Photopolymerization of Chlorpromazine-Loaded Gelatin Methacryloyl Hydrogels: Characterization and Antimicrobial Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Absorption Spectroscopy Analysis
2.2. Laser-Induced Fluoresce Analysis
2.3. FTIR Analysis
2.4. Hydrogel Release Behavior
2.5. Antimicrobial Activity
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ordway, D.; Viveiros, M.; Leandro, C.; Amaral, L.; Arroz, M.J.; Molnar, J.; Kristiansen, J.E. Chlorpromazine Has Intracellular Killing Activity against Phagocytosed Staphylococcus Aureus at Clinical Concentrations. J. Infect. Chemother. 2002, 8, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Tozar, T.; Nastasa, V.; Stoicu, A.; Chifiriuc, M.C.; Popa, M.; Kamerzan, C.; Pascu, M.L. In Vitro Antimicrobial Efficacy of Laser Exposed Chlorpromazine against Gram-Positive Bacteria in Planktonic and Biofilm Growth State. Microb. Pathog. 2019, 129, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Wood, N.C.; Nugent, K.M. Inhibitory Effects of Chlorpromazine on Candida Species. Antimicrob Agents Chemother 1985, 27, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Vitale, R.G.; Afeltra, J.; Meis, J.F.G.M.; Verweij, P.E. Activity and Post Antifungal Effect of Chlorpromazine and Trifluopherazine against Aspergillus, Scedosporium and Zygomycetes. Mycoses 2007, 50, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Crowle, A.J.; Douvas, G.S.; May, M.H. Chlorpromazine: A Drug Potentially Useful for Treating Mycobacterial Infections. Chemotherapy 1992, 38, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Alexandru, T.; Staicu, A.; Pascu, A.; Radu, E.; Stoicu, A.; Nastasa, V.; Dinache, A.; Boni, M.; Amaral, L.; Pascu, M.L. Characterization of Mixtures of Compounds Produced in Chlorpromazine Aqueous Solutions by Ultraviolet Laser Irradiation: Their Applications in Antimicrobial Assays. J. Biomed. Opt. 2014, 20, 051002. [Google Scholar] [CrossRef]
- Alexandru, T.; Armada, A.; Danko, B.; Hunyadi, A.; Militaru, A.; Boni, M.; Nastasa, V.; Martins, A.; Viveiros, M.; Pascu, M.; et al. Biological Evaluation of Products Formed from the Irradiation of Chlorpromazine with a 266 nm Laser Beam. Biochem. Pharmacol. 2013, 2, 109. [Google Scholar] [CrossRef]
- Armada, A.M.; Alexandru, T.; Machado, D.; Danko, B.; Hunyadi, A.; Dinache, A.; Nastasa, V.; Boni, M.; Ramos, J.; Viveiros, M.; et al. The In Vitro Activity of Products Formed from Exposure of Chlorpromazine to a 266nm LASER Beam Against Species of Mycobacteria of Human Interest. In Vivo 2013, 27, 605–610. [Google Scholar]
- Nistorescu, S.; Gradisteanu Pircalabioru, G.; Udrea, A.-M.; Simon, Á.; Pascu, M.; Chifiriuc, M.-C. Laser-Irradiated Chlorpromazine as a Potent Anti-Biofilm Agent for Coating of Biomedical Devices. Coatings 2020, 10, 1230. [Google Scholar] [CrossRef]
- Tozar, T.; Nistorescu, S.; Boni, M.; Gradisteanu Pircalabioru, G.; Negut, I.; Staicu, A. Pulsed Laser Photo-Crosslinking of Gelatin Methacryloyl Hydrogels for the Controlled Delivery of Chlorpromazine to Combat Antimicrobial Resistance. Pharmaceutics 2022, 14, 2121. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef] [PubMed]
- Bahney, C.; Lujan, T.; Hsu, C.; Bottlang, M.; West, J.; Johnstone, B. Visible Light Photoinitiation of Mesenchymal Stem Cell-Laden Bioresponsive Hydrogels. Eur. Cell. Mater. 2011, 22, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Mironi-Harpaz, I.; Wang, D.Y.; Venkatraman, S.; Seliktar, D. Photopolymerization of Cell-Encapsulating Hydrogels: Crosslinking Efficiency versus Cytotoxicity. Acta Biomater. 2012, 8, 1838–1848. [Google Scholar] [CrossRef] [PubMed]
- Ki, C.S.; Shih, H.; Lin, C.-C. Facile Preparation of Photodegradable Hydrogels by Photopolymerization. Polymer 2013, 54, 2115–2122. [Google Scholar] [CrossRef] [PubMed]
