What Are the Best Parents for Hybrid Progeny? An Investigation into the Human Pathogenic Fungus Cryptococcus
Abstract
1. Introduction
2. Materials and Methods
2.1. Parental Strains and Progeny
2.2. Ploidy Analyses
2.3. Polymerase Chain Reaction-Restriction Length Polymorphism (PCR-RFLP) Genotyping
2.4. Phenotype Assays
2.5. Statistical Analysis
3. Results
3.1. Progeny Collection and Ploidy Analyses
3.2. Genotypic Diversity and Variable mtDNA Inheritance
3.3. Growth at 30 °C and 37 °C
3.3.1. Phenotypic Variation
3.3.2. Better-Parent Heterosis and Transgressive Segregation
3.3.3. Phenotypic Plasticity
3.4. Melanin Production at Various Environmental Conditions
3.4.1. Melanin at the Non-Stress Condition
Phenotypic Variation
Better-Parent Heterosis and Transgressive Segregation
3.4.2. Melanin at Oxidative Stress Conditions
Phenotypic Variation
Better-Parent Heterosis and Transgressive Segregation
3.4.3. Melanin at Nitrosative Stress Conditions
Phenotypic Variation
Better-Parent Heterosis and Transgressive Segregation
3.4.4. Phenotypic Plasticity
3.4.5. Relationships between Oxidative and Nitrosative Stresses
3.4.6. Effects of Potential Factors on Melanin Production
3.5. Susceptibility to Antifungal Drug Fluconazole
4. Discussion
4.1. Aneuploidy
4.2. Mitochondrial Inheritance
4.3. Susceptibility to the Antifungal Drug Fluconazole
4.4. Effects of Parental Genetic Divergence on Progeny Performance
4.5. Transgressive Segregation
4.6. Potential Effect of Temperature for Selecting Hybrids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Averette, A.F.; Desnos-Ollivier, M.; Ni, M.; Dromer, F.; Heitman, J. Genetic Diversity and Genomic Plasticity of Cryptococcus neoformans AD Hybrid Strains. G3 2012, 2, 83–97. [Google Scholar] [CrossRef]
- Schardl, C.L.; Craven, K.D. Interspecific Hybridization in Plant-Associated Fungi and Oomycetes: A Review. Mol. Ecol. 2003, 12, 2861–2873. [Google Scholar] [CrossRef]
- Mixão, V.; Gabaldón, T. Hybridization and Emergence of Virulence in Opportunistic Human Yeast Pathogens. Yeast 2018, 35, 5–20. [Google Scholar] [CrossRef]
- Yuan, L. Progress in Super-Hybrid Rice Breeding. Crop J. 2017, 5, 100–102. [Google Scholar] [CrossRef]
- East, E.M. Heterosis. Genetics 1936, 21, 375–397. [Google Scholar]
- Hagen, F.; Khayhan, K.; Theelen, B.; Kolecka, A.; Polacheck, I.; Sionov, E.; Falk, R.; Parnmen, S.; Lumbsch, H.T.; Boekhout, T. Recognition of Seven Species in the Cryptococcus gattii/Cryptococcus neoformans Species Complex. Fungal Genet. Biol. 2015, 78, 16–48. [Google Scholar] [CrossRef] [PubMed]
- Kwon-Chung, K.J.; Bennett, J.E.; Wickes, B.L.; Meyer, W.; Cuomo, C.A.; Wollenburg, K.R.; Bicanic, T.A.; Castañeda, E.; Chang, Y.C.; Chen, J.; et al. The Case for Adopting the “Species Complex” Nomenclature for the Etiologic Agents of Cryptococcosis. mSphere 2017, 2, e00357-16. [Google Scholar] [CrossRef] [PubMed]
- Farrer, R.A.; Chang, M.; Davis, M.J.; van Dorp, L.; Yang, D.-H.; Shea, T.; Sewell, T.R.; Meyer, W.; Balloux, F.; Edwards, H.M.; et al. A New Lineage of Cryptococcus gattii (VGV) Discovered in the Central Zambezian Miombo Woodlands. mBio 2019, 10. [Google Scholar] [CrossRef]
- Xu, J.; Vilgalys, R.; Mitchell, T.G. Multiple Gene Genealogies Reveal Recent Dispersion and Hybridization in the Human Pathogenic Fungus Cryptococcus neoformans. Mol. Ecol. 2000, 9, 1471–1481. [Google Scholar] [CrossRef]
- Ngamskulrungroj, P.; Gilgado, F.; Faganello, J.; Litvintseva, A.P.; Leal, A.L.; Tsui, K.M.; Mitchell, T.G.; Vainstein, M.H.; Meyer, W. Genetic Diversity of the Cryptococcus Species Complex Suggests That Cryptococcus gattii Deserves to Have Varieties. PLoS ONE 2009, 4, e5862. [Google Scholar] [CrossRef]
- Kidd, S.E.; Guo, H.; Bartlett, K.H.; Xu, J.; Kronstad, J.W. Comparative Gene Genealogies Indicate That Two Clonal Lineages of Cryptococcus gattii in British Columbia Resemble Strains from Other Geographical Areas. Eukaryot. Cell 2005, 4, 1629–1638. [Google Scholar] [CrossRef]
- Alspaugh, J.A. Virulence Mechanisms and Cryptococcus neoformans Pathogenesis. Fungal Genet. Biol. 2015, 78, 55–58. [Google Scholar] [CrossRef]
