Hydration and Hardening Properties of High Fly-Ash Content Gel Material for Cemented Paste Backfill Utilization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Strength Properties of the FCM-CPB
2.2. Hydration Properties of FCM
2.3. Microstructure of the FCM-CPB
2.4. Discussion on Applicability of FCM to Multiple Tailings from 3 Mines
2.4.1. Mine Tailings and CPB Parameters
2.4.2. Strength Verification of FCM
- (1)
- Copper mine tailings
- (2)
- Nickle mine tailings
- (3)
- Gold mine tailings
3. Conclusions
4. Materials and Methods
4.1. Materials
4.1.1. Fly-Ash
4.1.2. Desulfurization Gypsum
4.1.3. Ground Granulated Blast Furnace Slag
4.1.4. Tailings
4.1.5. The Fly-Ash Cementitious Material (FCM)
4.2. Experimental Methods
4.2.1. Uniaxial Compression Strength (UCS)
4.2.2. Mercury Intrusion Porosimetry (MIP)
4.2.3. X-ray Diffraction (XRD)
4.2.4. Thermal Decomposition
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, A.; Wang, Y.; Ruan, Z.; Xiao, B.; Wang, J.; Wang, L. Key Theory and Technology of Cemented Paste Backfill for Green Mining of Metal Mines. Green Smart Min. Eng. 2024, 1, 27–39. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A. Cemented Paste Backfill for Mineral Tailings Management: Review and Future Perspectives. Min. Eng. 2019, 144, 106025. [Google Scholar] [CrossRef]
- Xiao, B.; Wen, Z.; Miao, S.; Gao, Q. Utilization of Steel Slag for Cemented Tailings Backfill: Hydration, Strength, Pore Structure, and Cost Analysis. Case Stud. Constr. Mater. 2021, 15, e00621. [Google Scholar] [CrossRef]
- Sousa, V.; Bogas, J.A.; Real, S.; Meireles, I.; Carriço, A. Recycled Cement Production Energy Consumption Optimization. Sustain. Chem. Pharm. 2023, 32, 101010. [Google Scholar] [CrossRef]
- Orozco, C.; Babel, S.; Tangtermsirikul, S.; Sugiyama, T. Comparison of Environmental Impacts of Fly Ash and Slag as Cement Replacement Materials for Mass Concrete and the Impact of Transportation. Sustain. Mater. Technol. 2024, 39, e00796. [Google Scholar] [CrossRef]
- Khankhaje, E.; Kim, T.; Jang, H.; Kim, C.-S.; Kim, J.; Rafieizonooz, M. Properties of Pervious Concrete Incorporating Fly Ash as Partial Replacement of Cement: A Review. Dev. Built Environ. 2023, 14, 100130. [Google Scholar] [CrossRef]
- Juang, C.-U.; Kuo, W.-T. Properties and Mechanical Strength Analysis of Concrete Using Fly Ash, Ground Granulated Blast Furnace Slag and Various Superplasticizers. Buildings 2023, 13, 1644. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, S.; Yang, H.; Ni, W.; Li, J.; Zhang, G.; Teng, G.; Li, X.; Guo, S.; Zhou, Y.; et al. Leaching and Hydrating Mechanisms, Economic Benefits of Backfill Materials by Using Coal Fly Ash–Slag-Based Binder for Environmentally Sustainable Production. Constr. Build. Mater. 2023, 397, 132360. [Google Scholar] [CrossRef]
- Overmann, S.; Weiler, L.; Haufe, J.; Vollpracht, A.; Matschei, T. Statistical Assessment of the Factors Influencing Fly Ash Reactivity. Constr. Build. Mater. 2024, 426, 136151. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Wang, Q.; Ni, W.; Li, K.; Fu, P.; Hu, W.; Li, Z. Feasibility of Using Fly Ash–Slag-Based Binder for Mine Backfilling and Its Associated Leaching Risks. J. Hazard. Mater. 2020, 400, 123191. [Google Scholar] [CrossRef]
