Occurrence Regionalization of Kiwifruit Brown Spot in Sichuan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources of Software and Map
2.2. Determination of the Occurrence of Kiwifruit Brown Spot
2.3. Measurement of Disease Severity
2.4. Correlation Analysis
2.5. Acquisition and Processing of Distribution Information
2.6. Acquisition and Processing of Environmental Variables
2.7. Construction and Evaluation of MaxEnt Model
2.8. Geographic Division of Suitability
2.9. Field Evaluation of the Model
3. Results
3.1. Occurrence of Kiwifruit Brown Spot
3.2. Screening of Environmental Variable
3.3. Suitability Test of MaxEnt Model
3.4. Selection of the Key Environmental Factors
3.5. Analysis of Response Curve
3.6. Prediction of Potential Distribution
3.7. Field Test of the Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nieuwenhuizen, N.J.; Allan, A.C.; Atkinson, R.G. The Genetics of Kiwifruit Flavor and Fragrance. In The Kiwifruit Genome; Springer: Berlin/Heidelberg, Germany, 2016; pp. 135–147. [Google Scholar]
- Richardson, D.P.; Ansell, J.; Drummond, L.N. The nutritional and health attributes of kiwifruit: A review. Eur. J. Nutr. 2018, 57, 2659–2676. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Gong, G.S.; Cui, Y.L.; Zhu, Y.H.; Wang, J.; Yao, K.K.; Chen, W.; Wu, C.P.; Yang, R.; Yang, X.D.; et al. Comparison and correlation of Corynespora cassiicola populations from kiwifruit and other hosts based on morphology, phylogeny, and pathogenicity. Plant. Dis. 2022, 106, 1979–1992. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Li, M.; Wang, Y.X.; Liu, Z.H.; Ni, Y.Y. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocoll. 2021, 110, 106162–106172. [Google Scholar] [CrossRef]
- Yang, H.; Wu, X.Y.; Tang, J.Y. Analysis on the current situation and development strategies of kiwifruit industry. China Fruit News. 2018, 35, 16–19. [Google Scholar]
- Yuan, G.Q.; Xie, Y.L.; Tan, D.C.; Li, Q.Q.; Lin, W. First report of leaf spot caused by Corynespora cassiicola on kiwifruit (Actinidia chinensis) in China. Plant Dis. 2014, 98, 1586. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.L.; Gong, G.G.; Yu, X.M.; Xu, J.; Wen, X.W.; Zhang, M.; Chen, H.B.; Zheng, X.; Zhou, Y.; Chang, X.L. First report of brown leaf spot on kiwifruit caused by Corynespora cassiicola in Sichuan, China. Plant Dis. 2015, 99, 725. [Google Scholar] [CrossRef]
- Gong, G.S.; Li, Q.; Zhang, M.; Cui, Y.L. Primary Color Map and Control Technology of Kiwifruit Pests and Diseases; Science Press: Beijing, China, 2020; pp. 21–29. [Google Scholar]
- Zou, Y.F.; Qiao, H.B.; Cao, X.R.; Liu, W.; Fan, J.R.; Song, Y.L.; Wang, B.T.; Zhou, Y.L. Regionalization of wheat powdery mildew oversummering in China based on digital elevation. J. Int. Agric. 2018, 17, 901–910. [Google Scholar] [CrossRef]
- Kistner-Thomas, E.; Kumar, S.; Jech, L.; Woller, D.A. Modeling rangeland Grasshopper (Orthoptera: Acrididae) population density using a landscape-level predictive mapping approach. J. Econ. Entomol. 2021, 114, 1557–1567. [Google Scholar] [CrossRef]
- Hong, B.; Zhang, F.; Li, Y.M.; Zhang, S.L.; Chen, Z.J.; Gao, F.; Liang, Y.L. GIS-based regional classification for overwintering of southern root-knot nematode in Shaanxi Province. Acta. Ecol. Sin. 2014, 16, 4603–4611. [Google Scholar]
- Peng, C.J.; Bai, T.K.; Feng, L.B.; Ding, P.; Yang, Y.H. Occurrence and epidemic regularity of wheat stripe rust in Nanchong city of Sichuan province. Plant. Dis. Pests 2015, 6, 17–23. [Google Scholar]
- Chen, H.; Wu, M.F.; Liu, J.; Chen, A.D.; Jiang, Y.Y.; Hu, G. Migratory routes and occurrence divisions of the fall armyworm Spodoptera frugiperda in China. J. Plant. Prot. 2020, 47, 747–757. [Google Scholar]
- Silva, D.P.A.; Carlos, B. Potential distribution of Nysius simulans (Hemiptera: Lygaeidae) in soybean crops in South America under current and future climate. J. Econ. Entomol. 2020, 113, 1702–1710. [Google Scholar]
- Liu, J.Y.; Yu, C.; Huang, Y.M.; Tian, Y.M.; Qin, Y.J.; Zhu, Y.J.; Teng, K.; Cui, J.L.; Wang, Y.P.; Lin, S. Potential geographical distribution prediction of maize dwarf mosaic virus based on MaxEnt model. J. Plant. Prot. 2022, 49, 1383–1391. [Google Scholar]