- Ikeda, R.; Sugita, T.; Jacobson, E.S.; Shinoda, T. Effects of Melanin upon Susceptibility of Cryptococcus to Antifungals. Microbiol. Immunol. 2003, 47, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Rosas, A.L.; Casadevall, A. Melanization Affects Susceptibility of Cryptococcus neoformans to Heat and Cold. FEMS Microbiol. Lett. 1997, 153, 265–272. [Google Scholar] [CrossRef]
- Leopold Wager, C.M.; Hole, C.R.; Wozniak, K.L.; Wormley, F.L. Cryptococcus and Phagocytes: Complex Interactions That Influence Disease Outcome. Front. Microbiol. 2016, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.; Wolf, J.M. Virulence-Associated Enzymes of Cryptococcus neoformans. Eukaryot. Cell 2015, 14, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Kwon-Chung, K.J.; Bennett, J.E. Distribution of Alpha and Alpha Mating Types of Cryptococcus neoformans among Natural and Clinical Isolates. Am. J. Epidemiol. 1978, 108, 337–340. [Google Scholar] [CrossRef]
- Litvintseva, A.P.; Kestenbaum, L.; Vilgalys, R.; Mitchell, T.G. Comparative Analysis of Environmental and Clinical Populations of Cryptococcus neoformans. J. Clin. Microbiol. 2005, 43, 556–564. [Google Scholar] [CrossRef][Green Version]
- Chen, J.; Varma, A.; Diaz, M.R.; Litvintseva, A.P.; Wollenberg, K.K.; Kwon-Chung, K.J. Cryptococcus neoformans Strains and Infection in Apparently Immunocompetent Patients, China. Emerg. Infect. Dis. 2008, 14, 755–762. [Google Scholar] [CrossRef]
- Lin, X.; Heitman, J. The Biology of the Cryptococcus neoformans Species Complex. Annu. Rev. Microbiol. 2006, 60, 69–105. [Google Scholar] [CrossRef]
- Xu, J.; Mitchell, T.G. Comparative Gene Genealogical Analyses of Strains of Serotype AD Identify Recombination in Populations of Serotypes A and D in the Human Pathogenic Yeast Cryptococcus neoformans. Microbiology 2003, 149, 2147–2154. [Google Scholar] [CrossRef][Green Version]
- Hiremath, S.S.; Chowdhary, A.; Kowshik, T.; Randhawa, H.S.; Sun, S.; Xu, J. Long-Distance Dispersal and Recombination in Environmental Populations of Cryptococcus neoformans Var. Grubii from India. Microbiology 2008, 154, 1513–1524. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Litvintseva, A.P.; Nielsen, K.; Patel, S.; Floyd, A.; Mitchell, T.G.; Heitman, J. ΑADα Hybrids of Cryptococcus neoformans: Evidence of Same-Sex Mating in Nature and Hybrid Fitness. PLoS Genet. 2007, 3, e186. [Google Scholar] [CrossRef]
- Lin, X.; Hull, C.M.; Heitman, J. Sexual Reproduction between Partners of the Same Mating Type in Cryptococcus neoformans. Nature 2005, 434, 1017–1021. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Yu, F.; Bian, Z.-Y.; Hong, J.-M.; Zhang, N.; Zhong, Q.-S.; Hang, Y.-P.; Xu, J.; Hu, L.-H. Multilocus Sequence Typing Reveals Both Shared and Unique Genotypes of Cryptococcus neoformans in Jiangxi Province, China. Sci. Rep. 2018, 8, 1495. [Google Scholar] [CrossRef]
- Samarasinghe, H.; Aljohani, R.; Jimenez, C.; Xu, J. Fantastic Yeasts and Where to Find Them: The Discovery of a Predominantly Clonal Cryptococcus deneoformans Population in Saudi Arabian Soils. FEMS Microbiol. Ecol. 2019, 95. [Google Scholar] [CrossRef]
- Rocha, D.F.S.; Cruz, K.S.; Santos, C.S.d.S.; Menescal, L.S.F.; Neto, J.R.d.S.; Pinheiro, S.B.; Silva, L.M.; Trilles, L.; de Souza, J.V.B. MLST Reveals a Clonal Population Structure for Cryptococcus neoformans Molecular Type VNI Isolates from Clinical Sources in Amazonas, Northern-Brazil. PLoS ONE 2018, 13, e0197841. [Google Scholar] [CrossRef]
- Litvintseva, A.P.; Lin, X.; Templeton, I.; Heitman, J.; Mitchell, T.G. Many Globally Isolated AD Hybrid Strains of Cryptococcus neoformans Originated in Africa. PLoS Pathog. 2007, 3, e114. [Google Scholar] [CrossRef]
- Chen, Y.; Litvintseva, A.P.; Frazzitta, A.E.; Haverkamp, M.R.; Wang, L.; Fang, C.; Muthoga, C.; Mitchell, T.G.; Perfect, J.R. Comparative Analyses of Clinical and Environmental Populations of Cryptococcus neoformans in Botswana. Mol. Ecol. 2015, 24, 3559–3571. [Google Scholar] [CrossRef]
