Fungal-Modified Lignin-Enhanced Physicochemical Properties of Collagen-Based Composite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pretreatment of APL
2.2. Biomodification of APL
2.3. Component Changes before and after APL Biomodification
2.4. Preparation of APL/Col Film
2.5. Characterization of APL/Col Film
2.5.1. Morphology Analysis
2.5.2. Antibacterial Properties
2.5.3. Antioxidant Properties and Water Contact Angle
2.5.4. Transmittance, Film Thickness and Color Coordinates Analysis
2.5.5. Mechanical Strength
2.5.6. 31P NMR Analysis
2.5.7. GC-MS Analysis of Compounds in APL
3. Results and Discussion
3.1. Fungal Biomodification of APL
3.2. The Characterization of APL/Col Films
3.2.1. SEM Analysis
3.2.2. ATR-FTIR and XRD Analysis
3.2.3. Antibacterial Properties
3.2.4. Antioxidant Activities and Water Resistance
3.2.5. Transmittance and Color Coordinates
3.2.6. Mechanical Properties
3.2.7. Correlation Analysis between the APL Components and Film Properties
4. Conclusions
5. Patent
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phelan, A.A.; Meissner, K.; Humphrey, J.; Ross, H. Plastic pollution and packaging: Corporate commitments and actions from the food and beverage sector. J. Clean. Prod. 2022, 331, 129827. [Google Scholar] [CrossRef]
- Walther, B.A.; Kusui, T.; Yen, N.; Hu, C.-S.; Lee, H. Plastic pollution in East Asia: Macroplastics and microplastics in the aquatic environment and mitigation efforts by various actors. In Plastics in the Aquatic Environment-Part I; Springer: Berlin/Heidelberg, Germany, 2020; pp. 353–403. [Google Scholar]
- Xu, J.-L.; Lin, X.; Wang, J.J.; Gowen, A.A. A review of potential human health impacts of micro-and nanoplastics exposure. Sci. Total Environ. 2022, 851, 158111. [Google Scholar] [CrossRef] [PubMed]
- Manfra, L.; Marengo, V.; Libralato, G.; Costantini, M.; De Falco, F.; Cocca, M. Biodegradable polymers: A real opportunity to solve marine plastic pollution? J. Hazard. Mater. 2021, 416, 125763. [Google Scholar] [CrossRef] [PubMed]
- Charitou, A.; Aga-Spyridopoulou, R.N.; Mylona, Z.; Beck, R.; McLellan, F.; Addamo, A.M. Investigating the knowledge and attitude of the Greek public towards marine plastic pollution and the EU Single-Use Plastics Directive. Mar. Pollut. Bull. 2021, 166, 112182. [Google Scholar] [CrossRef] [PubMed]
- Willis, K.; Hardesty, B.; Wilcox, C. State and local pressures drive plastic pollution compliance strategies. J. Environ. Manag. 2021, 287, 112281. [Google Scholar] [CrossRef]
- Shi, K.; Wang, L.; Qi, R.; He, C. Bio-Adhesives Combined with Lotus Leaf Fiber to Prepare Bio-Composites for Substituting the Plastic Packaging Materials. J. Renew. Mater. 2022, 10, 1257. [Google Scholar] [CrossRef]
- Kabir, E.; Kaur, R.; Lee, J.; Kim, K.-H.; Kwon, E.E. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J. Clean. Prod. 2020, 258, 120536. [Google Scholar] [CrossRef]
- Bhuimbar, M.V.; Bhagwat, P.K.; Dandge, P.B. Extraction and characterization of acid soluble collagen from fish waste: Development of collagen-chitosan blend as food packaging film. J. Environ. Chem. 2019, 7, 102983. [Google Scholar] [CrossRef]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D. Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Hani, N.M.; Nirmal, N.P.; Fazial, F.F.; Mohtar, N.F.; Romli, S.R. Optical and thermo-mechanical properties of composite films based on fish gelatin/rice flour fabricated by casting technique. Prog. Org. Coat. 2015, 84, 115–127. [Google Scholar] [CrossRef]