- Du, Z.H.; Liu, W.; Cao, X.R.; Nie, X.; Fang, J.R.; Wang, B.T.; Zhou, Y.L.; Liu, W.X.; Xu, X.M. Suitability analysis of wheat blast in the world and China under climate change scenarios based on MaxEnt. Plant. Prot. 2022, 48, 158–166. [Google Scholar]
- Zhang, Z.; Chen, L.; Zhang, X.Y.; Li, Q. Prediction of the potential distributions of Prunus salicina Lindl., Monilinia fructicola, and their overlap in China using MaxEnt. J. Fungi 2023, 9, 189. [Google Scholar] [CrossRef]
- Wang, R.L.; Guo, X.; Li, Q.; Wang, M.T.; You, C. Potential distribution and suitability regionalization of kiwifruit canker disease in Sichuan Province, China. J. Appl. Ecol. 2019, 30, 4222–4230. [Google Scholar]
- Wang, R.L.; Liu, Y.; Li, Q.; Shen, Z.H.; Lu, X.L.; Zhao, J.P.; Wang, Y.L.; Wang, M.T. Analysis of geographical distribution of Pseudomonas syringae pv. actinidiae in Sichuan under climate change. Plant. Prot. 2020, 46, 38–47. [Google Scholar]
- Wei, P.; Zhang, Y.; He, J.Y.; Zhou, T.; Liu, H.; Qin, Y.J.; Zhao, S.Q.; Fan, Z.F.; Li, Z.H. Potential geographic distribution of maize chlorotic mottle virus under climate changes based on MaxEnt model. J. Plant. Prot. 2022, 49, 1367–1376. [Google Scholar]
- Cho, K.H.; Park, J.S.; Kim, J.H.; Kwon, Y.S.; Lee, D.H. Modeling the distribution of invasive species (Ambrosia spp.) using regression kriging and Maxent. Front. Ecol. Evol. 2022, 10, 1036816. [Google Scholar] [CrossRef]
- González-Núñez, M.; Sandín-España, P.; Mateos-Miranda, M.; Cobos, G.; De Cal, A.; Sánchez-Ramos, I.; Alonso-Prados, J.; Larena, I. Development of a disease and pest management program to reduce the use of pesticides in sweet-cherry orchards. Agronomy 2022, 12, 1986. [Google Scholar] [CrossRef]
- Nerva, L.; Costa, L.D.; Ciacciulli, A.; Sabbadini, S.; Pavese, V.; Dondini, L.; Vendramin, E.; Caboni, E.; Perrone, I.; Moglia, A.; et al. The role of Italy in the use of advanced plant genomic techniques on fruit trees: State of the art and future perspectives. Int. J. Mol. 2023, 24, 977. [Google Scholar] [CrossRef]
- Todd, J.H.; Malone, L.A.; McArdle, B.H.; Benge, J.; Poulton, J.; Thorpe, S.; Beggs, J.R. Invertebrate community richness in New Zealand kiwifruit orchards under organic or integrated pest management. AEE 2011, 141, 32–38. [Google Scholar] [CrossRef]
- Green, K.K.; Stenberg, J.A.; Lankinen, A. Making sense of Integrated Pest Management (IPM) in the light of evolution. Evol. Appl. 2020, 13, 1791–1805. [Google Scholar] [CrossRef] [PubMed]
- Luquet, M.; Sylvain, P.; Buchard, C.; Plantegenest, M.; Tricault, Y. Predicting the seasonal flight activity of Myzus persicae, the main aphid vector of Virus Yellows in sugar beet. Pest. Manag. Sci. 2023, 79. [Google Scholar] [CrossRef] [PubMed]
- Li, R.X.; Xie, H.G.; Zhang, C.G.; Sun, Y.Q.; Yin, H. ROS-responsive polymeric micelle for improving pesticides efficiency and intelligent Release. J. Agric. Food Chem. 2020, 68, 9052–9060. [Google Scholar] [CrossRef]
- Huang, X.L.; Cui, Y.L.; Xu, J.; Zhu, Y.H.; Chen, H.B.; Chang, X.L.; Yang, J.Z.; Gong, G.S. Resistance evaluation of kiwifruit germplasm materials to brown leaf spot caused by Corynespora cassiicola. Acta phytopathol. Sin. 2018, 48, 711–715. [Google Scholar]
- Masumeh, A.; Ahmadreza, Y.; Morteza, G. Ecological monitoring and assessment of habitat suitability for brown bear species in the Oshtorankooh protected area, Iran. Ecol. Indic. 2021, 126, 107606. [Google Scholar]
- de Almeida, T.M.; Neto, I.R.; Consalter, R.; Brum, F.T.; Rojas, E.A.G.; da Costa-Ribeiro, M.C.V. Predictive modeling of sand fly distribution incriminated in the transmission of Leishmania (Viannia) braziliensis and the incidence of Cutaneous Leishmaniasis in the state of Paraná, Brazil. Acta Trop. 2022, 229, 106335. [Google Scholar] [CrossRef]
- Gong, G.S.; Xu, J.; Cui, Y.L.; Tu, M.Y.; Chen, H.B.; Zhang, M.; Ma, L.; Zhu, J.; Tang, H.J.; Huang, X.L.; et al. DB51/T 2814-2021; Technical Regulation for Comprehensive Prevention and Control of Kiwifruit Brown Spot. Administration for Market Regulation of Sichuan Province: Chengdu, China, 2021.