- Fu, J.; Wang, K.; Wang, J. Internal pore evolution and early hydration characterization of fly ash cement backfill. J. Build. Eng. 2023, 72, 106716. [Google Scholar] [CrossRef]
- Cheng, Y.; Shen, H.; Zhang, J. Understanding the effect of high-volume fly ash on micro-structure and mechanical properties of cemented coal gangue paste backfill. Constr. Build. Mater. 2023, 378, 131202. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, Y.; Ma, S.; Zheng, S.; Zhang, Y.; Chu, P.K. Utilization of Coal Fly Ash in China: A Mini-Review on Challenges and Future Directions. Environ. Sci. Pollut. Res. 2021, 28, 18727–18740. [Google Scholar] [CrossRef]
- Chiloane, N.M.; Mulenga, F.K. Revisiting Factors Contributing to the Strength of Cemented Backfill Support System: A Review. J. Rock Mech. Geotech. Eng. 2023, 15, 1615–1624. [Google Scholar] [CrossRef]
- Behera, S.K.; Singh, P.; Mishra, D.P.; Mishra, K.; Kumar, A.; Mandal, S.K.; Mandal, P.K.; Mishra, A.K. Required Strength Design of Cemented Backfill for Underground Metalliferous Mine. Int. J. Min. Reclam. Environ. 2023, 37, 927–952. [Google Scholar] [CrossRef]
- Grabinsky, M.; Jafari, M.; Pan, A. Cemented Paste Backfill (CPB) Material Properties for Undercut Analysis. Mining 2022, 2, 103–122. [Google Scholar] [CrossRef]
- Belem, T.; Benzaazoua, M. Design and Application of Underground Mine Paste Backfill Technology. Geotech. Geol. Eng. 2008, 26, 147–174. [Google Scholar] [CrossRef]
- Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. Alkali-Activated Fly Ash/Slag Cements. Strength Behaviour and Hydration Products. Cem. Concr. Res. 2000, 30, 1625–1632. [Google Scholar] [CrossRef]
- Xiao, B.; Miao, S.; Gao, Q.; Chen, B.; Li, S. Hydration Mechanism of Sustainable Clinker-Free Steel Slag Binder and Its Application in Mine Backfill. JOM 2021, 73, 1053–1061. [Google Scholar] [CrossRef]
- Scrivener, K.; Snellings, R.; Lothenbach, B. A Practical Guide to Microstructural Analysis of Cementitious Materials. In A Practical Guide to Microstructural Analysis of Cementitious Materials; CRC Press: Boca Raton, FL, USA, 2018; Volume 540, pp. 178–208. [Google Scholar]
- Liu, X.; Liu, L.; Lyu, K.; Li, T.; Zhao, P.; Liu, R.; Zuo, J.; Fu, F.; Shah, S.P. Enhanced Early Hydration and Mechanical Properties of Cement-Based Materials with Recycled Concrete Powder Modified by Nano-Silica. J. Build. Eng. 2022, 50, 104175. [Google Scholar] [CrossRef]
- Fauzi, A.; Nuruddin, M.; Malkawi, A.; Abdullah, M. Study of Fly Ash Characterization as a Cementitious Material. Procedia Eng. 2016, 148, 487–493. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, M.; Yang, K.; Yu, L.; Yang, C. Setting Behaviours and Early-Age Microstructures of Alkali-Activated Ground Granulated Blast Furnace Slag (GGBS) from Different Regions in China. Cem. Concr. Compos. 2020, 114, 103782. [Google Scholar] [CrossRef]