- Shih, H.; Greene, T.; Korc, M.; Lin, C.-C. Modular and Adaptable Tumor Niche Prepared from Visible Light Initiated Thiol-Norbornene Photopolymerization. Biomacromolecules 2016, 17, 3872–3882. [Google Scholar] [CrossRef]
- Baroli, B. Photopolymerization of Biomaterials: Issues and Potentialities in Drug Delivery, Tissue Engineering, and Cell Encapsulation Applications. J. Chem. Tech. Biotech. 2006, 81, 491–499. [Google Scholar] [CrossRef]
- Wiley, K.L.; Ovadia, E.M.; Calo, C.J.; Huber, R.E.; Kloxin, A.M. Rate-Based Approach for Controlling the Mechanical Properties of ‘Thiol–Ene’ Hydrogels Formed with Visible Light. Polym. Chem. 2019, 10, 4428–4440. [Google Scholar] [CrossRef]
- O’Connell, C.D.; Zhang, B.; Onofrillo, C.; Duchi, S.; Blanchard, R.; Quigley, A.; Bourke, J.; Gambhir, S.; Kapsa, R.; Di Bella, C.; et al. Tailoring the Mechanical Properties of Gelatin Methacryloyl Hydrogels through Manipulation of the Photocrosslinking Conditions. Soft Matter 2018, 14, 2142–2151. [Google Scholar] [CrossRef] [PubMed]
- Han, W.T.; Jang, T.; Chen, S.; Chong, L.S.H.; Jung, H.-D.; Song, J. Improved Cell Viability for Large-Scale Biofabrication with Photo-Crosslinkable Hydrogel Systems through a Dual-Photoinitiator Approach. Biomater. Sci. 2020, 8, 450–461. [Google Scholar] [CrossRef]
- Aubry, B.; Dumur, F.; Lansalot, M.; Bourgeat-Lami, E.; Lacôte, E.; Lalevée, J. Development of Water-Soluble Type I Photoinitiators for Hydrogel Synthesis. Macromol 2022, 2, 131–140. [Google Scholar] [CrossRef]
- Nguyen, T.; Watkins, K.E.; Kishore, V. Photochemically Crosslinked Cell-laden Methacrylated Collagen Hydrogels with High Cell Viability and Functionality. J. Biomed. Mater. Res. 2019, 107, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Fedorovich, N.E.; Oudshoorn, M.H.; Van Geemen, D.; Hennink, W.E.; Alblas, J.; Dhert, W.J.A. The Effect of Photopolymerization on Stem Cells Embedded in Hydrogels. Biomaterials 2009, 30, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Goto, R.; Nishida, E.; Kobayashi, S.; Aino, M.; Ohno, T.; Iwamura, Y.; Kikuchi, T.; Hayashi, J.; Yamamoto, G.; Asakura, M.; et al. Gelatin Methacryloyl–Riboflavin (GelMA–RF) Hydrogels for Bone Regeneration. Int. J. Mol. Sci. 2021, 22, 1635. [Google Scholar] [CrossRef] [PubMed]
- Montazerian, H.; Baidya, A.; Haghniaz, R.; Davoodi, E.; Ahadian, S.; Annabi, N.; Khademhosseini, A.; Weiss, P.S. Stretchable and Bioadhesive Gelatin Methacryloyl-Based Hydrogels Enabled by in Situ Dopamine Polymerization. ACS Appl. Mater. Interfaces 2021, 13, 40290–40301. [Google Scholar] [CrossRef] [PubMed]
- Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, Properties, and Biomedical Applications of Gelatin Methacryloyl (GelMA) Hydrogels. Biomaterials 2015, 73, 254–271. [Google Scholar] [CrossRef]
- De Mol, N.J.; Busker, R.W. Irreversible Binding of the Chlorpromazine Radical Cation and of Photoactivated Chlorpromazine to Biological Macromolecules. Chem.-Biol. Interact. 1984, 52, 79–92. [Google Scholar] [CrossRef]
- Chignell, C.F.; Motten, A.G.; Buettner, G.R. Photoinduced Free Radicals from Chlorpromazine and Related Phenothiazines: Relationship to Phenothiazine-Induced Photosensitization. Environ. Health Perspect. 1985, 64, 103–110. [Google Scholar] [CrossRef]
- Chanana, G.; Batra, K. Investigating Functional Performance and Substituent Effect in Modelling Molecular Structure, UV-Visible Spectra, and Optical Properties of D-π-A Conjugated Organic Dye Molecules: A DFT and TD-DFT Study. J. Mol. Model. 2021, 27, 229. [Google Scholar] [CrossRef]
- Bae, W.; Yoon, T.-Y.; Jeong, C. Direct Evaluation of Self-Quenching Behavior of Fluorophores at High Concentrations Using an Evanescent Field. PLoS ONE 2021, 16, e0247326. [Google Scholar] [CrossRef]
- Chen, S.; Yu, Y.-L.; Wang, J.-H. Inner Filter Effect-Based Fluorescent Sensing Systems: A Review. Anal. Chim. Acta 2018, 999, 13–26. [Google Scholar] [CrossRef]
