Antifungal Activity and Type of Interaction of Melissa officinalis Essential Oil with Antimycotics against Biofilms of Multidrug-Resistant Candida Isolates from Vulvovaginal Mucosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil
2.2. Gas Chromatography/Mass Spectrometry (GC/MS) and Gas Chromatography/Flame Ionization Detection (GC/FID) Analysis of Melissa officinalis Essential Oil
2.3. Isolation and Identification of Yeast Isolates
2.4. Antimicrobial Testing
2.4.1. Susceptibility of Isolates to Antimycotics
2.4.2. Susceptibility of Isolates to Essential Oil
2.5. Biofilm Assays
2.5.1. Quantification of Biofilm Biomass via CV Staining
2.5.2. Evaluation of Biofilm Metabolic Activity via MTT Assay
2.6. Checkerboard Assay
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of Essential Oil
3.2. Broth Microdilution Assay
3.3. Biofilm Production
3.4. Antibiofilm Effects
3.5. Types of Interaction of the Melissa officinalis Essential Oil in Combination with Fluconazole or Nystatin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bitew, A.; Abebaw, Y. Vulvovaginal candidiasis: Species distribution of Candida and their antifungal susceptibility pattern. BMC Women’s Health 2018, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D. Candidal vulvovaginitis. Clin. Obstet. Gynecol. 1993, 36, 153–165. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.U. Prevalence of Candida species and potential risk factors for vulvovaginal candidiasis in Aligarh, India. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 144, 68–71. [Google Scholar] [CrossRef]
- Sobel, J.D. Vulvovaginal candidosis. Lancet 2007, 369, 1961–1971. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, H.F.; Douglas, L.J. Interactions between Candida species and bacteria in mixed infections. In Polymicrobial Diseases; ASM Press: Washington, DC, USA, 2002; pp. 357–373. [Google Scholar] [CrossRef]
- Brown, S.E.; Schwartz, J.A.; Robinson, C.K.; O’Hanlon, D.E.; Bradford, L.L.; He, X.; Mark, K.S.; Bruno, V.M.; Ravel, J.; Brotman, R.M. The vaginal microbiota and behavioral factors associated with genital Candida albicans detection in reproductive-age women. Sex. Transm. Dis. 2019, 46, 753. [Google Scholar] [CrossRef]
- Gonçalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit. Rev. Microbiol. 2016, 42, 905–927. [Google Scholar] [CrossRef]
- Patel, D.A.; Gillespie, B.; Sobel, J.D.; Leaman, D.; Nyirjesy, P.; Weitz, M.V.; Foxman, B. Risk factors for recurrent vulvovaginal candidiasis in women receiving maintenance antifungal therapy: Results of a prospective cohort study. Am. J. Obstet. Gynecol. 2004, 190, 644–653. [Google Scholar] [CrossRef]
- Corsello, S.; Spinillo, A.; Osnengo, G.; Penna, C.; Guaschino, S.; Beltrame, A.; Blasi, N.; Festa, A. An epidemiological survey of vulvovaginal candidiasis in Italy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 110, 66–72. [Google Scholar] [CrossRef]
- Tasic, S.; Miladinovic-Tasic, N.; Tasic, A.; Zdravkovic, D.; Djordjevic, J. Exogenic reinfection-a possible cause of recurrent genital candidosis in women. Acta Fac. Med. Naissensis 2008, 25, 107–111. [Google Scholar]