- Hagen, F.; Ceresini, P.C.; Polacheck, I.; Ma, H.; van Nieuwerburgh, F.; Gabaldón, T.; Kagan, S.; Pursall, E.R.; Hoogveld, H.L.; van Iersel, L.J.J.; et al. Ancient Dispersal of the Human Fungal Pathogen Cryptococcus gattii from the Amazon Rainforest. PLoS ONE 2013, 8, e71148. [Google Scholar] [CrossRef]
- Lengeler, K.B.; Cox, G.M.; Heitman, J. Serotype AD Strains of Cryptococcus neoformans Are Diploid or Aneuploid and Are Heterozygous at the Mating-Type Locus. Infect. Immun. 2001, 69, 115–122. [Google Scholar] [CrossRef]
- Ni, M.; Feretzaki, M.; Li, W.; Floyd-Averette, A.; Mieczkowski, P.; Dietrich, F.S.; Heitman, J. Unisexual and Heterosexual Meiotic Reproduction Generate Aneuploidy and Phenotypic Diversity De Novo in the Yeast Cryptococcus neoformans. PLoS Biol. 2013, 11, e1001653. [Google Scholar] [CrossRef]
- Samarasinghe, H.; Xu, J. Hybrids and Hybridization in the Cryptococcus neoformans and Cryptococcus gattii Species Complexes. Infect. Genet. Evol. 2018, 66, 245–255. [Google Scholar] [CrossRef]
- Aminnejad, M.; Diaz, M.; Arabatzis, M.; Castañeda, E.; Lazera, M.; Velegraki, A.; Marriott, D.; Sorrell, T.C.; Meyer, W. Identification of Novel Hybrids between Cryptococcus neoformans Var. Grubii VNI and Cryptococcus gattii VGII. Mycopathologia 2012, 173, 337–346. [Google Scholar] [CrossRef]
- Bovers, M.; Hagen, F.; Kuramae, E.E.; Hoogveld, H.L.; Dromer, F.; St-Germain, G.; Boekhout, T. AIDS Patient Death Caused by Novel Cryptococcus neoformans × C. gattii Hybrid. Emerg. Infect. Dis. 2008, 14, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Bovers, M.; Hagen, F.; Kuramae, E.E.; Diaz, M.R.; Spanjaard, L.; Dromer, F.; Hoogveld, H.L.; Boekhout, T. Unique Hybrids between the Fungal Pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res. 2006, 6, 599–607. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Xu, J. The Effects of Environmental and Genetic Factors on the Germination of Basidiospores in the Cryptococcus gattii Species Complex. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cogliati, M. Global Molecular Epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An Atlas of the Molecular Types. Scientifica 2013, 2013, 675213. [Google Scholar] [CrossRef]
- Vogan, A.A.; Khankhet, J.; Samarasinghe, H.; Xu, J. Identification of QTLs Associated with Virulence Related Traits and Drug Resistance in Cryptococcus neoformans. G3 2016, 6, 2745–2759. [Google Scholar] [CrossRef][Green Version]
- Shahid, M.; Han, S.; Yoell, H.; Xu, J. Fitness Distribution and Transgressive Segregation across 40 Environments in a Hybrid Progeny Population of the Human-Pathogenic Yeast Cryptococcus neoformans. Genome 2008, 51, 272–281. [Google Scholar] [CrossRef]
- Meyer, W.; Aanensen, D.M.; Boekhout, T.; Cogliati, M.; Diaz, M.R.; Esposto, M.C.; Fisher, M.; Gilgado, F.; Hagen, F.; Kaocharoen, S.; et al. Consensus Multi-Locus Sequence Typing Scheme for Cryptococcus neoformans and Cryptococcus gattii. Med. Mycol. 2009, 47, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol Evol 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Skosireva, I.; James, T.Y.; Sun, S.; Xu, J. Mitochondrial Inheritance in Haploid x Non-Haploid Crosses in Cryptococcus neoformans. Curr. Genet. 2010, 56, 163–176. [Google Scholar] [CrossRef][Green Version]
- Sia, R.A.; Lengeler, K.B.; Heitman, J. Diploid Strains of the Pathogenic Basidiomycete Cryptococcus neoformans Are Thermally Dimorphic. Fungal Genet. Biol. 2000, 29, 153–163. [Google Scholar] [CrossRef]
- Sun, S.; Xu, J. Genetic Analyses of a Hybrid Cross between Serotypes A and D Strains of the Human Pathogenic Fungus Cryptococcus neoformans. Genetics 2007, 177, 1475–1486. [Google Scholar] [CrossRef]
- Vogan, A.A.; Khankhet, J.; Xu, J. Evidence for Mitotic Recombination within the Basidia of a Hybrid Cross of Cryptococcus neoformans. PLoS ONE 2013, 8, e62790. [Google Scholar] [CrossRef]
- Xu, J. Mitochondrial DNA Polymorphisms in the Human Pathogenic Fungus Cryptococcus neoformans. Curr. Genet. 2002, 41, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Fredslund, J.; Schauser, L.; Madsen, L.H.; Sandal, N.; Stougaard, J. PriFi: Using a Multiple Alignment of Related Sequences to Find Primers for Amplification of Homologs. Nucleic Acids Res. 2005, 33, W516–W520. [Google Scholar] [CrossRef]
