Next Article in Journal
Characterization of a Candida albicans Mutant Defective in All MAPKs Highlights the Major Role of Hog1 in the MAPK Signaling Network
Previous Article in Journal
Hmg1 Gene Mutation Prevalence in Triazole-Resistant Aspergillus fumigatus Clinical Isolates
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Metabolites from Clonostachys Fungi and Their Biological Activities

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
*
Author to whom correspondence should be addressed.
J. Fungi 2020, 6(4), 229; https://doi.org/10.3390/jof6040229
Submission received: 9 September 2020 / Revised: 7 October 2020 / Accepted: 12 October 2020 / Published: 16 October 2020

Abstract

:
Clonostachys (teleomorph: Bionectria) fungi are well known to produce a variety of secondary metabolites with various biological activities to show their pharmaceutical and agrochemical applications. Up to now, at least 229 secondary metabolites, mainly including 84 nitrogen-containing metabolites, 85 polyketides, 40 terpenoids, and 20 other metabolites, have been reported. Many of these compounds exhibit biological activities, such as cytotoxic, antimicrobial, antileishmanial, antimalarial activities. This mini-review aims to summarize the diversity of the secondary metabolites as well as their occurrences in Clonostachys fungi and biological activities.

1. Introduction

The fungal genus Clonostachys (formerly named Gliocladium), teleomorph Bionetria (formerly named Nectria or Nectriopsis), belongs to the family Bionectriaceae of Sordariomycetes in Ascomycota [1]. The Clonostachys fungi are widely distributed all over the world. They are saprotrophs, destructive mycoparasites, lichenicoles, or inhabitants of recently dead trees and decaying leaves. At present, there are about 44 species in the genus Clonostachys [1], and among them, about 18 species have been studied for their secondary metabolites, including B. byssicola, B. ochroleuca, B. pityrodes, C. candelabrum, C. compactiuscula, C. rogersoniana, C. rosea, G. roseum, N. coccinea, N. coryli, N. erubescens, N. fuckeliana, N. galligena, N. haematococca, N. inventa, N. lucida, N. pseudotrichia, and N. viridescens.
Clonostachys fungi are abundant in many classes of secondary metabolites, mainly including nitrogen-containing compounds, polyketides, and terpenoids. Many metabolites exhibit biological activities, such as antimicrobial, insecticidal, nematocidal, antiparasitic, phytotoxic and cytotoxic activities. Until now, secondary metabolites of Clonostachys fungi and their biological activities have not been reviewed. This mini-review describes the classification, occurrences, and biological activities of the secondary metabolites from Clonostachys fungi.

2. Nitrogen-Containing Metabolites and Their Biological Activities

The nitrogen-containing metabolites from Clonostachys fungi mainly include linear oligopeptides, cyclopeptides, and piperazines. The nitrogen-containing metabolites, their isolated Clonostachys fungi and biological activities are shown in Table 1.

2.1. Linear Oligopeptides

The oligopeptides from fungi include linear and cyclic peptides. Two linear tetradecapeptides, named clonostachin (1) and clonostachin B (2) were isolated from Clonostachys fungi (Figure 1). Clonostachin (1) was first isolated from Clonostachys sp. F5898, and both clonostachin (1) and clonostachin B (2) were then isolated from Bionectria sp. MSX 47401, and each oligopeptide contained an N-terminal acetyl group and a C-terminal mannitol unit [3]. Clonostachin (1) inhibited ADP-induced aggregation of human platelets by 80% at 150 μM [2]. Pullularin F (3) was isolated from the endophytic fungus Bionectria ochroleuca from the mangrove plant Sonneratia caseolaris [4].

2.2. Cyclopeptides

Cyclopeptides are cyclic compounds formed mainly by the amide bonds between either proteinogenic or non-proteinogenic amino acids [13,39]. The structures of the cyclopeptides isolated from Clonostachys fungi are shown in Figure 2.
Argadin (4), a cyclic pentapeptide, was isolated from Clonostachys sp. FO-7314. It showed inhibitory activity against blowfly (Lucilia cuprina) chitinase with IC50 values of 150 nM at 37 °C and 3.4 nM at 20 °C, respectively [5]. Another cyclic pentapeptide, namely argifin (5), from Gliocladium sp. also exhibited inhibitory activity against blowfly chitinase [6,7].
Arthrichitin (6) was a cyclic tetradepsipeptide isolated from Nectria sp. [8]. This lipodepsipeptide was also isolated from other fungi to show inhibitory activity on the yeasts Schizosaccharomyces pombe and Rhodotorula glutinis [9].
Clonostachysins A (7) and B (8) were two cyclic nonapeptides isolated from Clonostachys rogersoniana. They exhibited a selectively inhibitory effect on a dinoflagellate Prorocentrum micans at 30 μM but had no effect on other microalgae and bacteria, even at 100 μM [10].
Three cyclic heptapeptides, named cyclo-(Gly-D-Leu-D-allo-Ile-L-Val-L-Val-D-Trp-β-Ala) (9), cyclo-(Gly-D-Leu-L-Val-L-Val-L-Val-D-Trp-β-Ala) (10), and cyclo-(Gly-D-Leu-D-allo-Ile-D-allo-Ile-L-Val-D-Trp-β-Ala) (11), were isolated from the soil-derived fungus Clonostachys rosea. Among them, cyclo-(Gly-D-Leu-D-allo-Ile-L-Val-L-Val-D-Trp-β-Ala) (9) exhibited significant cytotoxic activity against the L5178Y mouse lymphoma cell line with an IC50 value of 4.1 μM [11].
Two cyclic undecapeptides cyclosporins A (12) and C (13) were isolated from Nectria sp. F-4908 [12]. They showed immunosuppressive and antifungal activities [13].
IB-01212 (14), a cyclic hexadepsipeptide from the marine fungus Clonostachys sp. ESNA-A009, exhibited antitumor activity on the cell lines of LN-caP (prostate cancer), SK-BR3 (breast cancer), HT29 (colon cancer), and HeLa (cervix cancer) [14]. In addition, IB-01212 (14) showed antileishmanial activity [15].
Three cyclic hexadepsipeptides pullularins A (15), C (16) and E (17) were isolated from the endophytic fungus Bionectria ochroleuca. Both pullularins A (15) and C (16) showed moderate cytotoxic activity against mouse lymphoma cells [4]. Furthermore, pullularin A (15) from another fungus Pullularia sp. BCC 8613 exhibited antimalarial, antiviral and antitubercular activities [40].

