Use of Chitosan–Iron Oxide Gels for the Removal of Cd2+ Ions from Aqueous Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Xerogel Beads Characterization
2.1.1. Size and Composition of the Xerogel Beads
2.1.2. Average Diameter of Gel Beads
2.1.3. Scanning Electron Microscopy (SEM)
2.1.4. Potentiometric Titration
2.1.5. Point of Zero Charge Determination
2.1.6. X-ray Diffraction Crystallography
2.1.7. FTIR Characterization
2.2. Adsorption Kinetics
2.3. Adsorption at Equilibrium
2.4. Effect of Ionic Strength on Cadmium Uptake
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of ChM and ChF Xerogel Beads
4.3. Xerogel Beads Characterization
4.3.1. Xerogel Beads Composition
4.3.2. Average Diameter of Gel Beads
4.3.3. Scanning Electron Microscopy
4.3.4. Potentiometric Titration
4.3.5. Point of Zero Charge Determination
4.3.6. X-ray Diffraction Crystallography
4.3.7. FTIR Analyses
4.4. Adsorption Kinetics
4.5. Adsorption at Equilibrium
4.6. Effect of Ionic Strength
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NOM-127-SSA1-2021; Water for Human Use and Consumption: Permissible Limits of Water Quality. Environmental Health: Mexico City, Mexico, 2022.
- Pacheco Avila, J.; Cabrera Sansores, A.; Barcelo Quintal, M.; Alcocer Can, L.; Pacheco Perera, M. Environmental Study on Cadmium in Groundwater in Yucatan. In Water Resources in Mexico: Scarcity, Degradation, Stress, Conflicts, Management, and Policy; Oswald Spring, Ú., Ed.; Springer: Berlin, Germany, 2011; pp. 239–249. [Google Scholar]
- Avelar González, F.J.; Ramírez López, E.M.; Martínez Saldaña, M.C.; Guerrero Barrera, A.L.; Jaramillo Juárez, F.; Reyes Sánchez, J.L. Water Quality in the State of Aguascalientes and Its Effects on the Population’s Health. In Water Resources in Mexico Scarcity, Degradation, Stress, Conflicts, Management, and Policy; Oswald Spring, Ú., Ed.; Springer: Berlin, Germany, 2011; pp. 217–229. [Google Scholar]
- Abidli, A.; Huang, Y.; Ben Rejeb, Z.; Zaoui, A.; Park, C.B. Sustainable and Efficient Technologies for Removal and Recovery of Toxic and Valuable Metals from Wastewater: Recent Progress, Challenges, and Future Perspectives. Chemosphere 2022, 292, 133102. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological Trends in Heavy Metals Removal from Industrial Wastewater: A Review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Crini, G.; Badot, P.M. Application of Chitosan, a Natural Aminopolysaccharide, for Dye Removal from Aqueous Solutions by Adsorption Processes Using Batch Studies: A Review of Recent Literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Zhang, Z.; Zhang, X.; Zhang, Z.; Liu, T.; Wang, X.; Zhang, Z.; Shen, J. Preparation Protocol of Urea Cross-Linked Chitosan Aerogels with Improved Mechanical Properties Using Aqueous Aluminum Ion Medium. J. Supercrit. Fluids 2022, 179, 105414. [Google Scholar] [CrossRef]
- Darban, Z.; Shahabuddin, S.; Gaur, R.; Ahmad, I.; Sridewi, N. Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels 2022, 8, 263. [Google Scholar] [CrossRef]
- Gerente, C.; Lee, V.K.C.; Le Cloirec, P.; McKay, G. Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption—Mechanisms and Models Review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 41–127. [Google Scholar] [CrossRef]
- Zargar, V.; Asghari, M.; Dashti, A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Rev. 2015, 2, 204–226. [Google Scholar] [CrossRef]