- Makanjuola, O.; Bongomin, F.; Fayemiwo, S.A. An update on the roles of non-albicans Candida species in vulvovaginitis. J. Fungi 2018, 4, 121. [Google Scholar] [CrossRef] [PubMed]
- Ignjatović, A.; Arsić-Arsenijević, V.; Golubović, M.; Đenić, S.; Momčilović, S.; Trajković, A.; Ranđelović, M.; Ćirić, V.; Otašević, S. Recurrent vulvovaginal candidosis and cluster analysis of clinical signs and symptoms: A laboratory-based investigation. J. Fungi 2020, 6, 113. [Google Scholar] [CrossRef]
- Papaemmanouil, V.; Georgogiannis, N.; Plega, M.; Lalaki, J.; Lydakis, D.; Dimitriou, M.; Papadimitriou, A. Prevalence and susceptibility of Saccharomyces cerevisiae causing vaginitis in Greek women. Anaerobe 2011, 17, 298–299. [Google Scholar] [CrossRef]
- Mendling, W. Guideline: Vulvovaginal candidosis (AWMF 015/072), S2k (excluding chronic mucocutaneous candidosis). Mycoses 2015, 58, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Watnick, P.; Kolter, R. Biofilm, city of microbes. J. Bacteriol. 2000, 182, 2675–2679. [Google Scholar] [CrossRef]
- Harriott, M.M.; Lilly, E.A.; Rodriguez, T.E.; Fidel, P., Jr.; Noverr, M.C. Candida albicans forms biofilms on the vaginal mucosa. Microbiology 2010, 156, 3635. [Google Scholar] [CrossRef]
- Ganguly, S.; Mitchell, A.P. Mucosal biofilms of Candida albicans. Curr. Opin. Microbiol. 2011, 14, 380–385. [Google Scholar] [CrossRef]
- Sherry, L.; Kean, R.; McKloud, E.; O’Donnell, L.E.; Metcalfe, R.; Jones, B.L.; Ramage, G. Biofilms formed by isolates from recurrent vulvovaginal candidiasis patients are heterogeneous and insensitive to fluconazole. Antimicrob. Agents Chemother. 2017, 61, e01065-17. [Google Scholar] [CrossRef]
- Rodríguez-Cerdeira, C.; Gregorio, M.C.; Molares-Vila, A.; López-Barcenas, A.; Fabbrocini, G.; Bardhi, B.; Sinani, A.; Sánchez-Blanco, E.; Arenas-Guzmán, R.; Hernandez-Castro, R. Biofilms and vulvovaginal candidiasis. Colloids Surf. B Biointerfaces 2019, 174, 110–125. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.S.; Galask, R.P.; Messer, S.A.; Hollis, R.J.; Diekema, D.J.; Pfaller, M.A. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J. Clin. Microbiol. 2005, 43, 2155–2162. [Google Scholar] [CrossRef]
- Sobel, J.; Sobel, R. Current treatment options for vulvovaginal candidiasis caused by azole-resistant Candida species. Expert Opin. Pharmacother. 2018, 19, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Brion, L.P.; Uko, S.E.; Goldman, D.L. Risk of resistance associated with fluconazole prophylaxis: Systematic review. J. Infect. 2007, 54, 521–529. [Google Scholar] [CrossRef]
- Sobel, J.D. Recurrent vulvovaginal candidiasis. Am. J. Obstet. Gynecol. 2016, 214, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Fong, I. The value of chronic suppressive therapy with itraconazole versus clotrimazole in women with recurrent vaginal candidiasis. Sex. Transm. Infect. 1992, 68, 374–377. [Google Scholar] [CrossRef]
- Tulasidas, S.; Rao, P.; Bhat, S.; Manipura, R. A study on biofilm production and antifungal drug resistance among Candida species from vulvovaginal and bloodstream infections. Infect. Drug Resist. 2018, 11, 2443–2448. [Google Scholar] [CrossRef] [PubMed]