2.3. Piperazines

The piperazines (also called 2,5-diketopiperazines) are formed by the condensation of two amino acids [41]. Piperazines are the common nitrogen-containing metabolites as monomers or dimers in Clonostachys fungi, and most of them contain disulfide bonds. The structures of piperazines isolated from Clonostachys fungi are shown in Figure 3.
Bionectins A (18), B (19) and C (20), and verticillin D (54) were isolated from the liquid fermentation cultures of Bionectria byssicola F120. Both bionectins A (18) and B (19) exhibited antibacterial activity against Staphylococcus aureus including methicillin-resistant Staphylococcus aureus (MRSA) and quinolone-resistant Staphylocossu aureus (QRSA), with MIC values of 10-30 μg/mL [16]. Bionectins D (21) and E (22), cyclo (L-Pro-L-Leu) (30), dioxopiperazine (31), and gliocladicillins A (32) and C (33) were isolated from Bionectria sp. Y1085. Among them, bionectins D (21) and E (22), as well as gliocladicillin C (33) showed antibacterial activity on Escherichia coli, Staphylococcus aureus and Salmnonella typhimurium [17].
Four diketopiperazines: 3,6-bis(methylthio)-cyclo(alanyltryptophyl) (23), chaetocin (24), chetoseminudin B (25) and verticillin B (53) from deep water marine-derived fungus Nectria inventa showed trypanocidal activity on Trypanosoma brucei [18].
Four siderophore analogs, clonocoprogens A (26), B (27) and C (28) and N14-plmitoylcoprogen (29), were isolated from Clonostachys compactiuscula FKR-0021. They exhibited antimalarial activity against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum strains, with IC50 values ranging from 1.7 μM to 9.9 μM [19].
Gliocladins A (34), B (35) and C (36) and glioperazine (43) were isolated from Gliocladium sp. originally separated from the sea hare (Aplysia kurodai). Gliocladin C (36), which was a structurally unique trioxopiperazine, showed significant cytotoxicity against the murine P388 lymphocytic leukemia cells with IC50 value of 2.4 μg/mL [21]. Gliocladin C (36) from Gliocladium roseum YMF1.00133 was further screened to show antinematodal activity against nematodes Panagrellus redivivus, Caenothabditis elegans and Bursaphelenchus xylophilus [22].
Nine epipolysulfanyldioxopiperazines isolated from Gliocladium roseum 1A displayed antinematodal activity against Caenorhabditis elegans and Panagrellus redivivus. The dimers, including gliocladine A (37), gliocladine B (38), sch52900 (48), sch52901 (49), verticillin A (50), and 11′-deoxyverticillin A (51) are more active than the monomers with the indole moiety, namely, gliocladines C (39), D (40) and E (41). Among them, 11′-Deoxyverticillin A (51) was the most potent antinematodal compound [23].
Three dioxopiperazines: glioperazine (43), glioperazine B (44) and glioperazine C (45) were isolated from Bionectria byssicola F120. Among them, glioperazine B (44) showed weak antibacterial activity against Staphylococcus aureus [25].
Haematocin (46) was isolated from the culture broth of Nectria haematococca, the blight disease pathogen of ornamental plants. Haematocin (46) inhibited the germ-tube elongation and spore germination of rice blast pathogen Pyricularia oryzae at the IC50 values of 30 and 160 μg/mL, respectively [26].
Verticillins were the dimeric epipolythiodioxopiperazines widely distributed in Bionectriaceous fungi. Most of verticillins exhibited cytotoxic activities [11,27]. Among them, verticillin A (50) showed obviously cytotoxic acitivity by causing apoptosis and reducing tumor burden in high-grade serious ovarian cancer by inducing DNA damage [42]. Verticillins D (54) and G (55) were isolated from Bionectria byssicola, and verticillin G (55) was screened to have antibacterial activity on Staphylococcus aureus with MIC values of 3–10 μg/mL [25]. Verticillin D (54) from the endophytic fungus Bionectria ochroleuca showed pronounced cytotoxic activity against mouse lymphoma cells [4].

2.4. Other Nitrogen-Containing Metabolites

The structures of the other nitrogen-containing metabolites, including amides and amines isolated from Clonostachys fungi are shown in Figure 4.
Both N-benzyl-3-phenyllactamide (57) and N-benzyl-3-phenylpropanamide (58) were isolated from Clonostachys compactiuscula FKR-0021 [19].
Fusarin C (64), (5Z)-fusarin C (65) and (7Z)-fusarin C (66) were isolated from Nectria coccinea A56-9. They showed antifungal activity against Pyricularia oryzae by inhibiting dihydroxynaphthalene-melanin biosynthesis [31].
Gliocladiosins A (67) and B (68), the dipeptides conjugated with macrolides, were isolated from an O-methyltransferase gene, verM disruption mutant of the Cordycep-colonizing fungus Clonostachys rogersoniana. These two compounds showed moderate antibacterial activity on Klebsiella pneumonia and Bacillus subtlilis [32]. Similarly, rogersonins A (69) and B (70) were two indole-polyketide hydrids isolated from verG disruption mutant of Clonostachys rogersoniana [33]. Blocking the biosynthesis of secondary metabolites through the disuption of the biosynthesis-related genes provide a method to activate cryptic or silent secondary metabolites in fungi.
Three tetramic acid derivatives namely 1,2-dehydrovirgineone (75), virgineone (76) and virgineone aglycone (77) were isolated from Bionectria sp. MSX 47401. They showed obviously antibacterial activity against Staphylococcus aureus and several MRSA isolates. In addition, virgineone (76) showed moderate antifungal activity against Candida albicans, Cryptococcus neoformans, and Aspergillus niger with an MIC value of 14.4 μg/mL [3].
FR-900483 (80), which was called nectrisine or 3-(R)-4-(R)-dihydroxy-5-(R)-hydroxymethyl-1-pyrroline, was an immunoactive substance produced by Nectria lucida F-4490. FR-900483 (80) could restore the capacity of immunosuppressed mice to produce antibody against sheep red blood cells [35].
Penicolinate A (83) was induced from the endophytic fungus Bionectria sp. through bacterial co-culture. Penicolinate A (83) exhibited potent cytotoxic activity against the human ovarian cancer cell line A2780 with an IC50 value of 4.1 μM [28].

3. Polyketides and Their Biological Activities

A variety of polyketides occur widely in the Clonostachys fungi. According to the structure characteristics, these metabolites were classifed into aromatic, alipahtic and mixed biogenic polyketides [43]. The aromatic polyketides mainly include pyranones, quinones, sorbicillinoids, and others. The polyketides, their isolated Clonostachys fungi and biological activities are shown in Table 2.

3.1. Pyranones

Pyranones (also named pyrones) from fungi include α-, β- and γ-pyranones [69]. Most pyranones produced by Clonostachys fungi belong to α-pyranones. Their structures are shown in Figure 5.
Cephalochromin (88), a bisnaphtho-γ-pyrone, was isolated from Nectria viridescens [45]. This compound was screened to exhibit cytotoxic activity by inducing G0/G1 cell cycle arrest and apoptosis in A549 human non-small-cell lung cancer cells by inflicting mitochondrial disruption [46].
Citreoisocoumarinol (90), citreoisocoumarin (92) and macrocarpon C (94) showed moderate inhibitory activity on α-glucosidase with IC50 values ranging from 300 to 600 µM [47].
Two isocoumarin derivatives, 3-(3-chloro-2-hydroxypropyl)-8-hydroxy- 6-methoxyisochromen-1-one (95) and 3-[(R)-3,3-dichloro-2-hydroxypropyl]- 8-hydroxy-6- methoxy-1H-isochromen-1-one (dichlorodiaportin, 96), were identified from Clonostachys sp. AP4.1 [48].