- Cui, Y.L. Study of Kiwifruit Brown Leaf Spot; Sichuan Agricultural University: Ya’an, China, 2015. [Google Scholar]
- Ma, L. Occurrence Regionalization and Integrated Management of Kiwifruit Canker Caused by Pseudomonas syringae pv. actinidiae in Sichuan; Sichuan Agricultural University: Ya’an, China, 2018. [Google Scholar]
- Chen, M.; Brun, F.; Raynal, M.; Makowski, D. Timing of grape downy mildew onset in Bordeaux vineyards. Phytopath 2019, 109, 787–795. [Google Scholar] [CrossRef]
- Chaulagain, B.; Small, I.; Shine, J.M.; Raid, R.N.; Rott, P.C.E. Predictive modeling of brown rust of sugarcane based on temperature and relative humidity in Florida. Phytopath 2021, 111, 1401–1409. [Google Scholar] [CrossRef]
- Zhu, G.P.; Liu, G.Q.; Pu, W.J.; Gao, Y.B. Ecological niche modeling and its applications in biodiversity conservation. Biodivers. Sci. 2013, 21, 90–98. [Google Scholar]
- Bai, J.J.; Hou, P.; Zhao, Y.H.; Xu, H.T.; Zhang, B. Research progress of species habitat suitability models and their verification. J. Ecol. 2022, 41, 1423–1432. [Google Scholar]
- Bowen, K.L.; Hagan, A.K.; Pegues, M.; Jones, J.; Miller, H.B. Epidemics and Yield Losses due to Corynespora cassiicola on Cotton. Plant Dis. 2018, 102, 2494–2499. [Google Scholar] [CrossRef]
- Fulmer, A.M.; Mehra, L.K.; Kemerait, R.C.; Brenneman, T.B.; Culbreath, A.K.; Stevenson, K.L.; Cantonwine, E.G. Relating peanut Rx risk factors to epidemics of early and late leaf spot of peanut. Plant Dis. 2019, 103, 3226–3233. [Google Scholar] [CrossRef]
- Gonzalez-Dominguez, E.; Caffi, T.; Paolini, A.; Mugnai, L.; Latinović, N.; Latinović, J.; Languasco, L.; Rossi, V. Development and validation of a mechanistic model that predicts infection by Diaporthe ampelina, the causal agent of Phomopsis cane and leaf spot of grapevines. Front. Plant Sci. 2022, 25, 872333. [Google Scholar] [CrossRef]
- Ortega-Acosta, S.Á.; Mora-Aguilera, J.A.; Velasco-Cruz, C.; Ochoa-Martínez, D.L.; Leyva-Mir, S.G.; Hernández-Morales, J. Temporal progress of roselle (Hibiscus sabdariffa L.) leaf and calyx spot disease (Corynespora cassiicola) in Guerrero, Mexico. J. Plant Pathol. 2020, 102, 1007–1013. [Google Scholar] [CrossRef]
Severity | Classification |
---|---|
0 | No visible symptoms |
1 | The spots account for 1–5% of the whole leaf |
3 | The spots account for 6–25% of the whole leaf |
5 | The spots account for 26–50% of the whole leaf |
7 | The spots account for 51–75% of the whole leaf |
9 | The spots account for above 75% of the whole leaf |
Variables | Descriptions | Units |
---|---|---|
bio1 | annual mean temperature | °C |
bio2 | monthly mean diurnal temperature | °C |
bio3 | isothermality | % |
bio4 | standard deviation of seasonal temperature | °C |
bio5 | max temperature of warmest month | °C |
bio6 | min temperature of coldest month | °C |
bio7 | mean temperature annual range | °C |
bio8 | mean temperature of wettest quarter | °C |
bio9 | mean temperature of driest quarter | °C |
bio10 | mean temperature of warmest quarter | °C |
bio11 | mean temperature of coldest quarter | °C |
bio12 | annual precipitation | mm |
bio13 | precipitation of wettest month | mm |
bio14 | precipitation of driest month | mm |
bio15 | precipitation variation coefficient | % |
bio16 | precipitation of wettest quarter | mm |
bio17 | precipitation of driest quarter | mm |
bio18 | precipitation of warmest quarter | mm |
bio19 | precipitation of coldest quarter | mm |
prec | precipitation of each month | mm |
tavg | average temperature of each month | °C |
tmin | min temperature of each month | °C |
tmax | max temperature of each month | °C |
Region | County | Town | Longitude (E) | Latitude (N) | Altitude (m) | Varieties | Incidence Rate (%) | Disease Index | Occurrence Level |
---|---|---|---|---|---|---|---|---|---|