- Muzny, C.A.; Schwebke, J.R. Biofilms: An underappreciated mechanism of treatment failure and recurrence in vaginal infections. Clin. Infect. Dis. 2015, 61, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Shanmughapriya, S.; Sornakumari, H.; Lency, A.; Kavitha, S.; Natarajaseenivasan, K. Synergistic effect of amphotericin B and tyrosol on biofilm formed by Candida krusei and Candida tropicalis from intrauterine device users. Med. Mycol. 2014, 52, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A.; Ahmad, I. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J. Antimicrob. Chemother. 2012, 67, 618–621. [Google Scholar] [CrossRef]
- Gao, M.; Wang, H.; Zhu, L. Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant Candida albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis. Cell. Physiol. Biochem. 2016, 40, 727–742. [Google Scholar] [CrossRef]
- Pistoia, E.S.; Cosio, T.; Campione, E.; Pica, F.; Volpe, A.; Marino, D.; Di Francesco, P.; Monari, C.; Fontana, C.; Favaro, M. All-trans retinoic acid effect on Candida albicans growth and biofilm formation. J. Fungi 2022, 8, 1049. [Google Scholar] [CrossRef]
- Tran, H.N.; Udoh, S.; Russell, G.; Okeyoyin, O.R.; Aftab, S.; Rodriguez, I.; Tabe, E.S.; Adukwu, E.C. Recent advances in the application of essential oils as potential therapeutic candidates for candida-related infections. Appl. Microbiol. 2022, 2, 397–413. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Ahmad, I. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharmacol. 2012, 140, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.A.; Hassan, A. Medicinal benefits of lemon balm (Melissa officinalis) for human health. World 2022, 1, 028–033. [Google Scholar]
- Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485–2489. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.; Duarte, A.P.; Ferreira, S. Antimicrobial activity of Melissa officinalis and its potential use in food preservation. Food Biosci. 2021, 44, 101437. [Google Scholar] [CrossRef]
- Serra, E.; Hidalgo-Bastida, L.A.; Verran, J.; Williams, D.; Malic, S. Antifungal activity of commercial essential oils and biocides against Candida albicans. Pathogens 2018, 7, 15. [Google Scholar] [CrossRef]
- Karpiński, T.M.; Ożarowski, M.; Seremak-Mrozikiewicz, A.; Wolski, H. Anti-Candida and Antibiofilm Activity of Selected Lamiaceae Essential Oils. Front. Biosci. -Landmark 2023, 28, 28. [Google Scholar] [CrossRef]
- Malinovská, Z. Antibiofilm activity of selected plant essential oils from the Lamiaceae family against Candida albicans clinical isolates. Ann. Agric. Environ. Med. 2021, 28, 260–266. [Google Scholar]
- Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Mohan Karuppayil, S. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 2013, 29, 87–96. [Google Scholar] [CrossRef]
- Abd Ellah, N.H.; Shaltout, A.S.; Abd El Aziz, S.M.; Abbas, A.M.; Abd El Moneem, H.G.; Youness, E.M.; Arief, A.F.; Ali, M.F.; Abd El-hamid, B.N. Vaginal suppositories of cumin seeds essential oil for treatment of vaginal candidiasis: Formulation, in vitro, in vivo, and clinical evaluation. Eur. J. Pharm. Sci. 2021, 157, 105602. [Google Scholar] [CrossRef]