3.2. Quinones

The quinones isolated from Clonostachys fungi were mainly naphthoquinones except for three p-benzoquinones. Their structures are shown in Figure 6.
2,5-Dimethoxy-3,6-dimethyl-1,4-benzoquinone (114) from Nectria coryli inhibited the growth of Staphylococcus aureus at a concentration of 1 μg/mL [54].
Herbarin (122) and nectriaquinone B (132) isolated from the brown rice culture of Nectria pseudotrichia 120-1NP exhibited antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa [50]. Herbarin (122), O-methylherbarin (123), nectriaquinone A (131), and nectriaquinone B (132) displayed cytotoxic activity against human promyelocytic leukemia HL60 cells with IC50 values of 11.9, 1.33, 1.93, and 11.6 μM, respectively. The structure-function relationship elucidated that the higher cytotoxicity of herbarin (122) and nectriaquinone B (132), compared to that of the related compounds O-methylherbarin (123) and nectriaquinone A (131) was attributed to their increased cell membrane permeability due to the presence of the hydroxyl group [38,50]. In addition, herbarin (122) showed a significant inhibition on lettuce seedling growth [50].
Seven naphthoquinones, named pseudonectrins A (126), B (127), C (128), D (129), herbarin (122), dehydroherbarin (124) and 2-acetoxyl-5,7-dimethoxy-3-methyl-1,4-naphthoquinone (125) were isolated from Nectria pseudotrichia. They all showed cytotoxic activity except for pseudonectrin D (129). In addition, pseudonectrins A (126), B (127) and C (128) had a skeleton of pyranonaphthoquinone [38].

3.3. Sorbicillinoids

Sorbicillinoids are important hexaketide metabolites produced by fungi [70]. Six dimeric and one monomeric sorbicillinoids were extracted from culture broth of Clonostachys rosea YRS-06 [44]. Their structures are shown in Figure 7. Dihydrotrichodimer ether A (135), dihydrotrichodimer ether B (136) and tetrahydrotrichodimer ether (137) are rare bisorbicillinoids with a γ-pyrone moiety. Dihydrotrichodimer ether A (135), dihydrotrichodimer ether B (136), dihydrotrichodimerol (138) and tetrahydrotrichodimerol (139) showed antibacterial activity against Bacillus subtilis, Clostridium perfringens, and Escherichia coli [44].

3.4. Other Polyketides

The structures of the other polyketides isolated from Clonostachys fungi are shown in Figure 8. These metabolites mainly belong to aliphatic polyketides. Some of them contain a glycosyl group and exist as glycosides.
Four α-furanones were obtained. Both 3,5-dihydroxyfuran-2(5H)-one (141) and sapinofuranone B (142) were isolated from Gliocladium roseum 1A [23]. Both (-)-vertinolide (143) and (-)-dihydrovertinolide (144) were isolated from Clonostachys rosea B5-2. (-)-Dihydrovertinolide (144) displayed phytotoxic activity against lettuce seedlings at a concentration of 50 μg/mL [58].
Clonostachydiol (145) was a 14-membered macrodiolide isolated from the fungus Clonostachys cylindrospora (strain FH-A 6607). It exhibited anthelimintic activity against abomasum nematode Haemonchus cortorus in artificially infected lambs [59]. Four stereocenters in clonostachydiol were revised later [71].
Polyketide glycosides bionectriols A (146), B (147) and C (148) were isolated from Bionectria chroleuca [61]. TMC-151E (163), TMC-151F (164) and bionectriol C (148) moderately inhibited Candida albicans biofilm formation with IC50 values of 36.3, 41.0 and 24.1 μM, respectively [61].
Nectriacids B (153) and C (154) showed stronger α-glucosidase inhibitory activity than positive control (acarbose, IC50, 815.3 µM) with IC50 values of 23.5 and 42.3 µM, respectively.
α,β-Dehydrocurvularin (156) from Nectria glligena was proved to be cytotoxic to human lung fibroblasts with IC50 value less than 12 µg/mL. In addition, α,β-dehydrocurvularin (156) significantly reduced radicle length and epicotyl growth in Lactuca sativa at 100 and 200 µg/disk [63].
Both nectriatones B (157) and C (158) were cyclohexanone derivatives from Nectria sp. B-13 [64].
A series of polyketides TMC-151 (159164), TMC-154 (165) and TMC-171 (166168) were found exclusively in Gliocladium and Clonostachys species [67]. They contained D-mannopyranoside and D-mannitol or D-arabitol and showed moderate cytotoxicity on several tumor cells [66].
Usnic acid (169) is a unique polyketide from Bionectria ochroleuca Bo-1 which was isolated as an endophytic fungus from rice. It showed antibacterial activity against Xanthomonas oryzae with MIC value of 200 µg/mL [68].

4. Terpenoids and Their Biological Activities

The terpenoids from Clonostachys fungi include monoterpenoids, sesquiterpenoids, diterpenoids, triterpenpoids, polyterpenoids, and meroterpenoids. The terpenoids, along with their isolated Clonostachys fungi and biological activities are shown in Table 3.

4.1. Monoterpenoids

Three monoterpenoids named nectriapyrone (170), nectriapyrones C (171) and D (172) with α–pyrone skeletons were isolated from the fungus Nectria sp. HLS206 associated with the marine sponge Gelliodes carnosa [72]. Their structures are shown in Figure 9.

4.2. Sesquiterpenoids

The structures of the sesquiterpenoids isolated from Clonostachys fungi are shown in Figure 10. Nectrianolin C (174) from Nectria pseudotrichia 120-1NP exhibited cytotoxic activity against HL60 and HeLa cells [73].
Three sesquiterpene acids: 10-acetyl trichoderonic acid A (175), hydroheptelidic acid (176), and xylaric acid D (178) were isolated from the endophytic fungus Nectria pseudotrichia of the tree Caesalpinia echinata. The 10-Acetyl trichoderonic acid A (175) and hydroheptelidic acid (176) showed strong antileishmanial activity [30].

4.3. Diterpenoids

Three diterpenoids (179181) have been isolated from Clonostachys fungi so far (Figure 11). Nectriatone A (180) from Nectria sp. B-13 exhibited cytotoxic activity against the human cancer cell lines, including SW1990, HCT-116, MCF-7 and K562 [64].

4.4. Triterpenoids

Only two triterpenoids (182, 183) were described with their structures shown in Figure 12. Eburicol (182) exhibited cytotoxic activities on the four human cancer cell lines, which included MCF-7, MDA-MB-231, NSCLC-N6-L16 and A549 cells with IC50 values lower than 40 µM [74]. Helvolic acid (183) was a nortriterpenoid isolated from many other fungi, such as Pichia guilliermondii [75], and Aspergillus fumiatus [76]. This compound exhibited obvious antimicrobial activity [75,76].