- Liu, C.; Bai, R. Recent Advances in Chitosan and Its Derivatives as Adsorbents for Removal of Pollutants from Water and Wastewater. Curr. Opin. Chem. Eng. 2014, 4, 62–70. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Rouf, S.; Nagapadma, M. Modeling of Fixed Bed Column Studies for Adsorption of Azo Dye on Chitosan Impregnated with a Cationic Surfactant. Int. J. Sci. Eng. Res. 2015, 6, 538–545. [Google Scholar] [CrossRef]
- Varma, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal Complexation by Chitosan and Its Derivatives: A Review. Carbohydr. Polym. 2004, 55, 77–93. [Google Scholar] [CrossRef]
- Gotoh, T.; Matsushima, K.; Kikuchi, K.I. Preparation of Alginate-Chitosan Hybrid Gel Beads and Adsorption of Divalent Metal Ions. Chemosphere 2004, 55, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Mendizabal, E.; Ríos-Donato, N.; Jasso-Gastinel, C.F.; Verduzco-Navarro, I.P. Removal of Arsenate by Fixed-Bed Columns Using Chitosan-Magnetite Hydrogel Beads and Chitosan Hydrogel Beads: Effect of the Operating Conditions on Column Efficiency. Gels 2023, 9, 825. [Google Scholar] [CrossRef]
- Singha, N.R.; Deb, M.; Chattopadhyay, P.K. Chitin and Chitosan-Based Blends and Composites. In Biodegradable Polymers, Blends and Composites; Rangappa, S.M., Parameswaranpillai, J., Siengchin, S., Ramesh, M., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2022; pp. 123–203. ISBN 9780128237915. [Google Scholar]
- Jha, N.; Iyengar, L.; Rao, A.V.S.P. Removal of Cadmium Using Chitosan. J. Environ. Eng. 1988, 114, 962–974. [Google Scholar] [CrossRef]
- Carneiro, M.A.; Pintor, A.M.A.; Boaventura, R.A.R.; Botelho, C.M.S. Efficient Removal of Arsenic from Aqueous Solution by Continuous Adsorption onto Iron-Coated Cork Granulates. J. Hazard. Mater. 2022, 432, 128657. [Google Scholar] [CrossRef] [PubMed]
- Bujňáková, Z.; Baláž, P.; Zorkovská, A.; Sayagués, M.J.; Kováč, J.; Timko, M. Arsenic Sorption by Nanocrystalline Magnetite: An Example of Environmentally Promising Interface with Geosphere. J. Hazard. Mater. 2013, 262, 1204–1212. [Google Scholar] [CrossRef]
- Pontoni, L.; Fabbricino, M. Use of Chitosan and Chitosan-Derivatives to Remove Arsenic from Aqueous Solutions—A Mini Review. Carbohydr. Res. 2012, 356, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Ajmal, Z.; Usman, M.; Anastopoulos, I.; Qadeer, A.; Zhu, R.; Wakeel, A.; Dong, R. Use of Nano-/Micro-Magnetite for Abatement of Cadmium and Lead Contamination. J. Environ. Manag. 2020, 264, 110477. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Niari, M.H.; Kakavandi, B. Development Ofmaghemite Nanoparticles Supported on Cross-Linked (γ-Fe2O3@CS) as a Recoverable Mesoporous Magnetic for Effective Heavy Metals Removal. J. Mol. Liq. 2017, 248, 184–196. [Google Scholar] [CrossRef]
- Yadaei, H.; Beyki, M.H.; Shemirani, F.; Nouroozi, S. Ferrofluid Mediated Chitosan@mesoporous Carbon Nanohybrid for Green Adsorption/Preconcentration of Toxic Cd(II): Modeling, Kinetic and Isotherm Study. React. Funct. Polym. 2018, 122, 85–97. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, R.; Wang, C.; Zhou, G.; Hua, C.; Cao, Y.; Song, Z. Novel Environmental-Friendly Nano-Composite Magnetic Attapulgite Functionalized by Chitosan and EDTA for Cadmium (II) Removal. J. Alloys Compd. 2020, 817, 153286. [Google Scholar] [CrossRef]
- Elanchezhiyan, S.S.; Karthikeyan, P.; Rathinam, K.; Hasmath Farzana, M.; Park, C.M. Magnetic Kaolinite Immobilized Chitosan Beads for the Removal of Pb(II) and Cd(II) Ions from an Aqueous Environment. Carbohydr. Polym. 2021, 261, 117892. [Google Scholar] [CrossRef] [PubMed]