- Liu, M.; Li, M.-D.; Xue, J.; Phillips, D.L. Time-Resolved Spectroscopic and Density Functional Theory Study of the Photochemistry of Irgacure-2959 in an Aqueous Solution. J. Phys. Chem. A 2014, 118, 8701–8707. [Google Scholar] [CrossRef] [PubMed]
- Hübner, C.G.; Renn, A.; Renge, I.; Wild, U.P. Direct Observation of the Triplet Lifetime Quenching of Single Dye Molecules by Molecular Oxygen. J. Chem. Phys. 2001, 115, 9619–9622. [Google Scholar] [CrossRef]
- Souza, G.A.; Cordeiro, D.S.; Ernter, T.D.M. Steady-State and Fluorescence Lifetime Quenching of Self-Assembled Diphenylalanine/Coumarin Nanostructures as a Method to Determine Dissolved O2 in Water. Adv. Nat. Sci. 2023, 14, 015011. [Google Scholar] [CrossRef]
- Guerret-Legras, L.; Audibert, J.; Gonzalez-Ojeda, I.M.; Dubacheva, G.; Clavier, G.; Miomandre, F. Time-Resolved Fluorescence Microscopy Combined with Scanning Electrochemical Microscopy: A New Way to Visualize Photo-Induced Electron Transfer Quenching with an Electrofluorochromic Probe. J. Phys. Chem. C 2020, 124, 23938–23948. [Google Scholar] [CrossRef]
- Jamorski Jödicke, C.; Lüthi, H.P. Time-Dependent Density Functional Theory (TDDFT) Study of the Excited Charge-Transfer State Formation of a Series of Aromatic Donor−acceptor Systems. J. Am. Chem. Soc. 2003, 125, 252–264. [Google Scholar] [CrossRef]
- Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett. 2006, 96, 113002. [Google Scholar] [CrossRef]
- Chansoria, P.; Asif, S.; Polkoff, K.; Chung, J.; Piedrahita, J.A.; Shirwaiker, R.A. Characterizing the Effects of Synergistic Thermal and Photo-Cross-Linking during Biofabrication on the Structural and Functional Properties of Gelatin Methacryloyl (Gelma) Hydrogels. ACS Biomater. Sci. Eng. 2021, 7, 5175–5188. [Google Scholar] [CrossRef]
- Deng, J.; Pan, J.; Yu, L.; Wang, Y.; Zhang, W.; Huang, W.; Fan, Y.; Liu, Y. The Effects of Irradiation Time on Gelatin Methacrylate Hydrogels Used for Bone Tissue Engineering. J. Biomater. Tissue Eng. 2022, 12, 192–198. [Google Scholar] [CrossRef]
- Brown, D.F.; Kothari, D. Comparison of Antibiotic Discs from Different Sources. J. Clin. Pathol. 1975, 28, 779–783. [Google Scholar] [CrossRef]
- Bauer, A.W. Single-Disk Antibiotic-Sensitivity Testing of Staphylococci: An Analysis of Technique and Results. AMA Arch. Intern. Med. 1959, 104, 208. [Google Scholar] [CrossRef]
- Dutta, D.; Willcox, M. A Laboratory Assessment of Factors That Affect Bacterial Adhesion to Contact Lenses. Biology 2013, 2, 1268–1281. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.; Teixeira-Santos, R.; Gomes, L.C.; Faria, S.I.; Valcarcel, J.; Vázquez, J.A.; Cerqueira, M.A.; Pastrana, L.; Bourbon, A.I.; Mergulhão, F.J. Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of Staphylococcus Aureus and Pseudomonas Aeruginosa. Molecules 2021, 26, 4378. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tozar, T.; Nistorescu, S.; Gradisteanu Pircalabioru, G.; Boni, M.; Staicu, A. Photopolymerization of Chlorpromazine-Loaded Gelatin Methacryloyl Hydrogels: Characterization and Antimicrobial Applications. Gels 2024, 10, 632. https://doi.org/10.3390/gels10100632
Tozar T, Nistorescu S, Gradisteanu Pircalabioru G, Boni M, Staicu A. Photopolymerization of Chlorpromazine-Loaded Gelatin Methacryloyl Hydrogels: Characterization and Antimicrobial Applications. Gels. 2024; 10(10):632. https://doi.org/10.3390/gels10100632
Chicago/Turabian StyleTozar, Tatiana, Simona Nistorescu, Gratiela Gradisteanu Pircalabioru, Mihai Boni, and Angela Staicu. 2024. "Photopolymerization of Chlorpromazine-Loaded Gelatin Methacryloyl Hydrogels: Characterization and Antimicrobial Applications" Gels 10, no. 10: 632. https://doi.org/10.3390/gels10100632
APA StyleTozar, T., Nistorescu, S., Gradisteanu Pircalabioru, G., Boni, M., & Staicu, A. (2024). Photopolymerization of Chlorpromazine-Loaded Gelatin Methacryloyl Hydrogels: Characterization and Antimicrobial Applications. Gels, 10(10), 632. https://doi.org/10.3390/gels10100632