4.5. Polyterpenoids

The polyterpenes in Clonostachys fungi were tetraterpenes or pentaterpenes whose structures are shown in Figure 13. Five polyprenol polyterpenoids, glioprenins A–E (184188) were isolated from Gliocladium species [77,78]. Glisoprenins A (184) and B (185) from Gliocladium sp. FO-1513 showed inhibitory activity on acyl-CoA:cholesterol acyltransferase [77], and glioprenins C (186), D (187) and E (188) from the submerged cultures of Gliocladium roeum HA190-95 showed inhibition on appressorium formation of Magnaporthe grisea [78].
Bionectin F (189), another polyprenol polyterpenoid, was isolated from the endophytic fungus Bionectria sp. Y1085 [17].

4.6. Meroterpenoids

Meroterpenoids are metabolites that are partially derived from terpenoid biosynthetic pathways. The structures of meroterpenoids isolated from Clonostachys fungi are shown in Figure 14.
Ascochlorin (also named illicolin D or LL-Z 1272γ, 190), dechlorodihydroascochlorin (195) and ilicicolin B (or called LL-Z 1272β, 206) were isolated from Nectria sp. [79].
Ilicicolins D (190), E (197) and F (198), dechloroilcicolin D (191) and ascofuranone (201) showed antifungal activity against plant pathogens Neurospora crassa, Botrytis cinerea, Fusariumculmorum, Pyricularia oryzae, and Penicillium digitarum [8].
Ilicicolins C (196) and E (197), and colletochlorin B (203) from the phytopathogenic fungus Nectria galligena displayed inhibitory activity toward acetylcholinesterase (AChE) and α-glucuronidase with IC50 values of 30-36 µg/mL in the AChE assay and 32-43 µg/mL in the α-glucuronidase test [63].
Ilicicolin E (197) obtained from soil-derived fungus Nectria sp. B-13 showed antibacterial activities against Escherichia coli, Bacillus subtilis and Staphylococcus aureus with MIC values of 4.0, 2.0 and 4.0 μg/mL, respectively [64]. Ilicicolin C (196) and ilicicolin F (198) obtained from phytopathogenic fungus Nectria galligena were active against Pseudomonas syringae with IC50 values of 28.5 and 28.5 μg/mL, respectively [63].
Both nectrianolins A (199) and B (200) were sesquiterpene-epoxyclohexenone conjugates isolated from Nectria pseudotrichia 120-1NP [73].
Chalmicrin (202), a mannitol ether of methylated monocyclofarnesol, was isolated from Nectria sp. HLS206 that was associated with the marine sponge Glliodes carnosa [81]. This compound was previously isolated from the fungus Chalara microspora [84].
Both MBJ-0009 (207) and MBJ-0010 (208), which were related to the eremophilane class and isolated from the saprobic fungus Nectria sp. f26111, showed moderate cytotoxic activity against human ovarian adenocarcinoma SKOV-3 with the IC50 values of 24.7 and 11.2 mM, respectively [82].
Taxol (generic name paclitaxel, 209), the well-known anticancer agent, was isolated from the endophytic fungus Gliocladium sp. from Taxus baccata [83]. The backbone of taxol (209) is a diterpenoid, and the side chain is phenylalanine-derived. Both diterpenoid and phenylpropanoid pathways are required for taxol biosynthesis. Taxol (209) was found in both plants [85] and fungi [86]. It is a result of the co-evolution of plants and fungi in secondary metabolism [75].

5. Miscellaneous Metabolites and Their Biological Activities

The miscellaneous metabolites mainly including phenolics and fatty acids isolated from Clonostachys fungi are listed in Table 4, and their structures are shown in Figure 15.
Four phenolic metabolites were isolated and identified as 4-hydroxybenzoic aldehyde (210), 4-hydroxybenzoic acid (211), 3,4-dihydroxybenzoid acid (212), and 3,5-dihydroxybenzoic acid (213) from Gliocladium roseum CGMCC 3.3657 [87].
5-n-Heneicosylresorcinol (217) was isolated from Gliocladium roseum YMF1.00133. After 24 h incubation, 5-n-heneicosylresorcinol (217) showed antinematodal activity against Caenothabditis elegans at 15 and 30 μg/mL, against Panagrellus redivivus at 50 and 80 μg/mL, and against Bursaphelenchus xylophilus at 200 and 180 μg/mL, respectively [22].
Five fatty acids named clonostach acids A (219), B (220), and C (221) were isolated from the endophytic fungus Clonostachys rosea B5-2 [58].
Three furan derivatives, named 2-furoic acid (222), 5-hydroxymethyl furoic acid (223) and 2-hydroxy-5-hydroxymethyl furan (224), were isolated from Bionectria sp. Y1085 [17].
Three piliformic acid derivatives were isolated from Nectria pseutrichia. Both 3-(S)-piliformic acid (226) and 6’-acetoxy-piliformic acid (227) were screened to show leishmanicidal activity [30].

6. Conclusions and Future Perspectives

In this mini-review, we summarized chemical structures, occurrences and biological activities of the secondary metabolites from Clonostachys fungi. The main metabolites belong to nitrogen-containing compounds, polyketides, and terpenoids. Some piperazines (i.e., bionetins, gliocladins and gliocladins and verticillins), polyketides (i.e., nectriaquinones, pesudonectrins, bionectriols, and nectriacids) and terpenoids (i.e., glisoprenins and ilicicolins), which were only isolated from Clonostachys fungi, exhibited obvious biological activities, such as antimicrobial, cytotoxic, antinematodal, and AChE inhibitory activities (Table 1, Table 2 and Table 3). Some metabolites, such as alternariol (86) sorbicillinoids, were also distributed in other groups of fungi. Some metabolites, such as cyclosporin A (12), cinnacidin (61), and taxol (209), have shown their medicinal and agricultural applications.
In order to search for new bioactive metabolites from Clonostachy fungi, some strategies, such as gene disruption, modification of the fermentation medium, co-cultivation and synthetic modification, have been proven to be effective. Gliocladiosins A (67) and B (68), as well as rogersonins A (69) and B (70) were alkaloid–polyketide hydrids isolated from gene disruption mutants of Clonostachys rogersoniana [32,33]. Fermentation of the Clonostachys rosea on white beans instead of rice afforded one γ-lactam clonostalactam (62) and two γ-lactones 3,5-dihydroxyfuran-2(5H)-one (141) and sapinofuranone B (142) that were not detected in the former extracts [11]. The apple juice supplemented solid rice media led to significant changes in the secondary metabolism of the fungus, Clonostachys rosea B5-2, and induced the production of four new compounds, (-)-dihydrovertinolide (144), clonostach acids A (219), B (220) and C (221) together with the known compound, (-)-vertinolide (143) [58]. Co-cultivation of the Bionectria sp. with either Bacillus subtilis or Streptomyces lividans resulted in the production of bionectriamines A (59) and B (60), and 6,8-dihydroxyisocoumarin-3-carboxylic acid (93) [28]. In addition, based on the isolated compounds, more bioactive compounds can be synthesized. A typical example was the synthesis of cinnacidin (61) analogs. Two new structural analogs of cinnacidin (61), namely (2S,3S)-2-[(3RS,3aSR,6aRS)-3-methoxy-4-oxo-3,3a,4,5,6,6a-hexahydropentalen-1-ylcarbamoyl]-3-methylvaleric acid and benzyl (2S,3S)-2-[(3RS,3aSR,6aRS)-3-methoxy-4-oxo-3,3a,4, 5,6,6a-hexahydro pentalen-1-ylcarbamoyl]-3-methylvalerate, have been synthesized. The synthetic compounds were highly phytotoxic on a range of weeds to show their potential application as an herbicide [29]. Furthermore, the phenolic sesquiterpenoids which are also called ascochlorin derivatives or ilicicolins were widely distributed in the fungi of genus Nectria (synonym: Clonostachys). The occurrence of these compounds further confirms the close chemotaxonomic relationships among the related Nectria species. Ilicicolin H (71) was considered to be of potential chemotaxonomic significance and could be used as the main chemotaxonomic marker of the Nectriaceae family [34]. Some piperazines, such as bionetins [16], gliocladins [21], gliocladines [23], glioperazines, and verticillins were also only isolated from the fungal species of Clonostachys. Their chemotaxonomic significance should be further verified.
Though major fungal species of Clonostachys fungi have been studied for their metabolites [1], the remaining fungi need to be revealed in detail. Moreover, the biological activities, structure–activity relationships, mechanisms of action, as well as biosynthesis of the metabolites from Clonostachys fungi need to be further investigated. Clarification of the metabolites of Clonostachys fungi could not only be in favor of discovering more compounds with novel structures and excellent biological activities, but also better understand the chemotaxonomy of the genus Clonostachys.