Chengdu | Dujiangyan | Juyuan | 103.718199 | 30.882004 | 648 | Hongyang | 100.00 | 99.45 | High |
103.690923 | 30.923192 | 624 | Hongyang | 100.00 | 99.37 | High | |||
103.685734 | 30.957274 | 640 | Hongyang | 100.00 | 99.36 | High | |||
Tianma | 103.724137 | 31.019014 | 622 | Hongyang | 100.00 | 99.19 | High | ||
103.737203 | 31.014943 | 712 | Hongyang | 99.47 | 98.39 | High | |||
103.710977 | 30.997566 | 628 | Hongyang | 99.73 | 99.17 | High | |||
103.711038 | 30.997706 | 622 | Hongyang | 100.00 | 99.75 | High | |||
103.717213 | 31.025650 | 646 | Hongyang | 99.87 | 99.24 | High | |||
103.735692 | 31.026519 | 619 | Hongyang | 100.00 | 100.00 | High | |||
103.737667 | 31.026325 | 687 | Hongyang | 100.00 | 99.13 | High | |||
103.609154 | 30.988223 | 636 | Hongyang | 100.00 | 99.01 | High | |||
103.767738 | 30.977838 | 618 | Hongyang | 100.00 | 100.00 | High | |||
Puyang | 103.676029 | 31.062330 | 710 | Hongyang | 99.07 | 97.68 | High | ||
103.714189 | 31.144967 | 1059 | Hongyang | 96.80 | 79.81 | High | |||
103.679077 | 31.031806 | 608 | Hongyang | 100.00 | 96.99 | High | |||
Shiyang | 103.639254 | 30.888781 | 618 | Hongyang | 100.00 | 96.84 | High | ||
103.649262 | 30.870515 | 604 | Hongyang | 100.00 | 98.36 | High | |||
Yutang | 103.619040 | 30.970404 | 733 | Hongyang | 99.33 | 96.04 | High | ||
Qingchengshan | 103.601324 | 30.905453 | 672 | Hayward | 21.73 | 2.41 | Low | ||
103.595660 | 30.859226 | 601 | Hongyang | 98.40 | 94.13 | High | |||
Xingfu | 103.678045 | 30.970588 | 644 | Hongyang | 93.47 | 78.92 | High | ||
Longchi | 103.552792 | 31.057788 | 912 | Hayward | 10.40 | 1.16 | Low | ||
103.664117 | 31.119242 | 1234 | Hayward | 8.40 | 0.93 | Low | |||
Pujiang | Daxing | 103.425850 | 30.247561 | 602 | Hongyang | 100.00 | 100.00 | High | |
Ganxi | 103.361664 | 30.263327 | 597 | Hongyang | 100.00 | 100.00 | High | ||
Chengjia | 103.402646 | 30.192967 | 500 | Hongyang/Jinyan | 97.73/17.60 | 96.76/1.96 | High | ||
Dating | 103.396489 | 30.289953 | 593 | Hongyang | 100.00 | 100.00 | High | ||
Xilai | 103.510500 | 30.304396 | 530 | Hongyang | 100.00 | 100.00 | High | ||
Qionglai | Guyi | 103.588876 | 30.390417 | 479 | Hongyang | 100.00 | 96.69 | High | |
Huojing | 103.230814 | 30.356788 | 1400 | Hongyang | 77.20 | 68.73 | High | ||
Pingle | 103.358367 | 30.383795 | 547 | Hongyang | 97.87 | 95.88 | High | ||
Sangyuan | 103.400848 | 30.546483 | 622 | Hongyang | 98.80 | 94.06 | High | ||
Yangan | 103.685419 | 30.401639 | 470 | Hongyang | 100.00 | 97.78 | High | ||
Datong | 103.221808 | 30.478682 | 1200 | Hongyang | 84.27 | 73.88 | High | ||
Wenjun | 103.476656 | 30.374584 | 524 | Donghong | 92.40 | 47.69 | Moderate | ||
Pengzhou | Lichun | 103.897253 | 31.006937 | 653 | Hongyang | 94.53 | 90.21 | High | |
Guihua | 103.782504 | 31.102041 | 830 | Hongyang | 91.07 | 83.45 | High | ||
Longmenshan | 103.814553 | 31.260737 | 1414 | Hongyang | 84.13 | 47.34 | Moderate | ||
Bailu | 103.919083 | 31.195717 | 1128 | Hongyang | 93.87 | 86.62 | High | ||
Tongji | 103.837542 | 31.158838 | 886 | Hongyang | 96.93 | 89.17 | High | ||
Gexianshan | 103.966427 | 31.113843 | 611 | Hongyang | 93.73 | 92.13 | High | ||
Xinjin | Xingyi | 103.825713 | 30.456078 | 200 | Hongyang | 96.53 | 62.68 | Moderate | |
Huaqiao | 103.869465 | 30.431029 | 462 | Hongyang | 87.60 | 60.55 | Moderate | ||
Dayi | Xinchang | 103.451827 | 30.525427 | 561 | Hongyang | 98.93 | 96.90 | High | |
Wangsi | 103.521293 | 30.527021 | 521 | Hongyang | 100.00 | 97.34 | High | ||
Yuelai | 103.442643 | 30.631438 | 640 | Hongyang | 98.40 | 94.13 | High | ||
Anren | 103.590849 | 30.467129 | 494 | Hongyang | 99.73 | 99.01 | High | ||
Ya’an | Yucheng | Shangli | 103.039111 | 30.158470 | 889 | Hongyang | 91.47 | 87.05 | High |
103.027521 | 30.163007 | 906 | Yidun | 19.47 | 2.65 | Low | |||
