis of environmentally friendly poly (citronellyl methacrylate)-co-poly (benzyl methacrylate) copolymers. J. Mater. Sci. 2023, 58, 2005–2024. [Google Scholar] [CrossRef]
- Wahba, M.I. Glutaraldehyde-copper gelled chitosan beads: Characterization and utilization as covalent immobilizers. Biocatal. Agric. Biotechnol. 2023, 50, 102668. [Google Scholar] [CrossRef]
- Saruchi; Kumar, V. Separation of crude oil from water using chitosan based hydrogel. Cellulose 2019, 26, 6229–6239. [Google Scholar] [CrossRef]
- Sahu, S.; Bishoyi, N.; Patel, R.K. Cerium phosphate polypyrrole flower like nanocomposite: A recyclable adsorbent for removal of Cr (VI) by adsorption combined with in-situ chemical reduction. J. Ind. Eng. Chem. 2021, 99, 55–67. [Google Scholar] [CrossRef]
- Abdelkader, A.F.; White, J.R. Water absorption in epoxy resins: The effects of the crosslinking agent and curing temperature. J. Appl. Polym. Sci. 2005, 98, 2544–2549. [Google Scholar] [CrossRef]
- Martinez, L.; Agnely, F.; Leclerc, B.; Siepmann, J.; Cotte, M.; Geiger, S.; Couarraze, G. Cross-linking of chitosan and chitosan/poly (ethylene oxide) beads: A theoretical treatment. Eur. J. Pharm. Biopharm. 2007, 67, 339–348. [Google Scholar] [CrossRef]
- Ellis, T.; Karasz, F. Karasz, Interaction of epoxy resins with water: The depression of glass transition temperature. Polymer 1984, 25, 664–669. [Google Scholar] [CrossRef]
- Kamari, K.; Taheri, A. Preparation and evaluation of magnetic core–shell mesoporous molecularly imprinted polymers for selective adsorption of amitriptyline in biological samples. J. Taiwan Inst. Chem. Eng. 2018, 86, 230–239. [Google Scholar] [CrossRef]
- Bée, A.; Obeid, L.; Mbolantenaina, R.; Welschbillig, M.; Talbot, D. Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water. J. Magn. Magn. Mater. 2017, 421, 59–64. [Google Scholar] [CrossRef]
- Adriano, W.; Veredas, V.; Santana, C.; Gonçalves, L. Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models. Biochem. Eng. J. 2005, 27, 132–137. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, L.; Wang, F.; Pei, Y.; Liu, S.; Lyu, R.; Luo, X. Aminated chitosan/cellulose nanocomposite microspheres designed for efficient removal of low-concentration sulfamethoxazole from water. J. Mol. Liq. 2021, 339, 116407. [Google Scholar] [CrossRef]
- Yu, K.; Ahmed, I.; Won, D.-I.; Lee, W.I.; Ahn, W.-S. Highly efficient adsorptive removal of sulfamethoxazole from aqueous solutions by porphyrinic MOF-525 and MOF-545. Chemosphere 2020, 250, 126133. [Google Scholar] [CrossRef]
- da Silva, P.M.M.; Camparotto, N.G.; de Figueiredo Neves, T.; Lira, K.T.G.; Mastelaro, V.R.; Picone, C.S.F.; Prediger, P. Effective removal of basic dye onto sustainable chitosan beads: Batch and fixed-bed column adsorption, beads stability and mechanism. Sustain. Chem. Pharm. 2020, 18, 100348. [Google Scholar] [CrossRef]
- Dutta, P.K.; Ravikumar, M.N.V.; Dutta, J. Chitin and chitosan for versatile applications. J. Macromol. Sci. Part C Polym. Rev. 2002, 42, 307–354. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Islam, M.T.; Hernandez, C.; Castro, E.; Katla, S.K.; Kim, H.; Lin, Y.; Curry, M.L.; Gardea-Torresdey, J.; Noveron, J.C. Biomass conversion of saw dust to a functionalized carbonaceous materials for the removal of Tetracycline, Sulfamethoxazole and Bisphenol A from water. J. Environ. Chem. Eng. 2018, 6, 4329–4338. [Google Scholar] [CrossRef]