- Ben Slimane, E.; Sadok, S. Collagen from cartilaginous fish by-products for a potential application in bioactive film composite. Mar. Drugs 2018, 16, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, S.; Dutta, P.K.; Mehrotra, G.K. Lignin incorporated antimicrobial chitosan film for food packaging application. J. Polym. Mater. 2017, 34, 171. [Google Scholar]
- Zhang, W.; Shen, J.; Gao, P.; Jiang, Q.; Xia, W. Sustainable chitosan films containing a betaine-based deep eutectic solvent and lignin: Physicochemical, antioxidant, and antimicrobial properties. Food Hydrocoll. 2022, 129, 107656. [Google Scholar] [CrossRef]
- Núñez-Flores, R.; Giménez, B.; Fernández-Martín, F.; López-Caballero, M.; Montero, M.; Gómez-Guillén, M. Physical and functional characterization of active fish gelatin films incorporated with lignin. Food Hydrocoll. 2013, 30, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Weng, Y.; Puglia, D.; Qi, G.; Dong, W.; Kenny, J.M.; Ma, P. Poly (lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int. J. Biol. Macromol. 2020, 144, 102–110. [Google Scholar] [CrossRef]
- Cavallo, E.; He, X.; Luzi, F.; Dominici, F.; Cerrutti, P.; Bernal, C.; Foresti, M.L.; Torre, L.; Puglia, D. UV Protective, antioxidant, antibacterial and compostable polylactic acid composites containing pristine and chemically modified lignin nanoparticles. Molecules 2020, 26, 126. [Google Scholar] [CrossRef]
- El Mansouri, N.-E.; Salvadó, J. Analytical methods for determining functional groups in various technical lignins. J Ind. Crops Prod. 2007, 26, 116–124. [Google Scholar] [CrossRef]
- Liu, N.; Chen, J.; Wu, Z.; Zhan, P.; Zhang, L.; Wei, Q.; Wang, F.; Shao, L. Construction of microporous lignin-based hypercross-linked polymers with high surface areas for enhanced iodine capture. ACS Appl. Polym. Mater. 2021, 3, 2178–2188. [Google Scholar] [CrossRef]
- Kazzaz, A.E.; Feizi, Z.H.; Fatehi, P. Grafting strategies for hydroxy groups of lignin for producing materials. Green Chem. 2019, 21, 5714–5752. [Google Scholar] [CrossRef] [Green Version]
- Dashtban, M.; Schraft, H.; Syed, T.A.; Qin, W. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 2010, 1, 36. [Google Scholar] [PubMed]
- Pandey, M.P.; Kim, C.S. Lignin depolymerization and conversion: A review of thermochemical methods. Chem. Eng. Technol. 2011, 34, 29–41. [Google Scholar] [CrossRef]
- Xie, S.; Li, Q.; Karki, P.; Zhou, F.; Yuan, J.S. Lignin as renewable and superior asphalt binder modifier. ACS Sustain. Chem. Eng. 2017, 5, 2817–2823. [Google Scholar] [CrossRef]
- Li, Q.; Xie, S.; Serem, W.K.; Naik, M.T.; Liu, L.; Yuan, J.S. Quality carbon fibers from fractionated lignin. Green Chem. 2017, 19, 1628–1634. [Google Scholar] [CrossRef]