Author Contributions

Conceptualization, L.Z. and P.H; Writing—original draft preparation, P.H. and L.Z.; Writing—review and editing, D.L., X.Z., D.X. and B.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the National Key R&D Program of China (2017YFD0201105 and 2017YFD0200501).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Schroers, H.-J. A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. Stud. Mycol. 2001, 46, 1–214. [Google Scholar]
  2. Chikanishi, T.; Hasumi, K.; Harada, T.; Kawasaki, N.; Endo, A. Clonostachin, a novel peptaibol that inhibits platelet aggregation. J. Antibiot. 1997, 50, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Figueroa, M.; Raja, H.; Falkinham, J.O.; Adcock, A.F.; Kroll, D.J.; Wani, M.C.; Pearce, C.J.; Oberlies, N.H. Peptaibols, tetramic acid derivatives, isocoumarins, and sesquiterpenes from a Bionectria sp. (MSX 47401). J. Nat. Prod. 2013, 76, 1007–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Ebrahim, W.; Kjer, J.; Amrani, M.E.; Wray, V.; Lin, W.; Ebel, R.; Lai, D.; Proksch, P. Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar. Drugs 2012, 10, 1081–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Arai, N.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Iwai, Y.; Turberg, A.; Kolbl, H.; Omura, S. Argadin, a new chitinase inhibitor, produced by Clonostachys sp. FO7314. Chem. Pharm. Bull. 2000, 48, 1442–1446. [Google Scholar] [CrossRef] [Green Version]
  6. Arai, N.; Shiomi, K.; Iwai, Y.; Omura, S. Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. J. Antibiot. 2000, 53, 609–614. [Google Scholar] [CrossRef] [Green Version]
  7. Shiomi, K.; Arai, N.; Iwai, Y.; Turberg, A.; Kolbl, H.; Omura, S. Structure of arifin, a new chitinase inhibitor produced by Gliocladium sp. Tetrahedron Lett. 2000, 41, 2141–2143. [Google Scholar] [CrossRef]
  8. Bal-Tembe, S.; Kundu, S.; Roy, K.; Hiremath, C.P.; Gole, G.; De Souza, E.P.; Kumar, E.K.S.V.; Gates, D.A.; Pillmoor, J.B. Activity of the ilicicolins against plant pathogenic fungi. Pestic. Sci. 1999, 55, 645–647. [Google Scholar] [CrossRef]
  9. Helaly, S.E.; Ashrafi, S.; Teponno, R.B.; Bernecker, S.; Dababat, A.A.; Maier, W.; Stadler, M. Nematicidal cyclic lipodepsipeptides and a xanthocillin derivative from a phaeosphariaceous fungus parasitizing eggs of the plant parasitic nematode Heterodera filipjevi. J. Nat. Prod. 2018, 81, 2228–2234. [Google Scholar] [CrossRef]
  10. Adachi, K.; Kanoh, K.; Wisespongp, P.; Nishijima, M.; Shizuri, Y. Clonostachysins A and B, new antidinoflagellate cyclic peptides from a marine-derived fungus. J. Antibiot. 2005, 58, 145. [Google Scholar] [CrossRef] [Green Version]
  11. Abdel-Wahab, N.M.; Harwoko, H.; Muller, W.E.G.; Hamacher, A.; Kassck, M.U.; Fouad, M.A.; Kamel, M.S.; Lin, W.; Ebrahim, W.; Liu, Z.; et al. Cyclic heptapeptides from the soil-derived fungus Clonostachys rosea. Bioorgan. Med. Chem. 2019, 27, 3954–3959. [Google Scholar] [CrossRef] [PubMed]
  12. Goto, T.; Kino, T.; Okuhara, M.; Tanaka, H.; Tsurumi, Y.; Takase, S. Cyclosporins A and C and Their Manufacture with Nectria. PCT International Application No. WO9213094, 6 August 1992. [Google Scholar]
  13. Wang, X.; Lin, M.; Xu, D.; Lai, D.; Zhou, L. Structural diversity and biological activities of fungal cyclic peptides, excluding cyclodipeptides. Molecules 2017, 22, 2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Cruz, L.J.; Insua, M.I.; Baz, J.P.; Trujillo, M.; Rodriguez-Mias, R.A.; Oliveira, E.; Giralt, E.; Albericio, F.; Canedo, L.M. IB-01212, a new cytotoxic cyclodepsipeptide isolated from the marine fungus Clonostachys sp. ESNA-A009. J. Org. Chem. 2006, 71, 3335–3338. [Google Scholar] [CrossRef]
  15. Luque-Ortega, J.R.; Cruz, L.J.; Albericio, F.; Rivas, L. The antitumoral depsipeptide IB-01212 kills leishmania through an apoptosis-like process involving intracellular targets. Mol. Pharm. 2010, 7, 1608–1617. [Google Scholar] [CrossRef]
  16. Zheng, C.-J.; Kim, C.-J.; Bae, K.S.; Kim, Y.-H.; Kim, W.-G. Bionectins A-C, epidithiodioxopiperazines with anti-MRSA activity, from Bionectria byssicola F120. J. Nat. Prod. 2006, 69, 1816–1819. [Google Scholar] [CrossRef]
  17. Yang, Y.-H.; Yang, D.-S.; Li, G.-H.; Pu, X.-J.; Mo, M.-H.; Zhao, P.-J. Antibacterial diketopiperazines from an endophytic fungus Bionectria sp. Y1085. J. Antibiot. 2019, 72, 752–758. [Google Scholar] [CrossRef]
  18. Watts, K.R.; Ratnam, J.; Ang, K.-H.; Tenney, K.; Compton, J.E.; McKerrow, J.; Crews, P. Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines from two deep water marine-derived fungi. Bioorgan. Med. Chem. 2010, 18, 2566–2574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  19. Ouchi, T.; Watanabe, Y.; Nonaka, K.; Muramatsu, R.; Noguchi, C.; Tozawa, M.; Hokari, R.; Ishiyama, A.; Koike, R.; Matsui, H.; et al. Clonocoprogens A, B and C, new antimalarial coprogens from the Okinawan fungus Clonostachys compactiuscula FKR-0021. J. Antibiot. 2020, 73, 365–371. [Google Scholar] [CrossRef]