- da Silva Campelo, M.; Melo, E.O.; Arrais, S.P.; do Nascimento, F.B.S.A.; Gramosa, N.V.; de Aguiar Soares, S.; Ribeiro, M.E.N.P.; da Silva, C.R.; Júnior, H.V.N.; Ricardo, N.M.P.S. Clove essential oil encapsulated on nanocarrier based on polysaccharide: A strategy for the treatment of vaginal candidiasis. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125732. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017. [Google Scholar]
- Pa, W. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Rinanda, T.; Isnanda, R.P.; Zulfitri. Chemical analysis of red ginger (Zingiber officinale Roscoe var rubrum) essential oil and its anti-biofilm activity against Candida albicans. Nat. Prod. Commun. 2018, 13, 1934578X1801301206. [Google Scholar] [CrossRef]
- Stojanović-Radić, Z.; Dimitrijević, M.; Genčić, M.; Pejčić, M.; Radulović, N. Anticandidal activity of Inula helenium root essential oil: Synergistic potential, anti-virulence efficacy and mechanism of action. Ind. Crops Prod. 2020, 149, 112373. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Bonaventura, G.D.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Bidaud, A.-L.; Schwarz, P.; Herbreteau, G.; Dannaoui, E. Techniques for the assessment of in vitro and in vivo antifungal combinations. J. Fungi 2021, 7, 113. [Google Scholar] [CrossRef] [PubMed]
- Di Veroli, G.Y.; Fornari, C.; Wang, D.; Mollard, S.; Bramhall, J.L.; Richards, F.M.; Jodrell, D.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics 2016, 32, 2866–2868. [Google Scholar] [CrossRef]
- Nelson, M.; Wanjiru, W.; Margaret, M. Identification and susceptibility profile of vaginal Candida species to antifungal agents among pregnant women attending the antenatal clinic of Thika District Hospital, Kenya. Open J. Med. Microbiol. 2013, 2013, 41023. [Google Scholar] [CrossRef]
- Choukri, F.; Benderdouche, M.; Sednaoui, P. In vitro susceptibility profile of 200 recent clinical isolates of Candida spp. to topical antifungal treatments of vulvovaginal candidiasis, the imidazoles and nystatin agents. J. De Mycol. Médicale 2014, 24, 303–307. [Google Scholar] [CrossRef]
- Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules 2018, 23, 1549. [Google Scholar] [CrossRef]
- Silva, S.; Rodrigues, C.F.; Araújo, D.; Rodrigues, M.E.; Henriques, M. Candida species biofilms’ antifungal resistance. J. Fungi 2017, 3, 8. [Google Scholar] [CrossRef]
- Swidsinski, A.; Guschin, A.; Tang, Q.; Dörffel, Y.; Verstraelen, H.; Tertychnyy, A.; Khayrullina, G.; Luo, X.; Sobel, J.D.; Jiang, X. Vulvovaginal candidiasis: Histologic lesions are primarily polymicrobial and invasive and do not contain biofilms. Am. J. Obstet. Gynecol. 2019, 220, 91.e91–91.e98. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D. Editorial commentary: Vaginal biofilm: Much ado about nothing, or a new therapeutic challenge? Clin. Infect. Dis. 2015, 61, 607–608. [Google Scholar] [CrossRef]
- Kean, R.; Delaney, C.; Rajendran, R.; Sherry, L.; Metcalfe, R.; Thomas, R.; McLean, W.; Williams, C.; Ramage, G. Gaining insights from Candida biofilm heterogeneity: One size does not fit all. J. Fungi 2018, 4, 12. [Google Scholar] [CrossRef]