- Vakili, M.T.; Rafatullah, M.; Ibrahim, M.H.; Abdullah, A.Z.; Salamatinia, B.; Gholami, Z. Preparation of chitosan beads for the adsorption of reactive blue 4 from aqueous solutions. Iran. J. Energy Environ. 2016, 7, 124–128. [Google Scholar]
- Wang, L.; Yang, C.; Lu, A.; Liu, S.; Pei, Y.; Luo, X. An easy and unique design strategy for insoluble humic acid/cellulose nanocomposite beads with highly enhanced adsorption performance of low concentration ciprofloxacin in water. Bioresour. Technol. 2020, 302, 122812. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.Z.; Sun, X.-F.; Liu, J.; Song, C.; Wang, S.-G.; Javed, A. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. Sci. Total Environ. 2018, 639, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.Y.; Ahmed, I.S.; Raya, M.A. A facile and tunable approach for synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions. J. Mol. Liq. 2019, 282, 251–263. [Google Scholar] [CrossRef]
- Balarak, D.; Khatibi, A.D.; Chandrika, K. Antibiotics Removal from Aqueous Solution and Pharmaceutical Wastewater by Adsorption Process: A Review. Int. J. Pharm. Investig. 2020, 10, 106–111. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Fan, X.; Quan, X.; Tan, F.; Zhang, Y.; Gao, J. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: In comparison with powder activated carbon. J. Colloid Interface Sci. 2015, 447, 120–127. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Wang, B.; Mo, Q.; Qin, B.; Song, L.; Li, J.; Sheng, G.; Shi, D.; Xu, X.; Hou, L. Adsorption behaviors of three antibiotics in single and co-existing aqueous solutions using mesoporous carbon. Environ. Res. 2022, 215, 114375. [Google Scholar] [CrossRef]
- Sahmoune, M.N. Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environ. Chem. Lett. 2019, 17, 697–704. [Google Scholar] [CrossRef]
- Marques Neto, J.D.O.; Bellato, C.R.; Milagres, J.L.; Pessoa, K.D.; Alvarenga, E.S.D. Preparation and evaluation of chitosan beads immobilized with Iron (III) for the removal of As (III) and As (V) from water. J. Braz. Chem. Soc. 2013, 24, 121–132. [Google Scholar] [CrossRef]
- Yeo, J.Y.J.; Khaerudini, D.S.; Soetaredjo, F.E.; Waworuntu, G.L.; Ismadji, S.; Putranto, A.; Sunarso, J. Experimental and modelling study of adsorption isotherms of amoxicillin, ampicillin and doripenem on bentonite-chitosan composite. S. Afr. J. Chem. Eng. 2023, 43, 38–45. [Google Scholar] [CrossRef]
- Putra, E.K.; Pranowo, R.; Sunarso, J.; Indraswati, N.; Ismadji, S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res. 2009, 43, 2419–2430. [Google Scholar] [CrossRef] [PubMed]
- Danalıoğlu, S.T.; Bayazit, Ş.S.; Kerkez Kuyumcu, Ö.; Salam, M.A. Efficient removal of antibiotics by a novel magnetic adsorbent: Magnetic activated carbon/chitosan (MACC) nanocomposite. J. Mol. Liq. 2017, 240, 589–596. [Google Scholar] [CrossRef]
- Mirizadeh, S.; Solisio, C.; Converti, A.; Casazza, A.A. Efficient removal of tetracycline, ciprofloxacin, and amoxicillin by novel magnetic chitosan/microalgae biocomposites. Sep. Purif. Technol. 2024, 329, 125115. [Google Scholar] [CrossRef]