- Mikkilä, J.; Trogen, M.; Koivu, K.A.; Kontro, J.; Kuuskeri, J.; Maltari, R.; Dekere, Z.; Kemell, M.; Mäkelä, M.R.; Nousiainen, P.A. Fungal treatment modifies Kraft lignin for lignin-and cellulose-based carbon fiber precursors. ACS Omega 2020, 5, 6130–6140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, D.Q.; Wang, X.M.; Feng, M.; He, G. Fungus-Modified Lignin and Its Use in Wood Adhesive for Manufacturing Wood Composites. For. Prod. J. 2015, 65, 43–47. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Yang, X.; Wan, J.; Liu, P.; Xu, Q.; Tang, Y.; Zhang, X. Dietary fiber production from sweet potato residue by solid state fermentation using the edible and medicinal fungus schizophyllum commune. BioResources 2012, 7, 4022–4030. [Google Scholar]
- Xiao, Q.; Ma, F.; Li, Y.; Yu, H.; Li, C.; Zhang, X. Differential proteomic profiles of Pleurotus ostreatus in response to lignocellulosic components provide insights into divergent adaptive mechanisms. Front. Microbiol. 2017, 8, 480. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Sun, S.; Han, Y.; Meng, J.; Chen, Y.; Yu, H.; Zhang, X.; Ma, F. Lignin waste as co-substrate on decolorization of azo dyes by Ganoderma lucidum. J. Taiwan Inst. Chem. Eng. 2021, 122, 85–92. [Google Scholar] [CrossRef]
- Xie, S.; Qin, X.; Cheng, Y.; Laskar, D.; Qiao, W.; Sun, S.; Reyes, L.H.; Wang, X.; Dai, S.Y.; Sattler, S.E. Simultaneous conversion of all cell wall components by an oleaginous fungus without chemi-physical pretreatment. Green Chem. 2015, 17, 1657–1667. [Google Scholar] [CrossRef] [Green Version]
- Ata, O.; Kumcuoglu, S.; Tavman, S. Effects of sonication on the extraction of pepsin-soluble collagens from lamb feet and product characterization. LWT 2022, 159, 113253. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Tang, K.; Liu, J.; Li, X.; Meng, X. Evolution of conformation and thermal properties of bovine hides collagen in the sodium sulphide solution. J. Mol. Liq. 2022, 367, 120449. [Google Scholar] [CrossRef]
- Xie, S.; Sun, S.; Lin, F.; Li, M.; Pu, Y.; Cheng, Y.; Xu, B.; Liu, Z.; da Costa Sousa, L.; Dale, B.E. Mechanism-Guided design of highly efficient protein secretion and lipid conversion for biomanufacturing and biorefining. Adv. Sci. 2019, 6, 1801980. [Google Scholar] [CrossRef] [PubMed]
- McCready, R.M.; Guggolz, J.; Silviera, V.; Owens, H.S. Determination of Starch and Amylose in Vegetables. Anal. Chem. 1950, 22, 1156–1158. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of extractives in biomass. Lab. Anal. Proced. 2005, 1617, 1–16. [Google Scholar]
- Xiao, J.; Ma, Y.; Wang, W.; Zhang, K.; Tian, X.; Zhao, K.; Duan, S.; Li, S.; Guo, Y. Incorporation of gelatin improves toughness of collagen films with a homo-hierarchical structure. Food Chem. 2021, 345, 128802. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Teng, A.; Zhao, K.; Zhang, K.; Zhao, H.; Duan, S.; Li, S.; Guo, Y.; Wang, W. A top-down approach to improve collagen film’s performance: The comparisons of macro, micro and nano sized fibers. Food Chem. 2020, 309, 125624. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Liu, Y.; Zhang, J.; Hossen, M.A.; Sameen, D.E.; Dai, J.; Li, S.; Qin, W. Fabrication and characterization of pH-responsive intelligent films based on carboxymethyl cellulose and gelatin/curcumin/chitosan hybrid microcapsules for pork quality monitoring. Food Hydrocoll. 2022, 124, 107224. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Zhang, H.; Dong, M.; Li, L.; Zhangsun, H.; Wang, L. Dual-functional intelligent gelatin based packaging film for maintaining and monitoring the shrimp freshness. Food Hydrocoll. 2022, 124, 107258. [Google Scholar] [CrossRef]