- Hopfer, R.L.; Blank, F. Caffeic Acid-Containing Medium for Identification of Cryptococcus neoformans. J. Clin. Microbiol. 1976, 2, 115–120. [Google Scholar]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next Generation of Scientific Image Data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- Clinical Laboratory Standards Institue. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; CLSI Document M27-A3; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R Package for Genetic Analysis of Populations with Clonal, Partially Clonal, and/or Sexual Reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals. J. Stat. Softw. 2018, 87, 1–27. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Lin, X.; Patel, S.; Litvintseva, A.P.; Floyd, A.; Mitchell, T.G.; Heitman, J. Diploids in the Cryptococcus neoformans Serotype A Population Homozygous for the Alpha Mating Type Originate via Unisexual Mating. PLoS Pathog. 2009, 5, e1000283. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, L.A.; Fraser, J.A.; Dietrich, F.S. Recent Evolution of the Human Pathogen Cryptococcus neoformans by Intervarietal Transfer of a 14-Gene Fragment. Mol. Biol. Evol. 2006, 23, 1879–1890. [Google Scholar] [CrossRef] [PubMed]
- Vogan, A.A.; Xu, J. Evidence for Genetic Incompatibilities Associated with Post-Zygotic Reproductive Isolation in the Human Fungal Pathogen Cryptococcus neoformans. Genome 2014, 57, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xu, J. Chromosomal Rearrangements between Serotype A and D Strains in Cryptococcus neoformans. PLoS ONE 2009, 4, e5524. [Google Scholar] [CrossRef]
- D’Souza, C.A.; Kronstad, J.W.; Taylor, G.; Warren, R.; Yuen, M.; Hu, G.; Jung, W.H.; Sham, A.; Kidd, S.E.; Tangen, K.; et al. Genome Variation in Cryptococcus gattii, an Emerging Pathogen of Immunocompetent Hosts. mBio 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Morrow, C.A.; Lee, I.R.; Chow, E.W.L.; Ormerod, K.L.; Goldinger, A.; Byrnes, E.J.; Nielsen, K.; Heitman, J.; Schirra, H.J.; Fraser, J.A. A Unique Chromosomal Rearrangement in the Cryptococcus neoformans var. grubii Type Strain Enhances Key Phenotypes Associated with Virulence. mBio 2012, 3. [Google Scholar] [CrossRef] [PubMed]
- Farrer, R.A.; Desjardins, C.A.; Sakthikumar, S.; Gujja, S.; Saif, S.; Zeng, Q.; Chen, Y.; Voelz, K.; Heitman, J.; May, R.C.; et al. Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii. mBio 2015, 6, e00868-15. [Google Scholar] [CrossRef] [PubMed]
- Birky, C.W. The Inheritance of Genes in Mitochondria and Chloroplasts: Laws, Mechanisms, and Models. Annu. Rev. Genet. 2001, 35, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. The Inheritance of Organelle Genes and Genomes: Patterns and Mechanisms. Genome 2005, 48, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Xu, J. Mitochondria Are Inherited from the MATa Parent in Crosses of the Basidiomycete Fungus Cryptococcus neoformans. Genetics 2003, 163, 1315–1325. [Google Scholar] [PubMed]
- McClelland, C.M.; Chang, Y.C.; Varma, A.; Kwon-Chung, K.J. Uniqueness of the Mating System in Cryptococcus neoformans. Trends Microbiol. 2004, 12, 208–212. [Google Scholar] [CrossRef]
- Voelz, K.; Ma, H.; Phadke, S.; Byrnes, E.J.; Zhu, P.; Mueller, O.; Farrer, R.A.; Henk, D.A.; Lewit, Y.; Hsueh, Y.-P.; et al. Transmission of Hypervirulence Traits via Sexual Reproduction within and between Lineages of the Human Fungal Pathogen Cryptococcus gattii. PLoS Genet. 2013, 9, e1003771. [Google Scholar] [CrossRef]
- Wang, Z.; Wilson, A.; Xu, J. Mitochondrial DNA Inheritance in the Human Fungal Pathogen Cryptococcus gattii. Fungal Genet. Biol. 2015, 75, 1–10. [Google Scholar] [CrossRef]
- Hayles, J.; Nurse, P. Genetics of the Fission Yeast Schizosaccharomyces pombe. Annu. Rev. Genet. 1992, 26, 373–402. [Google Scholar] [CrossRef]
- Yan, Z.; Hull, C.M.; Heitman, J.; Sun, S.; Xu, J. SXI1alpha Controls Uniparental Mitochondrial Inheritance in Cryptococcus neoformans. Curr. Biol. 2004, 14, R743–R744. [Google Scholar] [CrossRef][Green Version]