- Morshedy, A.S.; Galhoum, A.A.; Aleem, H.; Abdel Aleem, A.; Shehab El-din, M.T.; Okaba, D.M.; Mostafa, M.S.; Mira, H.I.; Yang, Z.; E.T.-El-Sayed, I. Functionalized Aminophosphonate Chitosan-Magnetic Nanocomposites for Cd(II) Removal from Aqueous Solutions: Performance and Mechanisms of Sorption. Appl. Surf. Sci. 2021, 561, 150069. [Google Scholar] [CrossRef]
- Hu, C.; Zheng, Z.; Huang, M.; Yang, F.; Wu, X.; Zhang, A. Adsorption Characterization of Cu(II) and Cd(II) by a Magnetite–Chitosan Composite: Kinetic, Thermodynamic and Equilibrium Studies. Polymers 2023, 15, 2710. [Google Scholar] [CrossRef]
- Hamza, M.F.; Abdel-Rahman, A.A.H.; Negm, A.S.; Hamad, D.M.; Khalafalla, M.S.; Fouda, A.; Wei, Y.; Amer, H.H.; Alotaibi, S.H.; Goda, A.E.S. Grafting of Thiazole Derivative on Chitosan Magnetite Nanoparticles for Cadmium Removal—Application for Groundwater Treatment. Polymers 2022, 14, 1240. [Google Scholar] [CrossRef]
- Hamza, M.; Wei, Y.; Benettayeb, A.; Wang, X.; Guibal, E.; Efficient, E.G. Efficient Removal of Uranium, Cadmium and Mercury from Aqueous Solutions Using Grafted Hydrazide-Micro-Magnetite Chitosan Derivative. J. Mater. Sci. 2020, 2020, 4193–4212. [Google Scholar] [CrossRef]
- Kemp, P.H. Chemistry of Natural Waters—I. Water Res. 1971, 5, 297–311. [Google Scholar] [CrossRef]
- El-Dib, F.I.; Mohamed, D.E.; El-Shamy, O.A.A.; Mishrif, M.R. Study the Adsorption Properties of Magnetite Nanoparticles in the Presence of Different Synthesized Surfactants for Heavy Metal Ions Removal. Egypt. J. Pet. 2020, 29, 1–7. [Google Scholar] [CrossRef]
- Benazouz, K.; Bouchelkia, N.; Imessaoudene, A.; Bollinger, J.-C.; Amrane, A.; Assadi, A.A.; Zeghioud, H.; Mouni, L.; Liu, B.; Zeghioud, H. Water Remediation for Chitosan Derived from Shrimp Waste, an Ecofriendly Material: Kinetics Modeling, Response Surface Methodology Optimization, and Mecha-Nism. Water 2023, 15, 3728. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, S.; Han, M.; Su, Q.; Xia, L.; Hui, Z. Adsorption Properties of Magnetic Magnetite Nanoparticle for Coexistent Cr(VI) and Cu(II) in Mixed Solution. Water 2020, 12, 446. [Google Scholar] [CrossRef]
- Noreen, S.; Khalid, U.; Ibrahim, S.M.; Javed, T.; Ghani, A.; Naz, S.; Iqbal, M. ZnO, MgO and FeO Adsorption Efficiencies for Direct Sky Blue Dye: Equilibrium, Kinetics and Thermodynamics Studies. J. Mater. Res. Technol. 2020, 9, 5881–5893. [Google Scholar] [CrossRef]
- Dadashi, S.; Poursalehi, R.; Delavari, H. Structural and Optical Properties of Pure Iron and Iron Oxide Nanoparticles Prepared via Pulsed Nd:YAG Laser Ablation in Liquid. Procedia Mater. Sci. 2015, 11, 722–726. [Google Scholar] [CrossRef]
- Namduri, H.; Nasrazadani, S. Quantitative Analysis of Iron Oxides Using Fourier Transform Infrared Spectrophotometry. Corros. Sci. 2008, 50, 2493–2497. [Google Scholar] [CrossRef]
- Drabczyk, A.; Kudłacik-Kramarczyk, S.; Głab, M.; Kedzierska, M.; Jaromin, A.; Mierzwiński, D.; Tyliszczak, B. Physicochemical Investigations of Chitosan-Based Hydrogels Containing Aloe Vera Designed for Biomedical Use. Materials 2020, 13, 3073. [Google Scholar] [CrossRef] [PubMed]
- Musah, M.; Azeh, Y.; Mathew, J.; Umar, M.; Abdulhamid, Z.; Muhammad, A. Adsorption Kinetics and Isotherm Models: A Review. Caliphate J. Sci. Technol. 2022, 4, 20–26. [Google Scholar] [CrossRef]