- Fernández-Marín, R.; Fernandes, S.C.; Sánchez, M.Á.A.; Labidi, J. Halochromic and antioxidant capacity of smart films of chitosan/chitin nanocrystals with curcuma oil and anthocyanins. Food Hydrocoll. 2022, 123, 107119. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, W.; Li, Y.; Gao, G.; Zhang, K.; Zhou, J.; Wu, Z. Cross-linking and film-forming properties of transglutaminase-modified collagen fibers tailored by denaturation temperature. Food Chem. 2019, 271, 527–535. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, J.; Tan, K.B.; Chen, M.; Zhu, Y. Development of hydroxypropyl methylcellulose film with xanthan gum and its application as an excellent food packaging bio-material in enhancing the shelf life of banana. Food Chem. 2022, 374, 131794. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Cao, S.; Ragauskas, A.J. Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ. Sci. 2011, 4, 3154–3166. [Google Scholar] [CrossRef]
- Raj, A.; Krishna Reddy, M.M.; Chandra, R. Identification of low molecular weight aromatic compounds by gas chromatography–mass spectrometry (GC–MS) from kraft lignin degradation by three Bacillus sp. Int. Biodeterior. Biodegrad. 2007, 59, 292–296. [Google Scholar] [CrossRef]
- Qin, L.; Gao, H.; Xiong, S.; Jia, Y.; Ren, L. Preparation of collagen/cellulose nanocrystals composite films and their potential applications in corneal repair. J. Mater. Sci. Mater. Med. 2020, 31, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, R.; Li, J.; Guo, L.; Yang, H.; Ma, F.; Yu, H. Comparative study of the fast pyrolysis behavior of ginkgo, poplar, and wheat straw lignin at different temperatures. Ind. Crops Prod. 2018, 122, 465–472. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Huang, A.; Zhou, C.; Hong, P.; Deng, C. Collagen/zein electrospun films incorporated with gallic acid for tilapia (Oreochromis niloticus) muscle preservation. J. Food Eng. 2022, 317, 110860. [Google Scholar] [CrossRef]
- Li, X.; Ren, Z.; Wang, R.; Liu, L.; Zhang, J.; Ma, F.; Khan, M.Z.H.; Zhao, D.; Liu, X. Characterization and antibacterial activity of edible films based on carboxymethyl cellulose, Dioscorea opposita mucilage, glycerol and ZnO nanoparticles. Food Chem. 2021, 349, 129208. [Google Scholar] [CrossRef]
- Verrillo, M.; Savy, D.; Cangemi, S.; Savarese, C.; Cozzolino, V.; Piccolo, A. Valorization of lignins from energy crops and agro-industrial byproducts as antioxidant and antibacterial materials. J. Sci. Food Agric. 2022, 102, 2885–2892. [Google Scholar] [CrossRef]
- Song, Y.; Fu, Y.; Huang, S.; Liao, L.; Wu, Q.; Wang, Y.; Ge, F.; Fang, B. Identification and antioxidant activity of bovine bone collagen-derived novel peptides prepared by recombinant collagenase from Bacillus cereus. Food Chem. 2021, 349, 129143. [Google Scholar] [CrossRef]
- Sanchez, L.T.; Pinzon, M.I.; Villa, C.C. Development of active edible films made from banana starch and curcumin-loaded nanoemulsions. Food Chem. 2022, 371, 131121. [Google Scholar] [CrossRef]