- Rodríguez-Cerdeira, C.; Martínez-Herrera, E.; Carnero-Gregorio, M.; López-Barcenas, A.; Fabbrocini, G.; Fida, M.; El-Samahy, M.; González-Cespón, J.L. Pathogenesis and clinical relevance of Candida biofilms in vulvovaginal candidiasis. Front. Microbiol. 2020, 11, 544480. [Google Scholar] [CrossRef]
- McKloud, E.; Delaney, C.; Sherry, L.; Kean, R.; Williams, S.; Metcalfe, R.; Thomas, R.; Richardson, R.; Gerasimidis, K.; Nile, C.J. Recurrent vulvovaginal candidiasis: A dynamic interkingdom biofilm disease of Candida and Lactobacillus. Msystems 2021, 6, e0062221. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, S.; Li, H.; Shen, L.; Dong, C.; Sun, Y.; Chen, H.; Xu, B.; Zhuang, W.; Deighton, M. Biofilm formation of Candida albicans facilitates fungal infiltration and persister cell formation in vaginal candidiasis. Front. Microbiol. 2020, 11, 1117. [Google Scholar] [CrossRef] [PubMed]
- Taff, H.T.; Mitchell, K.F.; Edward, J.A.; Andes, D.R. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 2013, 8, 1325–1337. [Google Scholar] [CrossRef]
- Sabbatini, S.; Visconti, S.; Gentili, M.; Lusenti, E.; Nunzi, E.; Ronchetti, S.; Perito, S.; Gaziano, R.; Monari, C. Lactobacillus iners cell-free supernatant enhances biofilm formation and hyphal/pseudohyphal growth by Candida albicans vaginal isolates. Microorganisms 2021, 9, 2577. [Google Scholar] [CrossRef] [PubMed]
- Ajetunmobi, O.H.; Badali, H.; Romo, J.A.; Ramage, G.; Lopez-Ribot, J.L. Antifungal therapy of Candida biofilms: Past, present and future. Biofilm 2023, 5, 100126. [Google Scholar] [CrossRef]
- Chen, X.; Thomsen, T.R.; Winkler, H.; Xu, Y. Influence of biofilm growth age, media, antibiotic concentration and exposure time on Staphylococcus aureus and Pseudomonas aeruginosa biofilm removal in vitro. BMC Microbiol. 2020, 20, 264. [Google Scholar] [CrossRef]
- Pourakbari, B.; Teymuri, M.; Mahmoudi, S.; Valian, S.K.; Movahedi, Z.; Eshaghi, H.; Mamishi, S. Expression of major efflux pumps in fluconazole-resistant Candida albicans. Infect. Disord. Drug Targets Former. Curr. Drug Targets-Infect. Disord. 2017, 17, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Bozó, A.; Domán, M.; Majoros, L.; Kardos, G.; Varga, I.; Kovács, R. The in vitro and in vivo efficacy of fluconazole in combination with farnesol against Candida albicans isolates using a murine vulvovaginitis model. J. Microbiol. 2016, 54, 753–760. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, H.; Wang, D.; Zhang, M.; Sun, S.; Zhao, Y. The synergistic antifungal effects of gypenosides combined with fluconazole against resistant Candida albicans via inhibiting the drug efflux and biofilm formation. Biomed. Pharmacother. 2020, 130, 110580. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, J.; Li, X.; Su, S.; Chen, X.; Sun, S.; Li, Y. The effect of Ginkgolide B combined with fluconazole against drug-resistant Candida albicans based on common resistance mechanisms. Int. J. Antimicrob. Agents 2020, 56, 106030. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Liu, W.; Huang, X.; Hao, L.; Li, Y.; Sun, S. Antifungal activity and potential mechanism of N-butylphthalide alone and in combination with fluconazole against Candida albicans. Front. Microbiol. 2019, 10, 1461. [Google Scholar] [CrossRef]