- Limousin, G.; Gaudet, J.P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M. Sorption Isotherms: A Review on Physical Bases, Modeling and Measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Verduzco Navarro, I.P.; Mendizábal, E.; Rivera Mayorga, J.A.; Rentería-Urquiza, M.; Gonzalez-Alvarez, A.; Rios-Donato, N. Arsenate Removal from Aqueous Media Using Chitosan-Magnetite Hydrogel by Batch and Fixed-Bed Columns. Gels 2022, 8, 186. [Google Scholar] [CrossRef]
- Piccin, J.S.; Sant’Anna Cadaval, T.R., Jr.; Almeida de Pinto, L.A.; Dotto, G.L. Adsorption Isotherms in Liquid Phase: Experimental, Modeling and Interpretations. In Adsorption Processes for Water Treatment and Purification; Bonilla-Petricolet, A., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 19–48. [Google Scholar]
- Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin—Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR J. Appl. Chem. 2012, 3, 38–45. [Google Scholar] [CrossRef]
- Ebadi, A.; Soltan Mohammadzadeh, J.S.; Khudiev, A. What Is the Correct Form of BET Isotherm for Modeling Liquid Phase Adsorption? Adsorption 2009, 15, 65–73. [Google Scholar] [CrossRef]
- Mola Ali Abasiyan, S.; Dashbolaghi, F.; Mahdavinia, G.R. Chitosan Cross-Linked with κ-Carrageenan to Remove Cadmium from Water and Soil Systems. Environ. Sci. Pollut. Res. 2019, 26, 26254–26264. [Google Scholar] [CrossRef]
- Ahmad, R.; Mirza, A. Facile One Pot Green Synthesis of Chitosan-Iron Oxide (CS-Fe2O3) Nanocomposite: Removal of Pb(II) and Cd(II) from Synthetic and Industrial Wastewater. J. Clean. Prod. 2018, 186, 342–352. [Google Scholar] [CrossRef]
- Lu, H.; Qiao, X.; Wang, W.; Tan, F.; Sun, F.; Xiao, Z.; Chen, J. Effective Removal of Cadmium Ions from Aqueous Solution Using Chitosan-Stabilized Nano Zero-Valent Iron. Desalination Water Treat. 2015, 56, 256–265. [Google Scholar] [CrossRef]
- Ayub, A.; Raza, Z.A.; Majeed, M.I.; Tariq, M.R.; Irfan, A. Development of Sustainable Magnetic Chitosan Biosorbent Beads for Kinetic Remediation of Arsenic Contaminated Water. Int. J. Biol. Macromol. 2020, 163, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, C.; Yan, J.; Ma, Y.; Zhou, X.; Yu, W.; Kan, H.; Meng, Q.; Xie, R.; Dong, P. A Review on Adsorption Characteristics and Influencing Mechanism of Heavy Metals in Farmland Soil. RSC Adv. 2023, 13, 3505–3519. [Google Scholar] [CrossRef]
- Gonçalves, R.G.L.; Lopes, P.A.; Pochapski, D.J.; de Oliveira, L.C.A.; Pinto, F.G.; Neto, J.L.; Tronto, J. Effect of PH, Ionic Strength, and Temperature on the Adsorption Behavior of Acid Blue 113 onto Mesoporous Carbon. Environ. Sci. Pollut. Res. 2022, 29, 77188–77198. [Google Scholar] [CrossRef]
- Ríos Donato, N.; Navarro, R.; Avila Rodríguez, M.; Mendizábal, E. Coagulation–Flocculation of Colloidal Suspensions of Kaolinite, Bentonite, and Alumina by Chitosan Sulfate. J. Appl. Polym. Sci. 2012, 123, 2003–2010. [Google Scholar] [CrossRef]
- Udoetok, I.A.; Dimmick, R.M.; Wilson, L.D.; Headley, J.V. Adsorption Properties of Cross-Linked Cellulose-Epichlorohydrin Polymers in Aqueous Solution. Carbohydr. Polym. 2016, 136, 329–340. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.; Zhang, W.; Zhang, Q. Critical Review in Adsorption Kinetic Models. J. Zhejiang Univ. 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340. [Google Scholar] [CrossRef]
- Dotto, G.L.; Gonçalves Salau, N.P.; Piccin, J.S.; Sant’Anna Cadaval, T.R., Jr.; Almeida de Pinto, L.A. Adsorption Kinetics in Liquid Phase: Modeling for Discontinuous and Continuous Systems. In Adsorption Processes for Water Treatment and Purification; Bonilla-Petricolet, A., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 53–74. [Google Scholar]