- Wei, H.; Xiao, B.; Gao, Q. Flow Properties Analysis and Identification of a Fly Ash-Waste Rock Mixed Backfilling Slurry. Minerals 2021, 11, 576. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Z.; Yang, X.; Gao, Q. Study on Development and Ratio Optimization of Cementing Material of Fly Ash-slag Based Consolidated Powder. Min. Res. Dev. 2019, 39, 88–94. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Fang, W.; Tang, Y.; Zhang, Z.; Xiang, H.; Fang, L. A Novel Ultra-High Q Microwave Dielectric Ceramic ZnMgTiO4 with Spinel Structure. Ceram. Int. 2023, 49, 35420–35427. [Google Scholar] [CrossRef]
- Saadatkhah, N.; Carillo Garcia, A.; Ackermann, S.; Leclerc, P.; Latifi, M.; Samih, S.; Patience, G.S.; Chaouki, J. Experimental Methods in Chemical Engineering: Thermogravimetric Analysis—TGA. Can. J. Chem. Eng. 2020, 98, 34–43. [Google Scholar] [CrossRef]
Item | Porosity (%) | (Average) 4 V/A (nm) | Intermediate Aperture V (nm) | Intermediate Aperture A (nm) | Vtotal (mL/g) | Total Pore Area (m2/g) | Average Pore Volume (mL/g) | Average Pore Area (m2/g) |
---|---|---|---|---|---|---|---|---|
7 d | 23.8 | 101 | 185.2 | 13.3 | 0.148 | 12.81 | 0.061 | 2.44 |
28 d | 31.2 | 99 | 153.1 | 14.5 | 0.246 | 21.72 | 0.094 | 3.83 |
Type | D10/μm | D30/μm | D50/μm | D60/μm | D90/μm | Cc | Cu | −20 μm/% | −75 μm/% |
---|---|---|---|---|---|---|---|---|---|
CT | 28.04 | 78.11 | 155.28 | 185.35 | 415.75 | 1.17 | 6.61 | 6.41 | 23.06 |
NT | 15.62 | 35.71 | 62.36 | 77.12 | 146.83 | 1.05 | 4.94 | 15.34 | 58.55 |
GT | 15.13 | 51.22 | 83.14 | 101.66 | 199.28 | 1.71 | 6.72 | 14.27 | 45.31 |
Material | CaO | SiO2 | Al2O3 | MgO | TiO2 | SO3 | Fe2O3 | MnO | P2O5 | Others |
---|---|---|---|---|---|---|---|---|---|---|
GGBFS | 40.99 | 32.02 | 10.19 | 9.33 | 2.82 | 1.82 | 1.31 | 0.24 | 0.01 | 1.27 |
DG | 44.51 | 5.68 | 1.48 | 4.06 | 0.10 | 41.45 | 1.91 | 0.02 | 0.05 | 0.74 |
Fly-ash | 8.90 | 56.16 | 21.02 | 2.34 | 1.27 | 0.57 | 5.17 | / | / | 3.57 |
Clinker | 64.69 | 21.46 | 4.44 | 2.89 | 0.27 | 0.25 | 4.69 | / | / | 1.26 |
Tailings | 28.00 | 30.37 | 8.88 | 7.43 | 0.34 | 0.16 | 22.28 | 0.44 | 0.08 | 2.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, B.; Wang, J.; Wu, A.; Guo, R. Hydration and Hardening Properties of High Fly-Ash Content Gel Material for Cemented Paste Backfill Utilization. Gels 2024, 10, 623. https://doi.org/10.3390/gels10100623
Xiao B, Wang J, Wu A, Guo R. Hydration and Hardening Properties of High Fly-Ash Content Gel Material for Cemented Paste Backfill Utilization. Gels. 2024; 10(10):623. https://doi.org/10.3390/gels10100623
Chicago/Turabian StyleXiao, Bolin, Jiandong Wang, Aixiang Wu, and Ruiming Guo. 2024. "Hydration and Hardening Properties of High Fly-Ash Content Gel Material for Cemented Paste Backfill Utilization" Gels 10, no. 10: 623. https://doi.org/10.3390/gels10100623
APA StyleXiao, B., Wang, J., Wu, A., & Guo, R. (2024). Hydration and Hardening Properties of High Fly-Ash Content Gel Material for Cemented Paste Backfill Utilization. Gels, 10(10), 623. https://doi.org/10.3390/gels10100623