- Pan, M.; Wang, Q.; Cheng, T.; Wu, D.; Wang, T.; Yan, G.; Shao, J. Paeonol assists fluconazole and amphotericin B to inhibit virulence factors and pathogenicity of Candida albicans. Biofouling 2021, 37, 922–937. [Google Scholar] [CrossRef]
- Francisconi, R.S.; Maquera-Huacho, P.M.; Tonon, C.C.; Calixto, G.M.F.; de Cássia Orlandi Sardi, J.; Chorilli, M.; Spolidorio, D.M.P. Terpinen-4-ol and nystatin co-loaded precursor of liquid crystalline system for topical treatment of oral candidiasis. Sci. Rep. 2020, 10, 12984. [Google Scholar] [CrossRef]
- Keymaram, M.; Falahati, M.; Farahyar, S.; Lotfali, E.; Abolghasemi, S.; Mahmoudi, S.; Sadeghi, F.; Khalandi, H.; Ghasemi, R.; Shamsaei, S. Anti-biofilm properties of eucalyptol in combination with antifungals against Candida albicans isolates in patients with hematological malignancy. Arch. Microbiol. 2022, 204, 295. [Google Scholar]
- Pierce, C.G.; Srinivasan, A.; Uppuluri, P.; Ramasubramanian, A.K.; López-Ribot, J.L. Antifungal therapy with an emphasis on biofilms. Curr. Opin. Pharmacol. 2013, 13, 726–730. [Google Scholar] [CrossRef]
- Zhu, B.; Li, Z.; Yin, H.; Hu, J.; Xue, Y.; Zhang, G.; Zheng, X.; Chen, W.; Hu, X. Synergistic antibiofilm effects of pseudolaric acid A combined with fluconazole against Candida albicans via inhibition of adhesion and yeast-to-hypha transition. Microbiol. Spectr. 2022, 10, e01478-21. [Google Scholar] [CrossRef]
- Hervay, N.T.; Elias, D.; Habova, M.; Jacko, J.; Morvova, M.; Gbelska, Y. Catechin potentiates the antifungal effect of miconazole in Candida glabrata. Folia Microbiol. 2023, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.S.; Bansode, B.S.; Jadhav, A.K.; Karuppayil, S.M. Activity of allyl isothiocyanate and its synergy with fluconazole against Candida albicans biofilms. J. Microbiol. Biotechnol 2017, 27, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Pemmaraju, S.C.; Pruthi, P.A.; Prasad, R.; Pruthi, V. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian J. Exp. Biol. 2013, 51, 1032–1037. [Google Scholar]
- Doke, S.K.; Raut, J.S.; Dhawale, S.; Karuppayil, S.M. Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. J. Gen. Appl. Microbiol. 2014, 60, 163–168. [Google Scholar] [CrossRef]
- Guo, H.; Xie, S.M.; Li, S.X.; Song, Y.J.; Lv, X.L.; Zhang, H. Synergistic mechanism for tetrandrine on fluconazole against Candida albicans through the mitochondrial aerobic respiratory metabolism pathway. J. Med. Microbiol. 2014, 63, 988–996. [Google Scholar] [CrossRef]
- Yan, Y.; Tan, F.; Miao, H.; Wang, H.; Cao, Y. Effect of shikonin against Candida albicans biofilms. Front. Microbiol. 2019, 10, 1085. [Google Scholar] [CrossRef]
- Jafri, H.; Ahmad, I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. J. Mycol. Medicale 2020, 30, 100911. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, C.; Zhao, X.; Wang, D.; Liu, Y.; Sun, S. Antifungal activity and potential mechanism of Asiatic acid alone and in combination with fluconazole against Candida albicans. Biomed. Pharmacother. 2021, 139, 111568. [Google Scholar] [CrossRef]
No. | tret, min | Compound | RIexp | RIlit | Method of Identification | Content, % |
---|---|---|---|---|---|---|
1 | 6.50 | α-Thujene | 926 | 924 | RI, MS | tr |
2 | 6.72 | α-Pinene | 934 | 932 | RI, MS, Co-I | 0.2 |