- Yan, Z.; Hull, C.M.; Sun, S.; Heitman, J.; Xu, J. The Mating Type-Specific Homeodomain Genes SXI1 Alpha and SXI2a Coordinately Control Uniparental Mitochondrial Inheritance in Cryptococcus neoformans. Curr. Genet. 2007, 51, 187–195. [Google Scholar] [CrossRef]
- Yan, Z.; Sun, S.; Shahid, M.; Xu, J. Environment Factors Can Influence Mitochondrial Inheritance in the Fungus Cryptococcus neoformans. Fungal Genet. Biol. 2007, 44, 315–322. [Google Scholar] [CrossRef]
- Govender, N.P.; Patel, J.; van Wyk, M.; Chiller, T.M.; Lockhart, S.R. Group for Enteric, Respiratory and Meningeal Disease Surveillance in South Africa (GERMS-SA) Trends in Antifungal Drug Susceptibility of Cryptococcus neoformans Isolates Obtained through Population-Based Surveillance in South Africa in 2002–2003 and 2007–2008. Antimicrob. Agents Chemother. 2011, 55, 2606–2611. [Google Scholar] [CrossRef]
- Alizadeh, F.; Khodavandi, A.; Zalakian, S. Quantitation of Ergosterol Content and Gene Expression Profile of ERG11 Gene in Fluconazole-Resistant Candida albicans. Curr. Med. Mycol. 2017, 3, 13–19. [Google Scholar] [CrossRef]
- Choi, Y.J.; Kim, Y.-J.; Yong, D.; Byun, J.-H.; Kim, T.S.; Chang, Y.S.; Choi, M.J.; Byeon, S.A.; Won, E.J.; Kim, S.H.; et al. Fluconazole-Resistant Candida parapsilosis Bloodstream Isolates with Y132F Mutation in ERG11 Gene, South Korea. Emerg. Infect. Dis. 2018, 24, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Gast, C.E.; Basso, L.R.; Bruzual, I.; Wong, B. Azole Resistance in Cryptococcus gattii from the Pacific Northwest: Investigation of the Role of ERG11. Antimicrob. Agents Chemother. 2013, 57, 5478–5485. [Google Scholar] [CrossRef] [PubMed]
- Sionov, E.; Chang, Y.C.; Garraffo, H.M.; Dolan, M.A.; Ghannoum, M.A.; Kwon-Chung, K.J. Identification of a Cryptococcus neoformans Cytochrome P450 Lanosterol 14α-Demethylase (Erg11) Residue Critical for Differential Susceptibility between Fluconazole/Voriconazole and Itraconazole/Posaconazole. Antimicrob. Agents Chemother. 2012, 56, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Rodero, L.; Mellado, E.; Rodriguez, A.C.; Salve, A.; Guelfand, L.; Cahn, P.; Cuenca-Estrella, M.; Davel, G.; Rodriguez-Tudela, J.L. G484S Amino Acid Substitution in Lanosterol 14-α Demethylase (ERG11) Is Related to Fluconazole Resistance in a Recurrent Cryptococcus neoformans Clinical Isolate. Antimicrob. Agents Chemother. 2003, 47, 3653–3656. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, L.; Li, C. Susceptibility of Clinical Isolates of Candida Species to Fluconazole and Detection of Candida albicans ERG11 Mutations. J. Antimicrob. Chemother. 2008, 61, 798–804. [Google Scholar] [CrossRef]
- Altamirano, S.; Fang, D.; Simmons, C.; Sridhar, S.; Wu, P.; Sanyal, K.; Kozubowski, L. Fluconazole-Induced Ploidy Change in Cryptococcus neoformans Results from the Uncoupling of Cell Growth and Nuclear Division. mSphere 2017, 2. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Yadav, V.; Lee, S.C.; Heitman, J. Epigenetic Mechanisms of Drug Resistance in Fungi. Fungal Genet. Biol. 2019, 132, 103253. [Google Scholar] [CrossRef]
- Li, X.; Cai, Q.; Mei, H.; Zhou, X.; Shen, Y.; Li, D.; Liu, W. The Rpd3/Hda1 Family of Histone Deacetylases Regulates Azole Resistance in Candida albicans. J. Antimicrob. Chemother. 2015, 70, 1993–2003. [Google Scholar] [CrossRef]
- Robbins, N.; Leach, M.D.; Cowen, L.E. Lysine Deacetylases Hda1 and Rpd3 Regulate Hsp90 Function Thereby Governing Fungal Drug Resistance. Cell Rep. 2012, 2, 878–888. [Google Scholar] [CrossRef]
- Brandão, F.A.; Derengowski, L.S.; Albuquerque, P.; Nicola, A.M.; Silva-Pereira, I.; Poças-Fonseca, M.J. Histone Deacetylases Inhibitors Effects on Cryptococcus neoformans Major Virulence Phenotypes. Virulence 2015, 6, 618–630. [Google Scholar] [CrossRef]
- Lamoth, F.; Juvvadi, P.R.; Steinbach, W.J. Histone Deacetylase Inhibition as an Alternative Strategy against Invasive Aspergillosis. Front. Microbiol. 2015, 6, 96. [Google Scholar] [CrossRef]