Bifengxia | 103.018498 | 30.109764 | 984 | Hongyang | 91.60 | 72.16 | High | ||
Caoba | 103.140857 | 29.996113 | 600 | A. arguta | 12.93 | 1.44 | Low | ||
Duoying | 102.916580 | 30.020083 | 754 | 3.73 | 0.41 | Low | |||
Daxing | 102.986775 | 29.954752 | 688 | Hongyang | 93.87 | 87.01 | High | ||
Babu | 102.909216 | 29.883380 | 600 | A. arguta | 9.20 | 1.02 | Low | ||
Mingshan | Yongxing | 103.158857 | 30.042103 | 596 | Hongyang | 100.00 | 96.99 | High | |
103.143947 | 30.049887 | 549 | Hongshi | 52.80 | 7.01 | Low | |||
Jianshan | 103.117475 | 30.157528 | 766 | Hongyang | 99.20 | 96.93 | High | ||
Mengdingshan | 103.072239 | 30.108014 | 774 | Donghong | 94.13 | 27.12 | Low | ||
Maling | 103.324317 | 30.129206 | 684 | Hongyang | 100.00 | 94.62 | High | ||
Maohe | 103.369168 | 30.219322 | 600 | Hongyang | 97.73 | 90.33 | High | ||
Heizhu | 103.245720 | 30.247830 | 670 | Gold 3 | 6.80 | 0.76 | Low | ||
Zhongfeng | 103.181129 | 30.188253 | 756 | Hongyang | 95.20 | 90.92 | High | ||
Mengyang | 103.116365 | 30.114172 | 701 | Hongyang | 93.07 | 91.57 | High | ||
Wangu | 103.128377 | 30.170035 | 674 | Hongyang | 93.47 | 88.38 | High | ||
103.137349 | 30.185314 | 679 | Hongyang | 91.73 | 93.66 | High | |||
103.130274 | 30.141192 | 890 | Hongyang | 91.07 | 88.67 | High | |||
Baizhan | 103.311937 | 30.188603 | 624 | Hongyang | 85.73 | 87.30 | High | ||
103.261842 | 30.191358 | 681 | Hongyang | 70.53 | 64.56 | High | |||
Yingjing | Wuxianxiang | 102.845183 | 29.780242 | 936 | Hongyang | 89.20 | 67.01 | High | |
Huatan | 102.786623 | 29.778432 | 935 | Hongyang | 84.67 | 66.83 | High | ||
102.780811 | 29.783500 | 875 | Hongyang | 91.73 | 74.12 | High | |||
Yandao | 102.850645 | 29.820925 | 894 | Hongyang | 90.27 | 73.93 | High | ||
Qinglong | 102.868851 | 29.769872 | 722 | Hongyang | 94.27 | 75.60 | High | ||
102.881259 | 29.773278 | 1529 | Hongyang | 70.13 | 67.24 | High | |||
Anjing | 102.761545 | 29.737654 | 868 | Hongyang | 89.73 | 51.91 | Moderate | ||
Longcanggou | 102.846983 | 29.707985 | 909 | Hongyang | 89.20 | 48.90 | Moderate | ||
Siping | 102.669532 | 29.780159 | 1066 | Cuiyu | 14.40 | 1.60 | Low | ||
Baofeng | 102.826392 | 29.863237 | 949 | Hongyang | 85.47 | 71.54 | High | ||
Xintian | 102.856832 | 29.828373 | 894 | 7.07 | 0.79 | Low | |||
Lushan | Feixianguan | 102.915150 | 30.093092 | 666 | Hongyang | 100.00 | 97.02 | High | |
Luyang | 102.960005 | 30.157746 | 965 | Hongyang | 85.07 | 71.39 | High | ||
Siyan | 102.910364 | 30.142439 | 642 | Hongyang | 99.20 | 95.27 | High | ||
Longmen | 103.025524 | 30.260615 | 630 | Hongyang | 97.20 | 89.32 | High | ||
Shimian | Meiluo | 102.438117 | 29.315473 | 1335 | Jinyan | 13.73 | 1.53 | Low | |
Yingzheng | 102.415574 | 29.274978 | 1388 | Hongyang | 87.07 | 69.59 | High | ||
102.411492 | 29.277706 | 1420 | Hongyang | 80.67 | 67.90 | High | |||
102.410712 | 29.271969 | 1369 | Hongyang | 78.27 | 68.19 | High | |||
Xinmin | 102.195943 | 29.412436 | 1519 | Hongyang | 86.67 | 65.34 | Moderate | ||
Xieluo | 102.180677 | 29.219755 | 1243 | Hongyang | 84.40 | 69.13 | high | ||
102.182687 | 29.211921 | 1294 | Hongyang | 78.13 | 44.44 | Moderate | |||
102.255037 | 29.213112 | 1585 | Hongyang | 76.80 | 39.81 | Moderate | |||
Caoke | 102.122809 | 29.404204 | 1357 | Hongyang | 72.93 | 38.93 | Moderate | ||
102.086688 | 29.390256 | 1538 | Hongshi 2 | 57.47 | 10.83 | Low | |||
Anshunchang | 102.284151 | 29.259668 | 1240 | Hongyang | 82.93 | 69.99 | High | ||
Baoxing | Daxi | 102.943342 | 30.553705 | 741 | Hongyang | 93.86 | 63.88 | Moderate | |
Muping | 102.803471 | 30.347224 | 869 | Hongyang | 86.53 | 59.54 | Moderate | ||
Longdong | 102.679432 | 30.464322 | 1258 | Hongyang | 78.40 | 45.44 | Moderate | ||
102.720493 | 30.494849 | 1758 | Hongyang | 66.26 | 41.50 | Moderate | |||