3 | 7.90 | Sabinene | 974 | 969 | RI, MS | tr |
4 | 8.03 | β-Pinene | 979 | 974 | RI, MS, Co-I | tr |
5 | 8.32 | 6-Methyl-5-hepten-2-one | 989 | 981 | RI, MS | 2.2 |
6 | 8.42 | Myrcene | 993 | 988 | RI, MS | tr |
7 | 8.95 | (3E)-Hexenyl acetate | 1008 | 1001 | RI, MS | tr |
8 | 9.69 | p-Cymene | 1028 | 1020 | RI, MS | tr |
9 | 9.80 | Limonene | 1028 | 1024 | RI, MS, Co-I | 0.9 |
10 | 9.85 | 1,8-Cineole | 1033 | 1026 | RI, MS, Co-I | tr |
11 | 10.08 | (Z)-β-Ocimene | 1039 | 1032 | RI, MS | tr |
12 | 10.48 | (E)-β-Ocimene | 1049 | 1044 | RI, MS | 1.2 |
13 | 10.90 | γ-Terpinene | 1061 | 1054 | RI, MS, Co-I | tr |
14 | 12.71 | Linalool | 1105 | 1095 | RI, MS, Co-I | 1.3 |
15 | 12.96 | cis-Rose oxide | 1114 | 1106 | RI, MS | tr |
16 | 14.71 | Citronellal | 1156 | 1148 | RI, MS | 4.6 |
17 | 15.08 | trans-Pinocamphone | 1165 | 1158 | RI, MS | tr |
18 | 15.64 | cis-Pinocamphone | 1179 | 1172 | RI, MS | 0.6 |
19 | 15.96 | (E)-Isocitral | 1186 | 1177 | RI, MS | 0.4 |
20 | 18.59 | Neral (Z-Citral) | 1245 | 1235 | RI, MS, Co-I | 19.7 |
21 | 19.21 | Methyl citronellate | 1263 | 1257 | RI, MS | 1.1 |
22 | 19.91 | Geranial (E-Citral) | 1274 | 1264 | RI, MS, Co-I | 31.0 |
23 | 21.96 | Methyl geranate | 1327 | 1322 | RI, MS | 0.7 |
24 | 23.59 | Neryl acetate | 1367 | 1359 | RI, MS | tr |
25 | 24.07 | α-Copaene | 1378 | 1374 | RI, MS | 1.2 |
26 | 24.41 | Geranyl acetate | 1386 | 1379 | RI, MS | 2.0 |
27 | 24.65 | β-Cubebene | 1392 | 1387 | RI, MS | tr |
28 | 25.36 | (Z)-Caryophyllene | 1409 | 1408 | RI, MS | tr |
29 | 25.98 | (E)-Caryophyllene | 1425 | 1417 | RI, MS | 19.4 |
30 | 27.32 | α-Humulene | 1458 | 1452 | RI, MS | 1.4 |
31 | 28.23 | γ-Muurolene | 1481 | 1478 | RI, MS | tr |
32 | 28.45 | Germacrene D | 1486 | 1487 | RI, MS | 5.3 |
33 | 28.88 | Bicyclogermacrene | 1497 | 1500 | RI, MS | 0.6 |
34 | 29.16 | α-Muurolene | 1504 | 1500 | RI, MS | tr |
35 | 29.41 | (E,E)-α-Farnesene | 1510 | 1505 | RI, MS | 0.4 |
36 | 29.75 | γ-Cadinene | 1519 | 1513 | RI, MS | 0.3 |
37 | 30.05 | δ-Cadinene | 1527 | 1522 | RI, MS | 1.3 |
38 | 32.45 | Caryophyllene oxide | 1590 | 1582 | RI, MS | 3.5 |
39 | 35.29 | α-Cadinol | 1662 | 1652 | RI, MS | 0.5 |
Total identified (%) | 99.8 | |||||
Grouped components (%) | ||||||
Monoterpene hydrocarbons (1–4, 6, 8, 9, 11–13) | 2.3 | |||||
Oxygen-containing monoterpenes (10, 14–24, 26) | 61.4 | |||||
Sesquiterpene hydrocarbons (25, 27–37) | 29.9 | |||||
Oxygen-containing sesquiterpenes (38, 39) | 4.0 | |||||
Others (5, 7) | 2.2 |
Isolate No. | Candida Species | Biofilm Producer Category | NY MIC (µg/mL) | FLU MIC (µg/mL) | MOEO MIC (mg/mL) |
---|---|---|---|---|---|
1 | C. albicans | strong | 4 | 128 | 1.25 |
2 | C. albicans | strong | 8 | 64 | 0.625 |
3 | C. albicans | strong | 8 | 128 | 0.156 |
4 | C. albicans | moderate | 8 | 64 | 0.625 |
5 | C. albicans | moderate | 8 | 128 | 0.156 |
6 | C. albicans | moderate | 8 | 128 | 0.156 |
7 | C. albicans | moderate | 8 | 128 | 0.312 |
8 | C. albicans | weak | 8 | 32 | 0.312 |
9 | C. albicans | weak | 8 | 128 | 0.625 |
10 | C. albicans | weak | 2 | 128 | 0.156 |
11 | C. albicans | weak | 4 | 128 | 0.312 |
12 | C. albicans | weak | 16 | 64 | 0.625 |