- Azalea, Z.; Marsin, M.; Ibrahim, W.; Aini, W. International Journal of Biological Macromolecules Alginate-Based Adsorbents for Removal of Metal Ions and Radionuclides from Aqueous Solutions: A Review. Int. J. Biol. Macromol. 2021, 174, 216–228. [Google Scholar] [CrossRef]
ChM | ChF | |||
---|---|---|---|---|
Kinetic Models | C0 = 10 mg/L | C0 = 100 mg/L | C0 = 10 mg/L | C0 = 100 mg/L |
Pseudo-first model | ||||
qe (mg Cd/g) | 0.1974 | 5.806 | 0.5908 | 6.086 |
k1 (1/min) | 0.1034 | 0.4713 | 0.2664 | 0.4520 |
R2 | 0.8804 | 0.5433 | 0.5201 | 0.3192 |
MAE | 0.0112 | 0.1123 | 0.0105 | 0.2065 |
Pseudo-second order | ||||
qe (mg Cd/g) | 0.1959 | 0.0575 | 0.5932 | 6.115 |
k2 (g/mg·min) | 0.0231 | 0.3484 | 0.1259 | 0.3087 |
R2 | 0.8437 | 0.6341 | 0.6553 | 0.4515 |
MAE | 0.0132 | 0.1041 | 0.0090 | 0.1881 |
Elovich | ||||
α | 3.46 × 10−1 | 1.80 × 1013 | 6.91 × 1011 | 1.77 × 1011 |
β | 38.013 | 6.381 | 60.500 | 5.271 |
R2 | 0.9066 | 0.9669 | 0.9824 | 0.9760 |
MAE | 0.0110 | 0.0382 | 0.0018 | 0.0362 |
Isotherm Models | ChM | ChF |
---|---|---|
Experimental qmax (mg Cd/g) | 36.97 ± 0.77 | 28.60 ± 2.09 |
BET model | ||
qm1 (mg Cd/g) | 13.97 | 7.02 |
KL (L/mg) | 3.05 × 10−3 | 5.48 × 10−3 |
KU (L/mg) | 1.32 × 10−3 | 1.20 × 10−3 |
R2 | 0.9645 | 0.9715 |
MAE | 1.533 | 1.038 |
Freundlich model | ||
KF (L/mg) | 1.85 × 10−3 | 1.25 × 10−3 |
n | 0.635 | 0.6483 |
R2 | 0.9561 | 0.9484 |
MAE | 2.006 | 1.636 |
Temkin model | ||
α | 0.0199 | 0.0278 |
β | 222.96 | 371.80 |
R2 | 0.7452 | 0.6397 |
MAE | 6.605 | 4.764 |
Adsorbent | qmax (mg Cd/g) | pH | Reference |
---|---|---|---|
Chitosan | 6.8 | 8 | [18] |
Magnetite | 228 | 6 | [22] |
Chitosan–maghemite nanoparticles | 15.2 | 5 | [23] |
Magnetite–chitosan | 18.7 | 5 | [28] |
Magnetic chitosan cross-linked with κ-carrageenan | 84.3 | 7.6 | [45] |
Magnetic kaolinite-immobilized chitosan beads | 88.5 | 6 | [26] |
Chitosan iron (III) oxide nanocomposite | 86.0 | 7 | [46] |
Methyl-aminophosphonate chitosan–magnetic nanocomposite | 118.1 | 6 | [27] |
Chitosan–stabilized nano-zero-valent iron | 124.74 | 6 | [47] |
Magnetic attapulgite functionalized by chitosan and EDTA | 127.79 | 6 | [25] |
ChM | 36.97 | 7 | This work |
ChF | 28.60 | 7 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendizábal, E.; Ríos-Donato, N.; Ventura-Muñoz, M.G.; Hernández-Montelongo, R.; Verduzco-Navarro, I.P. Use of Chitosan–Iron Oxide Gels for the Removal of Cd2+ Ions from Aqueous Solutions. Gels 2024, 10, 630. https://doi.org/10.3390/gels10100630
Mendizábal E, Ríos-Donato N, Ventura-Muñoz MG, Hernández-Montelongo R, Verduzco-Navarro IP. Use of Chitosan–Iron Oxide Gels for the Removal of Cd2+ Ions from Aqueous Solutions. Gels. 2024; 10(10):630. https://doi.org/10.3390/gels10100630
Chicago/Turabian StyleMendizábal, Eduardo, Nely Ríos-Donato, Minerva Guadalupe Ventura-Muñoz, Rosaura Hernández-Montelongo, and Ilse Paulina Verduzco-Navarro. 2024. "Use of Chitosan–Iron Oxide Gels for the Removal of Cd2+ Ions from Aqueous Solutions" Gels 10, no. 10: 630. https://doi.org/10.3390/gels10100630
APA StyleMendizábal, E., Ríos-Donato, N., Ventura-Muñoz, M. G., Hernández-Montelongo, R., & Verduzco-Navarro, I. P. (2024). Use of Chitosan–Iron Oxide Gels for the Removal of Cd2+ Ions from Aqueous Solutions. Gels, 10(10), 630. https://doi.org/10.3390/gels10100630