Guangyuan | Cangxi | Dongxi | 106.282834 | 32.044742 | 749 | Hongyang | 97.07 | 94.15 | High |
Longshan | 106.332543 | 31.885837 | 630 | Hongyang | 94.80 | 80.47 | High | ||
Yuedong | 106.239293 | 31.959870 | 700 | Hongyang | 87.47 | 78.68 | High | ||
Yuanba | 106.090342 | 31.860973 | 400 | Hongyang | 96.27 | 62.83 | Moderate | ||
Qiping | 106.132578 | 31.898718 | 430 | Hongyang | 92.80 | 59.75 | Moderate | ||
Wenchang | 106.363683 | 31.987743 | 655 | Hongyang | 94.67 | 77.50 | High | ||
Lingjiang | 105.960366 | 31.750199 | 400 | Hongyang | 93.73 | 66.12 | Moderate | ||
Longwang | 105.982809 | 31.984019 | 650 | Hongyang | 91.60 | 79.81 | High | ||
Zhaohua | Weizi | 105.895860 | 32.174634 | 709 | Hongyang | 93.07 | 92.09 | High | |
Yuanba | 105.973514 | 32.329941 | 597 | Hongyang | 97.20 | 94.62 | High | ||
Zhaohua | 105.723692 | 32.337770 | 626 | Hongyang | 90.53 | 66.34 | Moderate | ||
Deyang | Shifang | Jiandi | 104.039288 | 31.224755 | 717 | Hongshi/Jinshi | 39.47/5.73 | 6.76/0.64 | Low |
Yinghua | 104.027888 | 31.297691 | 916 | Hongyang | 85.87 | 69.08 | High | ||
Mianzhu | Jiulong | 104.139889 | 31.411938 | 969 | Hongshi/Jinshi | 44.00/3.87 | 8.69/0.43 | Low | |
Guangji | 104.115350 | 31.257515 | 617 | Hongshi/Jinshi | 38.13/2.27 | 8.19/0.25 | Low | ||
Yuquan | 104.132120 | 31.257500 | 582 | Donghong/Huapu | 70.80/13.73 | 14.61/1.53 | Low | ||
Xiaode | 104.239352 | 31.241509 | 530 | Donghong | 77.20 | 34.89 | Moderate | ||
Mianyang | Anzhou | Huangtu | 104.435962 | 31.545840 | 585 | Hongyang | 100.00 | 93.76 | High |
Sangzao | 104.333649 | 31.593687 | 661 | Hongyang | 100.00 | 97.11 | High | ||
Beichuan | Yongchang | 104.440374 | 31.582567 | 600 | Hongyang | 100.00 | 87.05 | High | |
Guixi | 104.647893 | 31.987493 | 893 | Hongyang | 79.07 | 49.20 | Moderate | ||
Tongquan | 104.608754 | 31.770263 | 722 | Hongyang | 93.73 | 83.45 | High | ||
Meishan | Pengshan | Xiejia | 103.706150 | 30.262840 | 550 | Hongyang | 99.20 | 94.06 | High |
Dongpo | Funiu | 103.942803 | 30.089608 | 471 | Hongyang | 94.67 | 59.27 | Moderate |
Incidence Rate | Disease Index | |||
---|---|---|---|---|
Correlation Coefficient | Significance | Correlation Coefficient | Significance | |
varieties | 0.929 ** | 0.002 | 0.795 * | 0.033 |
altitude | −0.780 ** | 0.000 | −0.604 ** | 0.000 |
Variables | Contribution (%) | Cumulative (%) |
---|---|---|
bio3 | 25.8 | 25.8 |
tmin8 | 20.9 | 46.7 |
tmin6 | 17.0 | 63.7 |
prec8 | 16.7 | 80.4 |
tmax7 | 3.1 | 83.5 |
prec2 | 2.2 | 85.7 |
prec4 | 2.1 | 87.8 |
tavg10 | 1.5 | 89.3 |
bio2 | 1.4 | 90.7 |
tmin7 | 1.4 | 92.1 |
prec6 | 1.1 | 93.2 |
bio2 | bio3 | prec2 | prec4 | prec6 | prec8 | tavg10 | tmax7 | tmin6 | tmin7 | |
---|---|---|---|---|---|---|---|---|---|---|
bio3 | 0.924 | |||||||||
prec2 | −0.370 | −0.154 | ||||||||
prec4 | −0.475 | −0.524 | 0.501 | |||||||
prec6 | −0.321 | −0.031 | 0.705 | 0.427 | ||||||
prec8 | 0.080 | 0.257 | 0.664 | 0.100 | 0.327 | |||||
tavg10 | −0.613 | −0.555 | 0.415 | 0.216 | 0.101 | 0.288 | ||||
tmax7 | −0.705 | −0.767 | 0.249 | 0.427 | 0.011 | 0.008 | 0.897 | |||
tmin6 | −0.688 | −0.730 | 0.244 | 0.301 | −0.086 | 0.136 | 0.942 | 0.958 | ||
tmin7 | −0.766 | −0.797 | 0.290 | 0.398 | 0.025 | 0.074 | 0.924 | 0.983 | 0.983 | |
tmin8 | −0.781 | −0.806 | 0.296 | 0.398 | 0.041 | 0.077 | 0.918 | 0.977 | 0.980 | 0.996 |
Region | Unsuitable Area | Lowly Suitable Area | Moderately Suitable Area | Highly Suitable Area | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Aba | 84,075.16 | 26.42 | 672.30 | 0.70 | 205.43 | 0.41 | 168.08 | 0.77 |
Bazhong | 1550.03 | 0.49 | 7152.55 | 7.47 | 3884.41 | 7.73 | 18.68 | 0.09 |
Chengdu | 747.00 | 0.23 | 2931.99 | 3.06 | 4594.07 | 9.14 | 6144.10 | 28.12 |
Dazhou | 3828.39 | 1.20 | 12,381.57 | 12.94 | 448.20 | 0.89 | 0.00 | 0.00 |
Deyang | 336.15 | 0.11 | 2670.53 | 2.79 | 2241.01 | 4.46 | 877.73 | 4.02 |