- Pinheiro, C.P.; Tokura, B.K.; Germano, N.S.; de Moraes, M.A.; Bresolin, I.T.L. Adsorption of amoxicillin by chitosan and alginate biopolymers composite beads. Environ. Sci. Pollut. Res. 2024, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Yang, K.; Wu, X.; Liu, G.; Zhang, T.C.; Wang, Q.; Luo, F. Functionally-Designed Chitosan-based hydrogel beads for adsorption of sulfamethoxazole with light regeneration. Sep. Purif. Technol. 2022, 293, 120973. [Google Scholar] [CrossRef]
- Khumalo, S.M.; Bakare, B.F.; Rathilal, S. Single and multicomponent adsorption of amoxicillin, ciprofloxacin, and sulfamethoxazole on chitosan-carbon nanotubes hydrogel beads from aqueous solutions: Kinetics, isotherms, and thermodynamic parameters. J. Hazard. Mater. Adv. 2024, 13, 100404. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Shang, H.; Cao, Y.; Yang, C.; Hu, W.; Feng, Y.; Yu, Y. Influence of adsorption sites of biochar on its adsorption performance for sulfamethoxazole. Chemosphere 2023, 326, 138408. [Google Scholar] [CrossRef]
- El Messaoudi, N.; El Mouden, A.; Fernine, Y.; El Khomri, M.; Bouich, A.; Faska, N.; Ciğeroğlu, Z.; Américo-Pinheiro, J.H.P.; Jada, A.; Lacherai, A. Green synthesis of Ag2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic adsorption: Characterization, experimental study, modeling, and DFT calculation. Environ. Sci. Pollut. Res. 2023, 30, 81352–81369. [Google Scholar] [CrossRef]
- Mashile, P.P. Biopolymer-Based Nanocomposite as Recyclable Adsorbents for Removal of Pollutants in Wastewater Treatment; University of Johannesburg: Johannesburg, South Africa, 2023. [Google Scholar]
- Son Tran, V.; Hao Ngo, H.; Guo, W.; Ha Nguyen, T.; Mai Ly Luong, T.; Huan Nguyen, X.; Lan Anh Phan, T.; Trong Le, V.; Phuong Nguyen, M.; Khai Nguyen, M. New chitosan-biochar composite derived from agricultural waste for removing sulfamethoxazole antibiotics in water. Bioresour. Technol. 2023, 385, 129384. [Google Scholar] [CrossRef]
ΔG (KJ mol−1) | |||
---|---|---|---|
Temperature (K) | 293.15 | 303.15 | 313.15 |
AMX | −0.113 | −1.085 | −2.057 |
SMX | 2.447 | 2.107 | 1.768 |
NaOH (%) | Glutaraldehyde (%) |
---|---|
25 | 1 |
3 | |
5 | |
10 | |
20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda, F.L.; Meléndrez, M.F.; Pérez, M.A.; Rivas, B.L.; Pereira, E.D.; Palacio, D.A. Development of Variable Charge Cationic Hydrogel Particles with Potential Application in the Removal of Amoxicillin and Sulfamethoxazole from Water. Gels 2024, 10, 760. https://doi.org/10.3390/gels10120760
Aranda FL, Meléndrez MF, Pérez MA, Rivas BL, Pereira ED, Palacio DA. Development of Variable Charge Cationic Hydrogel Particles with Potential Application in the Removal of Amoxicillin and Sulfamethoxazole from Water. Gels. 2024; 10(12):760. https://doi.org/10.3390/gels10120760
Chicago/Turabian StyleAranda, Francisca L., Manuel F. Meléndrez, Mónica A. Pérez, Bernabé L. Rivas, Eduardo D. Pereira, and Daniel A. Palacio. 2024. "Development of Variable Charge Cationic Hydrogel Particles with Potential Application in the Removal of Amoxicillin and Sulfamethoxazole from Water" Gels 10, no. 12: 760. https://doi.org/10.3390/gels10120760
APA StyleAranda, F. L., Meléndrez, M. F., Pérez, M. A., Rivas, B. L., Pereira, E. D., & Palacio, D. A. (2024). Development of Variable Charge Cationic Hydrogel Particles with Potential Application in the Removal of Amoxicillin and Sulfamethoxazole from Water. Gels, 10(12), 760. https://doi.org/10.3390/gels10120760