- Iii, E.J.B.; Li, W.; Ren, P.; Lewit, Y.; Voelz, K.; Fraser, J.A.; Dietrich, F.S.; May, R.C.; Chatuverdi, S.; Chatuverdi, V.; et al. A Diverse Population of Cryptococcus gattii Molecular Type VGIII in Southern Californian HIV/AIDS Patients. PLoS Pathog. 2011, 7, e1002205. [Google Scholar] [CrossRef]
- Springer, D.J.; Billmyre, R.B.; Filler, E.E.; Voelz, K.; Pursall, R.; Mieczkowski, P.A.; Larsen, R.A.; Dietrich, F.S.; May, R.C.; Filler, S.G.; et al. Cryptococcus gattii VGIII Isolates Causing Infections in HIV/AIDS Patients in Southern California: Identification of the Local Environmental Source as Arboreal. PLoS Pathog. 2014, 10. [Google Scholar] [CrossRef]
- Halliday, C.L.; Bui, T.; Krockenberger, M.; Malik, R.; Ellis, D.H.; Carter, D.A. Presence of Alpha and a Mating Types in Environmental and Clinical Collections of Cryptococcus neoformans var. gattii Strains from Australia. J. Clin. Microbiol. 1999, 37, 2920–2926. [Google Scholar] [CrossRef]
- Firacative, C.; Roe, C.C.; Malik, R.; Ferreira-Paim, K.; Escandón, P.; Sykes, J.E.; Castañón-Olivares, L.R.; Contreras-Peres, C.; Samayoa, B.; Sorrell, T.C.; et al. MLST and Whole-Genome-Based Population Analysis of Cryptococcus gattii VGIII Links Clinical, Veterinary and Environmental Strains, and Reveals Divergent Serotype Specific Sub-Populations and Distant Ancestors. PLoS Negl. Trop. Dis. 2016, 10. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Iqbal, N.; Harris, J.R.; Grossman, N.T.; DeBess, E.; Wohrle, R.; Marsden-Haug, N.; Vugia, D.J. Cryptococcus gattii in the United States: Genotypic Diversity of Human and Veterinary Isolates. PLoS ONE 2013, 8, e74737. [Google Scholar] [CrossRef]
- Byrnes, E.J.; Bartlett, K.H.; Perfect, J.R.; Heitman, J. Cryptococcus gattii: An Emerging Fungal Pathogen Infecting Humans and Animals. Microbes Infect. 2011, 13, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.A.; Subaran, R.L.; Nichols, C.B.; Heitman, J. Recapitulation of the Sexual Cycle of the Primary Fungal Pathogen Cryptococcus neoformans var. gattii: Implications for an Outbreak on Vancouver Island, Canada. Eukaryot. Cell 2003, 2, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, K.E.; Dwyer, C.; Campbell, L.T.; Carter, D.A. Species in the Cryptococcus gattii Complex Differ in Capsule and Cell Size Following Growth under Capsule-Inducing Conditions. mSphere 2016, 1. [Google Scholar] [CrossRef]
- Upadhya, R.; Campbell, L.T.; Donlin, M.J.; Aurora, R.; Lodge, J.K. Global Transcriptome Profile of Cryptococcus neoformans during Exposure to Hydrogen Peroxide Induced Oxidative Stress. PLoS ONE 2013, 8, e55110. [Google Scholar] [CrossRef]
- Ueno, K.; Yanagihara, N.; Otani, Y.; Shimizu, K.; Kinjo, Y.; Miyazaki, Y. Neutrophil-Mediated Antifungal Activity against Highly Virulent Cryptococcus gattii Strain R265. Med. Mycol 2019, 57, 1046–1054. [Google Scholar] [CrossRef]
- Missall, T.A.; Lodge, J.K.; McEwen, J.E. Mechanisms of Resistance to Oxidative and Nitrosative Stress: Implications for Fungal Survival in Mammalian Hosts. Eukaryot. Cell 2004, 3, 835–846. [Google Scholar] [CrossRef]
- Romero-Martinez, R.; Wheeler, M.; Guerrero-Plata, A.; Rico, G.; Torres-Guerrero, H. Biosynthesis and Functions of Melanin in Sporothrix schenckii. Infect. Immun. 2000, 68, 3696–3703. [Google Scholar] [CrossRef]
- Gerik, K.J.; Bhimireddy, S.R.; Ryerse, J.S.; Specht, C.A.; Lodge, J.K. PKC1 Is Essential for Protection against Both Oxidative and Nitrosative Stresses, Cell Integrity, and Normal Manifestation of Virulence Factors in the Pathogenic Fungus Cryptococcus neoformans. Eukaryot. Cell 2008, 7, 1685–1698. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.M.; Upadhya, R.; Shoemaker, J.D.; Lodge, J.K. Isocitrate Dehydrogenase is Important for Nitrosative Stress Resistance in Cryptococcus neoformans, but Oxidative Stress Resistance Is Not Dependent on Glucose-6-Phosphate Dehydrogenase. Eukaryot. Cell 2010, 9, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Chiranand, W.; McLeod, I.; Zhou, H.; Lynn, J.J.; Vega, L.A.; Myers, H.; Yates, J.R.; Lorenz, M.C.; Gustin, M.C. CTA4 Transcription Factor Mediates Induction of Nitrosative Stress Response in Candida albicans. Eukaryot. Cell 2008, 7, 268–278. [Google Scholar] [CrossRef]