- Che, W.; Liu, J.; Hao, S.; Ren, J.; Song, Z.; Bu, F. Application of colloid-sand coating treated by a hydrophilic polysaccharide biopolymer material for topsoil stability control. Geoderma 2022, 424, 115994. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, S.; Song, X.; Cao, D.; Li, K.; Hassanpour, M.; Zhang, Z. UV-Shielding Performance and Color of Lignin and its Application to Sunscreen. Macromol. Mater. Eng. 2022, 307, 2100628. [Google Scholar] [CrossRef]
- Jiang, X.; Tian, Z.; Ji, X.; Ma, H.; Yang, G.; He, M.; Dai, L.; Xu, T.; Si, C. Alkylation modification for lignin color reduction and molecular weight adjustment. Int. J. Biol. Macromol. 2022, 201, 400–410. [Google Scholar] [CrossRef]
- Garlock, R.J.; Balan, V.; Dale, B.E.; Pallapolu, V.R.; Lee, Y.; Kim, Y.; Mosier, N.S.; Ladisch, M.R.; Holtzapple, M.T.; Falls, M. Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars. Bioresour. Technol. 2011, 102, 11063–11071. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shakeel, U.; Rehman, M.S.U.; Li, H.; Xu, X.; Xu, J. Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. J. Clean. Prod. 2020, 253, 120076. [Google Scholar] [CrossRef]
Ash% | Lignin% | Cellulose% | Hemicellulose% | Other% | |
---|---|---|---|---|---|
AC | 0.1 ± 0.02 bcd | 18.61 ± 0.24 c | 27.28 ± 0.78 a | 51.85 ± 0.94 a | 2.16 ± 1.46 d |
AF | 0.22 ± 0.05 a | 18.62 ± 0.33 c | 25.85 ± 0.21 b | 48.48 ± 1.23 b | 6.82 ± 1.49 c |
AE | 0.14 ± 0.07 ab | 18.39 ± 0.13 c | 23.71 ± 0.69 b | 44.55 ± 0.37 c | 5.78 ± 0.74 c |
AB | 0.04 ± 0 cd | 19.93 ± 0.34 b | 23.96 ± 0.42 b | 50.28 ± 0.43 a | 13.21 ± 0.94 a |
AD | 0.13 ± 0.04 abc | 21.17 ± 0.57 a | 22.01 ± 0.5 d | 46.92 ± 1.01 b | 9.76 ± 2.03 b |
AX | 0.03 ± 0.02 d | 20.75 ± 0.48 ab | 23.73 ± 0.13 c | 50.46 ± 0.28 a | 5.03 ± 0.64 c |
Thickness | L | a | b | ΔE | |
---|---|---|---|---|---|
C | 42.2 ± 3.11 b | 96 ± 0.04 a | −1 ± 0.04 g | 2.43 ± 0.02 g | 2.13 ± 0.02 g |
C-AC | 52.6 ± 3.65 a | 64.72 ± 0.01 b | 15.91 ± 0.02 d | 58.04 ± 0.03 a | 67.64 ± 0.03 a |
C-AF | 48.8 ± 5.02 a | 51.91 ± 0.02 d | 15.14 ± 0.01 f | 40.82 ± 0.01 c | 61.97 ± 0.01 c |
C-AE | 49.6 ± 4.67 a | 48.62 ± 0.04 e | 16.33 ± 0.04 c | 36.16 ± 0.01 d | 61.86 ± 0.04 d |
C-AB | 50.4 ± 2.7 a | 55.2 ± 0.01 c | 15.84 ± 0.02 e | 45.44 ± 0.03 b | 63.05 ± 0.02 b |
C-AD | 51.8 ± 0.84 a | 47.6 ± 0.01 f | 16.4 ± 0.01 b | 34.36 ± 0.03 e | 61.67 ± 0.01 e |
C-AX | 49.6 ± 7.77 a | 47.11 ± 0.01 g | 16.54 ± 0.02 a | 31.93 ± 0.03 f | 60.8 ± 0.02 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunuhe, A.; Liu, P.; Ullah, M.; Sun, S.; Xie, H.; Ma, F.; Yu, H.; Zhou, Y.; Xie, S. Fungal-Modified Lignin-Enhanced Physicochemical Properties of Collagen-Based Composite Films. J. Fungi 2022, 8, 1303. https://doi.org/10.3390/jof8121303
Tunuhe A, Liu P, Ullah M, Sun S, Xie H, Ma F, Yu H, Zhou Y, Xie S. Fungal-Modified Lignin-Enhanced Physicochemical Properties of Collagen-Based Composite Films. Journal of Fungi. 2022; 8(12):1303. https://doi.org/10.3390/jof8121303
Chicago/Turabian StyleTunuhe, Alitenai, Pengyang Liu, Mati Ullah, Su Sun, Hua Xie, Fuying Ma, Hongbo Yu, Yaxian Zhou, and Shangxian Xie. 2022. "Fungal-Modified Lignin-Enhanced Physicochemical Properties of Collagen-Based Composite Films" Journal of Fungi 8, no. 12: 1303. https://doi.org/10.3390/jof8121303