  20. Li, E.; Hou, B.; Gao, Q.; Xu, Y.; Zhang, C.; Liu, X.; Jiang, X.; Che, Y. Disulfide cleavage in dimeric epipolythiodioxopiperazine natural product diminishes its apoptosis-inducing effect but enhances autophagy in tumor cells. J. Nat. Prod. 2020, 83, 601–609. [Google Scholar] [CrossRef]
  21. Usami, Y.; Yamaguchi, J.; Numata, A. Gliocladins A-C and giloperazine; cytotoxic dioxo- or trioxopiperazine metabolitesfrom a Gliocladium sp. separated from a sea hare. Heterocycles 2004, 63, 1123–1129. [Google Scholar] [CrossRef]
  22. Song, H.C.; Shen, W.Y.; Dong, J.Y. Nematicidal metabolites from Gliocladium roseum YMF1.00133. Appl. Biochem. Microbiol. 2016, 52, 324–330. [Google Scholar] [CrossRef]
  23. Dong, J.-Y.; He, H.-P.; Shen, Y.-M.; Zhang, K.-Q. Nematicidal epipolysulfanyldioxopiperazines from Gliocladium roseum. J. Nat. Prod. 2005, 68, 1510–1513. [Google Scholar] [CrossRef] [PubMed]
  24. Dong, J.Y.; Zhou, W.; Li, L.; Li, G.H.; Liu, Y.J.; Zhang, K.Q. A new epidithiodioxopiperazine metabolite isolated from Gliocladium roseum YMF1.00133. Chin. Chem. Lett. 2006, 17, 922–924. [Google Scholar]
  25. Zheng, C.-J.; Kim, Y.-H.; Kim, W.-G. Glioperazine B, as a new antimicrobial agent against Staphylococcus aureus, and glioperazine C: Two new dioxopiperazines from Bionectria byssicola. Biosci. Biotechnol. Biochem. 2007, 71, 1979–1983. [Google Scholar] [CrossRef] [Green Version]
  26. Suzuki, Y.; Takahashi, H.; Esumi, Y.; Arie, T.; Morita, T.; Koshino, H.; Uzawa, J.; Uramoto, M.; Yamaguchi, I. Haematocin, a new antifungal diketopiperazine produced by Nectria haematococca Berk. et Br. (880701a-1) causing nectria blight disease on ornamental plants. J. Antibiot. 2000, 53, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Figueroa, M.; Graf, T.N.; Ayers, S.; Adcock, A.F.; Kroll, D.J.; Yang, J.; Swanson, S.M.; Munoz-Acuna, U.; De Blanco, E.J.C.; Agrawal, R.; et al. Cytotoxic epipolythiodioxopiperazine alkaloids from filamentous fungi of the Bionectriaceae. J. Antibiot. 2012, 65, 559–564. [Google Scholar] [CrossRef] [Green Version]
  28. Kamdem, R.S.T.; Wang, H.; Wafo, P.; Ebrahim, W.; Oezkaya, F.C.; Makhloufi, G.; Janiak, C.; Sureechatchaiyan, P.; Kassack, M.U.; Lin, W.; et al. Induction of new metabolites from the endophytic fungus Bionectria sp. through bacterial co-culture. Fitoterapia 2018, 124, 132–136. [Google Scholar] [CrossRef]
  29. Irvine, N.M.; Yerkes, C.N.; Graupner, P.R.; Roberts, R.E.; Hahn, D.R.; Pearce, C.; Gerwick, B.C. Synthesis and characterization of synthetic analogs of cinnacidin, a novel phytotoxin from Nectria sp. Pest. Manag. Sci. 2008, 64, 891–899. [Google Scholar] [CrossRef]
  30. Cota, B.B.; Tunes, L.G.; Maia, D.N.B.; Ramos, J.P.; Menezes de Oliveira, D.; Kohlhoff, M.; Maria de Alves, T.; Souza-Fagundes, E.M.; Campos, F.F.; Zani, C.L. Leishmanicidal compounds of Nectria pseudotrichia, an endophytic fungus isolated from the plant Caesalpinia echinata (Brazilwood). Mem. Inst. Oswaldo Cruz 2018, 113, 102–110. [Google Scholar] [CrossRef] [Green Version]
  31. Eilbert, F.; Thines, E.; Arendholz, W.R.; Sterner, O.; Anke, H. Fusarin C, (7Z)-fusarin C and (5Z)-fusarin C; inhibitors of dihydroxynaphthalene-melanin biosynthesis from Nectria coccinea (Cylindrocarpon sp.). J. Antibiot. 1997, 50, 443–445. [Google Scholar] [CrossRef] [Green Version]
  32. Wang, Y.; Ren, J.; Li, H.; Pan, Y.; Liu, X.; Che, Y.; Liu, G. The disruption of verM activates the production of gliocladiosin A and B in Clonostachys rogersoniana. Org. Biomol. Chem. 2019, 17, 6782–6785. [Google Scholar] [CrossRef] [PubMed]
  33. Zhu, S.; Ren, F.; Guo, Z.; Liu, J.; Liu, X.; Liu, G.; Che, Y. Rogersonins A and B, imidazolone N-oxide-incorporating indole alkaloids from a verG disruption mutant of Clonostachys rogersoniana. J. Nat. Prod. 2019, 82, 462–468. [Google Scholar] [CrossRef] [PubMed]
  34. Liu, X.; Chen, X.; Qian, F.; Zhu, T.; Xu, J.; Li, Y.; Zhang, L.; Jiao, B. Chlorinated phenolic sesquiterpenoids from the Arctic fungus Nectria sp. B-13. Biochem. Syst. Ecol. 2015, 59, 22–25. [Google Scholar] [CrossRef]
  35. Shibata, T.; Nakayama, O.; Tsurumi, Y.; Okuhara, M.; Terano, H.; Kohsaka, M. A new immunomodulator, FR-900483. J. Antibiot. 1988, 41, 296–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Awakawa, T.; Kaji, T.; Wakimoto, T.; Abe, I. A heptaketide naphthaldehyde produced by a polyketide synthase from Nectria haematococca. Bioorgan. Med. Chem. Lett. 2012, 22, 4338–4340. [Google Scholar] [CrossRef] [PubMed]
  37. Parisot, D.; Devys, M.; Barbier, M. 5-Deoxybostrycoidin, a new metabolite produced by the fungus Nectria haematococca (Berk. and Br.) Wr. Z. Naturforsch. B 1989, 44, 1473–1474. [Google Scholar] [CrossRef]
  38. Fu, P.; Zhou, T.; Ren, F.; Zhu, S.; Zhang, Y.; Zhuang, W.; Che, Y. Pseudonectrins A-D, heptaketides from an endophytic fungus Nectria pseudotrichia. RSC Adv. 2019, 9, 12146–12152. [Google Scholar] [CrossRef] [Green Version]
  39. Wang, X.; Gong, X.; Li, P.; Lai, D.; Zhou, L. Structural diversity and biological activities of cyclic depsipeptides from fungi. Molecules 2018, 23, 169. [Google Scholar] [CrossRef] [Green Version]