13 | C. albicans | no | 8 | 128 | 0.625 |
14 | C. albicans | no | 8 | 128 | 0.625 |
15 | C. albicans | no | 8 | 128 | 0.625 |
16 | C. albicans | no | 8 | 128 | 0.312 |
17 | C. albicans | no | 4 | 128 | 0.312 |
18 | C. albicans | no | 8 | 128 | 0.625 |
19 | C. glabrata | moderate | 8 | 64 | 1.25 |
20 | C. glabrata | moderate | 8 | 64 | 1.25 |
21 | C. glabrata | moderate | 4 | 32 | 1.25 |
22 | C. glabrata | moderate | 8 | 16 | 1.25 |
23 | C. glabrata | moderate | 4 | 16 | 1.25 |
24 | C. glabrata | weak | 4 | 16 | 1.25 |
25 | C. glabrata | weak | 4 | 32 | 1.25 |
26 | C. glabrata | weak | 4 | 64 | 1.25 |
27 | C. glabrata | weak | 8 | 64 | 0.312 |
28 | C. glabrata | no | 4 | 4 | 1.25 |
29 | C. glabrata | no | 8 | 4 | 1.25 |
30 | C. glabrata | no | 4 | 8 | 1.25 |
31 | C. glabrata | no | 4 | 4 | 1.25 |
32 | C. glabrata | no | 8 | 2 | 2.5 |
33 | C. glabrata | no | 8 | 8 | 1.25 |
34 | C. glabrata | no | 8 | 32 | 0.625 |
35 | C. glabrata | no | 8 | 8 | 0.625 |
36 | S. cerevisiae | weak | 8 | 4 | 0.156 |
37 | S. cerevisiae | no | 4 | 8 | 0.312 |
38 | S. cerevisiae | no | 4 | 2 | 0.156 |
39 | C. krusei | no | 8 | 64 | 0.625 |
40 | C. krusei | no | 8 | 64 | 0.625 |
41 | C. krusei | no | 4 | 128 | 0.625 |
42 | C. krusei | no | 4 | 64 | 0.312 |
43 | C. krusei | no | 8 | 64 | 0.312 |
44 | C. krusei | no | 8 | 64 | 0.312 |
45 | C. krusei | no | 16 | 128 | 0.625 |
46 | C. krusei | no | 8 | 64 | 0.312 |
47 | C. krusei | no | 8 | 64 | 0.625 |
48 | C. krusei | no | 4 | 64 | 0.312 |
49 | C. krusei | no | 8 | 64 | 0.625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranđelović, M.; Dimitrijević, M.; Otašević, S.; Stanojević, L.; Išljamović, M.; Ignjatović, A.; Arsić-Arsenijević, V.; Stojanović-Radić, Z. Antifungal Activity and Type of Interaction of Melissa officinalis Essential Oil with Antimycotics against Biofilms of Multidrug-Resistant Candida Isolates from Vulvovaginal Mucosa. J. Fungi 2023, 9, 1080. https://doi.org/10.3390/jof9111080
Ranđelović M, Dimitrijević M, Otašević S, Stanojević L, Išljamović M, Ignjatović A, Arsić-Arsenijević V, Stojanović-Radić Z. Antifungal Activity and Type of Interaction of Melissa officinalis Essential Oil with Antimycotics against Biofilms of Multidrug-Resistant Candida Isolates from Vulvovaginal Mucosa. Journal of Fungi. 2023; 9(11):1080. https://doi.org/10.3390/jof9111080
Chicago/Turabian StyleRanđelović, Marina, Marina Dimitrijević, Suzana Otašević, Ljiljana Stanojević, Milica Išljamović, Aleksandra Ignjatović, Valentina Arsić-Arsenijević, and Zorica Stojanović-Radić. 2023. "Antifungal Activity and Type of Interaction of Melissa officinalis Essential Oil with Antimycotics against Biofilms of Multidrug-Resistant Candida Isolates from Vulvovaginal Mucosa" Journal of Fungi 9, no. 11: 1080. https://doi.org/10.3390/jof9111080
APA StyleRanđelović, M., Dimitrijević, M., Otašević, S., Stanojević, L., Išljamović, M., Ignjatović, A., Arsić-Arsenijević, V., & Stojanović-Radić, Z. (2023). Antifungal Activity and Type of Interaction of Melissa officinalis Essential Oil with Antimycotics against Biofilms of Multidrug-Resistant Candida Isolates from Vulvovaginal Mucosa. Journal of Fungi, 9(11), 1080. https://doi.org/10.3390/jof9111080