- Rieseberg, L.H.; Archer, M.A.; Wayne, R.K. Transgressive Segregation, Adaptation and Speciation. Heredity 1999, 83, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, K.; Takimoto, G. Hybridization Can Promote Adaptive Radiation by Means of Transgressive Segregation. Ecol. Lett. 2018, 21, 264–274. [Google Scholar] [CrossRef]
- Rieseberg, L.H.; Kim, S.-C.; Randell, R.A.; Whitney, K.D.; Gross, B.L.; Lexer, C.; Clay, K. Hybridization and the Colonization of Novel Habitats by Annual Sunflowers. Genetica 2007, 129, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Genotype-environment interactions of spontaneous mutations affecting vegetative fitness in the human pathogenic fungus Cryptococcus neoformans. Genetics 2004, 168, 1177–1188. [Google Scholar] [CrossRef] [PubMed]
Species Complex | Lineage | Isolate ID | Mating Type | Source |
---|---|---|---|---|
CGSC | VGI | B4495 | MATa | Clinical |
B4545 | MATa | Clinical | ||
WM179 | MATα | Human, CSF (cerebral spinal fluid) | ||
WM276 | MATα | E. tereticornis | ||
R794 | MATα | Human, CSF | ||
R299 | MATα | Human, CSF | ||
VGII | LA55 | MATa | Human, CSF | |
R265 | MATα | Human, BAL | ||
LA61 | MATα | Human, CSF | ||
KB5746 | MATα | Horse | ||
VGIII | B4546 | MATa | Clinical | |
JF109 | MATa | Lab strain | ||
ATCC32608 | MATa | Human, CSF | ||
B4544 | MATα | Clinical | ||
JF101 | MATα | Lab strain | ||
B4499 | MATα | Clinical | ||
VGIV | WM779 | MATα | Cheetah | |
CNSC | VNI | KN99a | MATa | Lab strain |
KN99α | MATα | Lab strain | ||
CDC15 | MATα | Clinical | ||
VNIV | JEC20 | MATa | Lab strain | |
JEC21 | MATα | Lab strain |
Genes | Primer Sequences (5′–3′) | Amplification Conditions | Restriction Enzymes |
---|---|---|---|
STE12α | F: CTGAGGAATCTCAAACCAGGGA | 94 °C 4 min; 35 cycles: 94 °C 45 s, 55 °C 45 s, 72 °C 1 min | NA |
R: CCAGGGCATCTAGAAACAATCG | |||
STE20a | F: GATCTCTCTCAGCAGGCCAC | NA | |
R: AAATATCAGCTGCCCAGGTGA | |||
ND2 | F: TATGATGGCCGTAGCGCTATC | 94 °C 4 min; 35 cycles: 94 °C 1 min, 50 °C 30 s 72 °C 1 min | PvuII |
R: TGGTGGTACTCCTGCCATTG | |||
ND4 | F: GGGAGAATTTGATTCAAGTGCAAC | SacI | |
R: ATGATGTTGCATCTGGCATCATAC | |||
GPD1 | F: CCACCGAACCCTTCTAGGATA | 94 °C 3 min; 35 cycles: 94 °C 45 s, 63 °C 1 min, 72 °C 2 min | NA |
R: CTTCTTGGCACCTCCCTTGAG | |||
LAC1 | F: AACATGTTCCCTGGGCCTGTG | 94 °C 3 min; 30 cycles: 94 °C 30 s, 58 °C 30s, 72 °C 1 min | NA |
R: ATGAGAATTGAATCGCCTTGT | |||
PLB1 | F: CTTCAGGCGGAGAGAGGTTT | 94 °C 3 min; 30 cycles: 94 °C 45 s, 61 °C 45 s, 72 °C 1 min | NA |
R: GATTTGGCGTTGGTTTCAGT | |||
IGS1 | F: ATCCTTTGCAGACGACTTGA | 94 °C 3 min; 35 cycles: 94 °C 30 s, 60 °C 30 s, 72 °C 1 min | NA |
R: GTGATCAGTGCATTGCATGA | |||
URA5 | F: ATGTCCTCCCA AGCCCTCGAC | 94 °C 3 min; 35 cycles: 94 °C 45 s, 61 °C 1 min, 72 °C 2 min | HhaI |
R: TTAAGACCTCT GAACACCGTACTC | |||
CAP59 | F: CTCTACGTCGAGCAAGTCAAG | 94 °C 3 min; 35 cycles: 94 °C 30 s, 57 °C 30 s, 72 °C 1 min | HinfI |
R: TCCGCTGCACAAGTGATACCC | |||
CNL06810 | F: TTAATGGACTGGGCAGATGCTCGTC | 94 °C 4 min; 36 cycles: 94 °C 45 s, 55 °C 45 s, 72 °C 1 min | HhaI |
R: ATGTCTTCTCCCGCCCTTTTTGCC | |||
CNI01350 | F: GAGCGACATCGTCCCTATGTGA | HinfI | |
R: ACTGGTAGCAATGGCGACATG | |||
CNK01700 | F: ACGCACTCTCACAGCTCCTTCG | HpyCH4IV | |
R: GCAAAGCTCAGGCTCAAATCCAG | |||
CNM00180 | F: GCTCAAGAACCATACCTGCTCAT | Sau96I/HpyAV | |
R: GGCGGCAGGTGACTTCAGTG | |||
CGND | F: TGCGAGTCGAAGGCRGACTATGATCGTCTGATTGC | 94 °C 4 min; 36 cycles: 94 °C 45 s, 60 °C 45 s, 72 °C 1 min | HinfI |
R: GCTGGATCCGTTCCTTGATAGCRGCCCACTTTGCG | |||
CGNM | F: AGCATCGTCGATGGACATCKTGGACCTTCTTCGCC | HpyCH4IV | |
R: CAGAGAGCCCAGACRAAGGAGGCGAGGAACATGGC | |||
ERG11 | F: CTTTGGGTGGAAAGATTTCTCAAGTCTCTGCCGAG | AluI/Sau3A | |
R: GCGGCGGCAAATCCCTTTTCRTCGTGCCATCGGGC | |||
CGNA | F: AGGCCCCGAGGTTGTTGCCGARGCTGTCCGAG | AccI | |
R: TCGGGGGCACCGGCGAGAGACGCAGARGGGAGGAG | |||
CNB00360 | F: AGTGCTCAGAGTCTGGGGCTGG | HincII | |
R: GCCATTCGCAGGGGTGGAGG | |||
CNE00250 | F: TGGCGTCTCTTTGAACGCGATC | HaeII | |
F: ATGGCGGAATGTCCGGCTTT | |||
CNH02750 | F: TTGGATCGCTTGCTCGCGAA | XhoI | |
R: AGGCCCGAGCAAAGGAATGA |