  40. Isaka, M.; Berkaew, P.; Intereya, K.; Komwijit, S.; Sathitkunanon, T. Antiplasmodial and antiviral cyclohexadepsipeptides form the endophytic fungus Pullularia sp. BCC 8613. Tetrahedron 2007, 63, 6855–6860. [Google Scholar] [CrossRef]
  41. Wang, X.; Li, Y.; Zhang, X.; Lai, D.; Zhou, L. Structural diversity and biological activities of the cyclodipeptides from fungi. Molecules 2017, 22, 2026. [Google Scholar] [CrossRef] [Green Version]
  42. Salvi, A.; Amrine, C.S.M.; Austin, J.R.; Kilpatrick, K.; Russo, A.; Lantivit, D.; Calderon-Gierszal, E.; Mattes, Z.; Pearce, C.J.; Grinstaff, M.W.; et al. Verticillin A causes apoptosis and reduces tumor burden in high-grade serous ovarian cancer by inducing DNA damage. Mol. Cancer Ther. 2020, 19, 89–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. Hill, A.M. The biosynthesis, molecular genetics and enzymology of the polyketide-derived metabolites. Nat. Prod. Rep. 2006, 23, 256–320. [Google Scholar] [CrossRef] [PubMed]
  44. Zhai, M.-M.; Qi, F.-M.; Li, J.; Jiang, C.-X.; Hou, Y.; Shi, Y.-P.; Di, D.-L.; Zhang, J.-W.; Wu, Q.-X. Isolation of secondary metabolites from the soil-derived fungus Clonostachys rosea YRS-06, a biological control agent, and evaluation of antibacterial activity. J. Agric. Food Chem. 2016, 64, 2298–2306. [Google Scholar] [CrossRef] [PubMed]
  45. Carey, S.T.; Nair, M.S.R. Metabolites of pyrenomycetes. V. identification of an antibiotic from two species of Nectria, as cephalochromin. Lloydia 1975, 38, 448–449. [Google Scholar]
  46. Hsiao, C.-J.; Hsiao, G.; Chen, W.-L.; Wang, S.-W.; Chiang, C.-P.; Liu, L.-Y.; Guh, J.-H.; Lee, T.-H.; Chung, C.-L. Cephalochromin induces G0/G1 cell cycle arrest and apoptosis in A549 human non-small-cell lung cancer cells by inflicting mitochondrial disruption. J. Nat. Prod. 2014, 77, 758–765. [Google Scholar] [CrossRef]
  47. Cui, H.; Liu, Y.Y.; Nie, Y.; Liu, Z.M.; Chen, S.H.; Zhang, Z.R.; Lu, Y.J.; He, L.; Huang, X.S.; She, Z.G. Polyketides from the mangrove-derived endophytic fungus Nectria sp. HN001 and their α-glucosidase inhibitory activity. Mar. Drugs 2016, 14, 86. [Google Scholar] [CrossRef] [Green Version]
  48. Meng, L.-H.; Chen, H.-Q.; Form, I.; Konuklugil, B.; Proksch, P.; Wang, B.-G. New chromone, isocoumarin, and indole alkaloid derivatives from three sponge-derived fungal strains. Nat. Prod. Commun. 2016, 11, 1293–1296. [Google Scholar] [CrossRef] [PubMed]
  49. Ayer, W.A.; Shewchuk, L.M. Metabolites of Nectria fuckeliana. J. Nat. Prod. 1986, 49, 847–848. [Google Scholar] [CrossRef]
  50. Ariefta, N.R.; Kristiana, P.; Aboshi, T.; Murayama, T.; Tawaraya, K.; Koseki, T.; Kurisawa, N.; Kimura, K.; Shiono, Y. New isocoumarins, naphthoquinones, and a cleistanthane-type diterpene from Nectria pseudotrichia 120-1NP. Fitoterapia 2018, 127, 356–361. [Google Scholar] [CrossRef] [PubMed]
  51. Li, W.; Li, X.-B.; Li, L.; Li, R.-J.; Lou, H.-X. α-Pyrone derivatives from the endolichenic fungus Nectria sp. Phytochem. Lett. 2015, 12, 22–26. [Google Scholar] [CrossRef]
  52. Parisot, D.; Devys, M.; Ferezou, J.P.; Barbier, M. Pigments from Nectria haematococca: Anhydrofusarubin lactone and nectriafurone. Phytochemistry 1983, 22, 1301–1303. [Google Scholar] [CrossRef]
  53. Ayers, S.; Zink, D.L.; Mohn, K.; Powell, J.S.; Brown, C.M.; Bills, G.; Grund, A.; Thompson, D.; Singh, S.B. Anthelmintic constituents of Clonostachys candelabrum. J. Antibiot. 2010, 63, 119–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Nair, M.S.; Anchel, M. Antibacterial quinone-hydroquinone pair from the ascomycete, Nectria coryli. Tetrahedron Lett. 1972, 13, 795–796. [Google Scholar] [CrossRef]
  55. Parisot, D.; Devys, M.; Barbier, M. A new deoxyfusarubin produced by the fungus Nectria haematococca. Synthesis of the two isomeric deoxyanhydronaphthopyranones from toralactone. J. Antibiot. 1992, 45, 1799–1801. [Google Scholar] [CrossRef]
  56. Parisot, D.; Devys, M.; Barbier, M. Fusarubinoic acid, a new naphthoquinone from the fungus Nectria haematococca. Phytochemistry 1988, 27, 3002–3004. [Google Scholar] [CrossRef]
  57. Carey, S.T.; Nair, M.S.R. Metabolites of Pyrenomycetes. X. Isolation of p-toluquinone and toluquinol from Nectria erubescens. J. Nat. Prod. 1979, 42, 231. [Google Scholar] [CrossRef]
  58. Supratman, U.; Suzuki, T.; Nakamura, T.; Yokoyama, Y.; Harneti, D.; Maharani, R.; Salam, S.; Abdullah, F.; Koseki, T.; Shiono, Y. New metabolites produced by endophyte Clonostachys rosea B5−2. Nat. Prod. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
  59. Grabley, S.; Hammann, P.; Thiericke, R.; Wink, J.; Philipps, S.; Zeeck, A. Secondary metabolites by chemical screening. 21. Clonostachydiol, a novel anthelmintic macrodiolide from the fungus Clonostachys cylindrospora (strain FH-A 6607). J. Antibiot. 1993, 46, 343–345. [Google Scholar] [CrossRef] [Green Version]