Ganzi | 149,157.78 | 46.88 | 373.50 | 0.39 | 280.13 | 0.56 | 0.00 | 0.00 |
Guang’an | 653.63 | 0.21 | 5509.15 | 5.76 | 0.00 | 0.00 | 0.00 | 0.00 |
Guangyuan | 1848.83 | 0.58 | 4519.37 | 4.72 | 9412.23 | 18.73 | 597.60 | 2.74 |
Leshan | 1624.73 | 0.51 | 3735.01 | 3.90 | 4594.07 | 9.14 | 2801.26 | 12.82 |
Liangshan | 55,203.50 | 17.35 | 1998.23 | 2.09 | 989.78 | 1.97 | 859.05 | 3.93 |
Luzhou | 298.80 | 0.09 | 7376.65 | 7.71 | 3716.34 | 7.40 | 392.18 | 1.79 |
Meishan | 448.20 | 0.14 | 1755.46 | 1.83 | 3678.99 | 7.32 | 1344.60 | 6.15 |
Mianyang | 5303.72 | 1.67 | 9057.41 | 9.46 | 5714.57 | 11.37 | 541.58 | 2.48 |
Nanchong | 0.00 | 0.00 | 11,690.59 | 12.21 | 1064.48 | 2.12 | 0.00 | 0.00 |
Neijiang | 0.00 | 0.00 | 4911.54 | 5.13 | 466.88 | 0.93 | 0.00 | 0.00 |
Panzhihua | 7245.93 | 2.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Suining | 0.00 | 0.00 | 5322.39 | 5.56 | 0.00 | 0.00 | 0.00 | 0.00 |
Ya’an | 5863.97 | 1.84 | 2334.38 | 2.44 | 2297.03 | 4.57 | 4575.39 | 20.94 |
Yibin | 0.00 | 0.00 | 3959.11 | 4.14 | 5602.52 | 11.15 | 3529.59 | 16.15 |
Ziyang | 0.00 | 0.00 | 5733.25 | 5.99 | 0.00 | 0.00 | 0.00 | 0.00 |
Zigong | 0.00 | 0.00 | 3305.49 | 3.45 | 1064.48 | 2.12 | 0.00 | 0.00 |
Total | 318,185.83 | 100.00 | 95,709.73 | 100.00 | 50,254.61 | 100.00 | 21,849.83 | 100.00 |
Region | Country (District) | Unsuitable Area | Lowly Suitable Area | Moderately Suitable Area | Highly Suitable Area | ||||
---|---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion of Whole Area (%) | Area (km2) | Proportion of Whole Area (%) | Area (km2) | Proportion of Whole Area (%) | Area (km2) | Proportion of Whole Area (%) | ||
Chengdu | Dujiang | 186.75 | 15.87 | 53.95 | 4.76 | 89.92 | 7.94 | 1132.95 | 71.43 |
Pujiang | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 629.42 | 100.00 | |
Qionglai | 0.00 | 0.00 | 0.00 | 0.00 | 89.92 | 6.67 | 1348.75 | 93.33 | |
Deyang | Mianzhu | 261.45 | 20.59 | 197.82 | 16.18 | 251.77 | 20.59 | 1222.87 | 42.65 |
Shifang | 130.73 | 15.56 | 53.95 | 6.67 | 305.72 | 37.78 | 809.25 | 40.00 | |
Guangyuan | Cangxi | 0.00 | 0.00 | 107.90 | 4.62 | 1924.22 | 82.31 | 317.48 | 13.08 |
Mianyang | Anzhou | 56.03 | 4.55 | 89.92 | 7.58 | 773.29 | 65.15 | 1186.90 | 22.73 |
Ya’an | Lushan | 205.43 | 17.19 | 89.92 | 7.81 | 305.72 | 26.56 | 1150.94 | 48.44 |
Mingshan | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 593.45 | 100.00 | |
Yucheng | 0.00 | 0.00 | 0.00 | 0.00 | 71.93 | 6.78 | 1061.02 | 93.22 |
Region | Country | Town | Longitude | Latitude | Altitude (m) | Varieties | Incidence Rate (%) | Disease Index | Occurrence Level | Suitability Level |
---|---|---|---|---|---|---|---|---|---|---|
Chengdu | Dujiangyan | Tianma | 103.729050 | 31.032388 | 601 | Hongyang | 100 | 97.53 | High | High |
103.743516 | 31.025524 | 600 | Hongyang | 100 | 97.69 | High | High | |||
103.756496 | 31.020132 | 621 | Hongyang | 100 | 98.76 | High | High | |||
Juyuan | 103.657528 | 30.949170 | 653 | Hongyang | 100 | 93.82 | High | High | ||
Pujiang | Fuxing | 103.443221 | 30.317316 | 538 | Hongyang | 98.13 | 90.77 | High | High | |
103.438191 | 30.321275 | 546 | Hongyang | 98.8 | 90.18 | High | High | |||
103.436934 | 30.325817 | 528 | Hongyang | 97.87 | 86.86 | High | High | |||
Datang | 103.418606 | 30.299636 | 587 | Hongyang | 94.93 | 88.53 | High | High | ||
Daxing | 103.397353 | 30.235533 | 569 | Hongyang | 96.13 | 90.03 | High | High | ||
Qionglai | Sangyuan | 103.469178 | 30.461789 | 517 | Hongyang/Donghong | 93.60/73.07 | 89.77/16.39 | High | High | |
Kongming | 103.466594 | 30.342379 | 607 | Hongyang | 93.07 | 88.73 | High | High | ||
Guyi | 103.516878 | 30.373997 | 586 | Hongyang | 93.87 | 93.17 | High | High | ||
Baolin | 103.517850 | 30.331534 | 604 | Hongyang | 91.87 | 95.97 | High | High | ||