Group | Cross | MATa Parent | MATα Parent | Genetic Distance | Progeny ID | Ploidy | Genotype | MIC |
---|---|---|---|---|---|---|---|---|
Intra-lineage | VGIIIxVGIII | B4546 (VGIII) MIC = 1 | B4544 (VGIII) MIC = 4 | 0.005 | YMA79 | A | NA | 4 |
0.005 | YMA80 | A | NA | 4 | ||||
0.005 | YMD81 | D | NA | 4 | ||||
JF109 (VGIII) MIC = 2 | B4544 (VGIII) MIC = 4 | 0.005 | YMA62 | A | NA | 8 | ||
0.005 | YMA63 | A | NA | 8 | ||||
0.005 | YMA64 | A | NA | 8 | ||||
ATCC32608 (VGIII) MIC = 4 | B4544 (VGIII) MIC = 4 | 0.005 | YMA65 | A | NA | 8 | ||
0.005 | YMA66 | A | NA | 8 | ||||
0.005 | YMA68 | A | NA | 8 | ||||
B4546 (VGIII) MIC = 1 | JF101 (VGIII) MIC = 4 | 0.009 | YMA73 | A | NA | 4 | ||
0.009 | YMA74 | A | NA | 4 | ||||
0.009 | YMA138 | A | NA | 2 | ||||
JF109 (VGIII) MIC =2 | JF101 (VGIII) MIC = 4 | 0.009 | YMA102 | A | NA | 4 | ||
0.009 | YMA125 | A | NA | 4 | ||||
0.009 | YMA136 | A | NA | 1 | ||||
ATCC32608 (VGIII) MIC = 4 | JF101 (VGIII) MIC = 4 | 0.009 | YMA77 | A | NA | 4 | ||
0.009 | YMA78 | A | NA | 4 | ||||
0.009 | YMA105 | A | NA | 4 | ||||
Inter-lineage | VGIxVGIII | B4495 (VGI) MIC = 2 | B4544 (VGIII) MIC = 4 | 0.033 | YMD53 | D | MLG.21 | 4 |
0.033 | YMD90 | D | MLG.19 | 2 | ||||
0.033 | YMD96 | D | MLG.12 | 4 | ||||
B4495 (VGI) MIC = 2 | JF101 (VGIII) MIC = 4 | 0.038 | YMD69 | D | MLG.20 | 4 | ||
0.038 | YMA71 | A | MLG.20 | 4 | ||||
0.038 | YMD72 | D | MLG.20 | 4 | ||||
B4545 (VGI) MIC = 2 | JF101 (VGIII) MIC = 4 | 0.04 | YMD85 | D | MLG.18 | 4 | ||
0.04 | YMD86 | D | MLG.17 | 4 | ||||
VGIVxVGIII | JF109 (VGIII) MIC = 2 | WM779 (VGIV) MIC = 2 | 0.045 | YMD36 | D | MLG.11 | 2 | |
VGIIxVGIII | LA55 (VGII) MIC = 32 | JF101 (VGIII) MIC = 4 | 0.128 | YMD111 | D | MLG.13 | 8 | |
B4546 (VGIII) MIC = 1 | R265 (VGII) MIC = 4 | 0.135 | YMD132 | D | MLG.8 | 8 | ||
0.135 | YMD135 | D | MLG.8 | 8 | ||||
0.135 | YMD150 | D | MLG.7 | 8 | ||||
VNIxVGIII | JF109 (VGIII) MIC = 2 | KN99α (VNI) MIC = 1 | 0.17 | YMD112 | D | MLG.5 | 4 | |
0.17 | YMD113 | D | MLG.5 | 8 | ||||
0.17 | YMD114 | D | MLG.5 | 8 | ||||
B4546 (VGIII) MIC = 1 | KN99α (VNI) MIC = 1 | 0.17 | YMD29 | D | MLG.5 | 4 | ||
0.17 | YMT33 | T | MLG.5 | 4 | ||||
KN99a (VNI) MIC = 1 | JF101 (VGIII) MIC = 4 | 0.171 | YMD1 | D | MLG.1 | 1 | ||
0.171 | YMD5 | D | MLG.1 | 2 | ||||
0.171 | YMD10 | D | MLG.1 | 2 | ||||
JF109 (VGIII) MIC = 2 | CDC15 (VNI) MIC = 32 | 0.172 | YMA162 | A | MLG.4 | 16 | ||
0.172 | YMD164 | D | MLG.6 | 32 | ||||
0.172 | YMD165 | D | MLG.4 | 16 | ||||
B4546 (VGIII) MIC = 1 | CDC15 (VNI) MIC = 32 | 0.172 | YMD34 | D | MLG.4 | 16 | ||
0.172 | YMD83 | D | MLG.2 | 16 | ||||
0.172 | YMT98 | T | MLG.3 | 4 | ||||
VNIVxVGIII | JF109 (VGIII) MIC = 2 | JEC21 (VNIV) MIC = 1 | 0.172 | YMD87 | D | MLG.9 | 4 | |
B4546 (VGIII) MIC = 1 | JEC21 (VNIV) MIC = 1 | 0.172 | YMD88 | D | MLG.10 | 4 | ||
0.172 | YMD89 | D | MLG.9 | 4 | ||||
JEC20 (VNIV) MIC = 1 | JF101 (VGIII) MIC = 4 | 0.173 | YMD16 | D | MLG.15 | 4 | ||
0.173 | YMD17 | D | MLG.16 | 4 | ||||
JEC20 (VNIV) MIC = 1 | B4544 (VGIII) MIC = 4 | 0.171 | YMD11 | D | MLG.14 | 8 | ||
0.171 | YMD12 | D | MLG.22 | 8 | ||||
ATCC32608 (VGIII) MIC = 4 | JEC21 (VNIV) MIC = 1 | 0.171 | YMD25 | D | MLG.10 | 4 | ||
0.171 | YMD26 | D | MLG.10 | 4 | ||||
0.171 | YMD27 | D | MLG.1 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, M.; Xu, J. What Are the Best Parents for Hybrid Progeny? An Investigation into the Human Pathogenic Fungus Cryptococcus. J. Fungi 2021, 7, 299. https://doi.org/10.3390/jof7040299
You M, Xu J. What Are the Best Parents for Hybrid Progeny? An Investigation into the Human Pathogenic Fungus Cryptococcus. Journal of Fungi. 2021; 7(4):299. https://doi.org/10.3390/jof7040299
Chicago/Turabian StyleYou, Man, and Jianping Xu. 2021. "What Are the Best Parents for Hybrid Progeny? An Investigation into the Human Pathogenic Fungus Cryptococcus" Journal of Fungi 7, no. 4: 299. https://doi.org/10.3390/jof7040299
APA StyleYou, M., & Xu, J. (2021). What Are the Best Parents for Hybrid Progeny? An Investigation into the Human Pathogenic Fungus Cryptococcus. Journal of Fungi, 7(4), 299. https://doi.org/10.3390/jof7040299