103.516878 | 30.373990 | 589 | Hongyang | 94.8 | 89.44 | High | High | |||
Chongzhou | Qiquan | 103.641074 | 30.563695 | 438 | Hongyang/Donghong | 100/77.47 | 98.36/31.73 | High | High | |
103.660735 | 30.560634 | 451 | Hongyang/Donghong | 100/85.60 | 97.60/27.76 | High | High | |||
Ya’an | Yucheng | Shangli | 103.059266 | 30.152868 | 963 | A. arguta | 12.13 | 1.26 | Low | High |
103.070186 | 30.159260 | 968 | Gold 3 | 5.73 | 0.64 | Low | High | |||
Duoying | 102.914164 | 30.015172 | 587 | Hongyang | 89.87 | 93.64 | High | High | ||
Baoxing | Muping | 102.832564 | 30.408815 | 1104 | Hongyang | 82.8 | 70.53 | High | High | |
Yingjing | Qinglong | 102.877242 | 29.767267 | 1091 | Hongyang/Chuanmi | 84.87/37.86 | 74.49/25.21 | High | High | |
Shimian | Anshunchang | 102.258098 | 29.310755 | 1399 | Hongyang | 82.93 | 72.55 | High | High | |
Guangyuan | Cangxi | Tingzi | 105.859244 | 31.819290 | 449 | Hongyang | 93.6 | 74.4 | High | High |
Yunfeng | 106.004130 | 31.715040 | 490 | Hongyang | 90.4 | 72.09 | High | High | ||
106.002725 | 31.724609 | 580 | Hongyang | 87.87 | 68.98 | High | High | |||
106.018840 | 31.879743 | 519 | Hongyang/Jinhong | 88.80/32.40 | 66.85/15.45 | High | High | |||
Lingjiang | 105.977369 | 31.799844 | 696 | Hongyang | 84.13 | 61.05 | Moderate | Moderate | ||
Yongning | 106.002692 | 31.724439 | 588 | Hongyang | 81.07 | 64.03 | Moderate | Moderate | ||
105.916557 | 32.002183 | 699 | Hongyang | 78.53 | 59.82 | Moderate | Moderate | |||
Longwang | 105.959645 | 31.981199 | 681 | Hongyang | 79.87 | 62.39 | Moderate | Moderate | ||
Jiange | Puan | 105.449204 | 32.127941 | 704 | Hongyang | 74.13 | 54.56 | Moderate | Moderate | |
105.422221 | 32.008581 | 686 | Hongyang | 77.47 | 56.12 | Moderate | Moderate | |||
Longyuan | 105.450482 | 31.986242 | 671 | Hongyang | 72.8 | 52.83 | Moderate | Moderate | ||
Qingchuan | Zhuyuan | 105.355354 | 32.249336 | 567 | Hongyang | 76.13 | 45.14 | Moderate | Moderate | |
Deyang | Mianzhu | Guangji | 104.069418 | 31.260198 | 661 | Hongyang | 94.4 | 81.97 | High | High |
Jiulong | 104.126292 | 31.380313 | 701 | Hongyang | 91.73 | 76.93 | High | High | ||
104.124498 | 31.390861 | 716 | Gold 3 | 2.93 | 0.33 | Low | High | |||
Mianyang | Anzhou | Huangtu | 104.435304 | 31.545761 | 578 | Hongyang | 100 | 97.09 | High | High |
104.425117 | 31.569665 | 627 | Hongyang | 100 | 98.27 | High | High | |||
104.440072 | 31.551297 | 635 | Hongyang | 100 | 93.66 | High | High | |||
Leshan | Mabian | Laodong | 103.562148 | 28.946852 | 1023 | Jinhong | 16.4 | 1.82 | Low | High |
103.575287 | 28.938294 | 1022 | Gold 3 | 7.87 | 0.87 | Low | High | |||
Luzhou | Xuyong | Huangni | 105.348891 | 28.004857 | 1006 | Gold 3 | 11.6 | 1.29 | Low | High |
Gulin | Dongxing | 106.090053 | 27.984000 | 1180 | Guichang | 13.73 | 1.52 | Low | Moderate | |
Yonghe | 105.915008 | 28.067051 | 463 | 16.53 | 1.84 | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Yao, K.; Ma, M.; Cui, Y.; Xu, J.; Chen, W.; Yang, R.; Wu, C.; Gong, G. Occurrence Regionalization of Kiwifruit Brown Spot in Sichuan. J. Fungi 2023, 9, 899. https://doi.org/10.3390/jof9090899
Zhu Y, Yao K, Ma M, Cui Y, Xu J, Chen W, Yang R, Wu C, Gong G. Occurrence Regionalization of Kiwifruit Brown Spot in Sichuan. Journal of Fungi. 2023; 9(9):899. https://doi.org/10.3390/jof9090899
Chicago/Turabian StyleZhu, Yuhang, Kaikai Yao, Miaomiao Ma, Yongliang Cui, Jing Xu, Wen Chen, Rui Yang, Cuiping Wu, and Guoshu Gong. 2023. "Occurrence Regionalization of Kiwifruit Brown Spot in Sichuan" Journal of Fungi 9, no. 9: 899. https://doi.org/10.3390/jof9090899
APA StyleZhu, Y., Yao, K., Ma, M., Cui, Y., Xu, J., Chen, W., Yang, R., Wu, C., & Gong, G. (2023). Occurrence Regionalization of Kiwifruit Brown Spot in Sichuan. Journal of Fungi, 9(9), 899. https://doi.org/10.3390/jof9090899