  60. Freinkman, E.; Oh, D.-C.; Scott, J.J.; Currie, C.R.; Clardy, C. Bionectriol A, a polyketide glycoside from the fungus Bionectria sp. associated with the fungus-growing ant, Apterostigma dentigerum. Tetrahedron Lett. 2009, 50, 6834–6837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  61. Wang, B.; You, J.; King, J.B.; Cai, S.; Park, E.; Powell, D.R.; Cichewicz, R.H. Polyketide glycosides from Bionectria ochroleuca inhibit Candida albicans biofilm formation. J. Nat. Prod. 2014, 77, 2273–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  62. Yin, T.-P.; Xing, Y.; Cai, L.; Yu, J.; Luo, P.; Ding, Z.-T. A new polyketide glycoside from the rhizospheric Clonostachys rogersoniana associated with Panax notoginseng. J. Asian Nat. Prod. Res. 2017, 19, 1258–1263. [Google Scholar] [CrossRef] [PubMed]
  63. Gutiearrez, M.; Theoduloz, C.; Rodriaguez, J.; Lolas, M.; Schmeda-Hirschmann, G. Bioactive metabolites from the fungus Nectria galligena, the main apple canker agent in chile. J. Agric. Food Chem. 2005, 53, 7701–7708. [Google Scholar] [CrossRef] [PubMed]
  64. Yu, H.-B.; Jiao, H.; Zhu, Y.-P.; Zhang, J.-P.; Lu, X.-L.; Liu, X.-Y. Bioactive metabolites from the Arctic fungus Nectria sp. B-13. J. Asian Nat. Prod. Res. 2019, 21, 961–969. [Google Scholar] [CrossRef]
  65. Ju, Y.M.; Juang, S.H.; Chen, K.J.; Lee, T.H. TMC-151 A monoacetate, a new polyketide from Bionectria ochroleuca. Z. Naturforsch. B 2007, 62, 561–564. [Google Scholar] [CrossRef]
  66. Kohno, J.; Nishio, M.; Sakurai, M.; Kawano, K.; Hiramatsu, H.; Kameda, N.; Kishi, N.; Yamashita, T.; Okuda, T.; Komatsubara, S. Isolation and structure determination of TMC-151s: Novel polyketide antibiotics from Gliocladium catenulatum Gilman & Abbott TC 1280. Tetrahedron 1999, 55, 7771–7786. [Google Scholar]
  67. Okuda, T.; Kohno, J.; Kishi, N.; Asai, Y.; Nishio, M.; Komatsubara, S. Production of TMC-151, TMC-154 and TMC-171, a new class of antibiotics, is specific to ‘Gliocladium roseum’ group. Mycoscience 2000, 41, 239–253. [Google Scholar] [CrossRef]
  68. Liu, Q.; Jiang, D.; Qi, Y.; Chen, C.; Xie, X.; Sun, L. Isolation, identification and activity analysis of antimicrobial compound from Bionectria ochroleuca strain Bo-1. Acta Phytophylacica Sin. 2014, 41, 41–44. [Google Scholar]
  69. Mao, Z.; Sun, W.; Fu, L.; Luo, H.; Lai, D.; Zhou, L. Natural dibenzo-α-pyrones and their bioactivities. Molecules 2014, 19, 5088–5108. [Google Scholar] [CrossRef]
  70. Meng, J.; Wang, X.; Xu, D.; Fu, X.; Zhang, X.; Lai, D.; Zhou, L.; Zhang, G. Sorbicillinoids from fungi and their bioactivities. Molecules 2016, 21, 715. [Google Scholar] [CrossRef]
  71. Ojima, K.; Yangchu, A.; Laksanacharoen, P.; Tasanathai, K.; Thanakitpipattana, D.; Tokuyama, H.; Isaka, M. Cordybislactone, a stereoisomer of the 14-membered bislactone clonostachydiol, form the hopper pathogenic fungus Cordyceps sp. BCC 49294: Revision of he absolute configuration of clonostachydiol. J. Antibiot. 2018, 71, 351–358. [Google Scholar] [CrossRef]
  72. Gong, T.; Zhen, X.; Li, B.-J.; Yang, J.-L.; Zhu, P. Two new monoterpenoid α-pyrones from a fungus Nectria sp. HLS206 associated with the marine sponge Gelliodes carnosa. J. Asian Nat. Prod. Res. 2015, 17, 633–637. [Google Scholar] [CrossRef]
  73. Ariefta, N.R.; Kristiana, P.; Nurjanto, H.H.; Momma, H.; Kwon, E.; Ashitani, T.; Tawaraya, K.; Murayama, T.; Koseki, T.; Furuno, H.; et al. Nectrianolins A, B, and C, new metabolites produced by endophytic fungus Nectria pseudotrichia 120-1NP. Tetrahedron Lett. 2017, 58, 4082–4086. [Google Scholar] [CrossRef]
  74. Dias, A.C.D.S.; Couzinet-Mossion, A.; Ruiz, N.; Lakhdar, F.; Etahiri, S.; Bertrand, S.; Ory, L.; Rousakis, C.; Pouchus, Y.F.; Nazih, E.-H.; et al. Steroids from marine-derived fungi: Evaluation of antiproliferative and antimicrobial activitie of eburicol. Mar. Drugs 2019, 17, 372. [Google Scholar] [CrossRef] [Green Version]
  75. Zhao, J.; Mou, Y.; Shan, T.; Li, Y.; Zhou, L.; Wang, M.; Wang, J. Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules 2010, 15, 7961–7970. [Google Scholar] [CrossRef] [Green Version]
  76. Kong, F.-D.; Huang, X.-L.; Ma, Q.-Y.; Xie, Q.-Y.; Wang, P.; Chen, P.-W.; Zhou, L.-M.; Yuan, J.-Z.; Dai, H.-F.; Luo, D.-Q. Helvolic acid derivatives with antibacterial activities against Streptococcus agalactiae from the marine-derived fungus Aspergillus fumigatus HNMF0047. J. Nat. Prod. 2018, 81, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
  77. Nishida, H.; Huang, X.-H.; Tomoda, H.; Omura, S. Glisoprenins, new inhibitors of acyl-CoA: Cholesterol acyltransferase produced by Gliocladium sp. FO-1513. II. Structure elucidation of glisoprenins A and B. J. Antibiot. 1992, 45, 1669–1676. [Google Scholar] [CrossRef] [Green Version]
  78. Sterner, O.; Thines, E.; Eilbert, F.; Anke, H. Glisoprenins C, D and E, new inhibitors of appressorium formation in Magnaporthe grisea, from cultures of Gliocladium roseum. 2. Structure determination. J. Antibiot. 1998, 51, 228–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  79. Carey, S.T.; Nair, M.S.R. Metabolites from Pyrenomycetes. VIII. Identification of three metabolites from Nectria lucida as antibiotic triprenyl phenols. Lloydia 1977, 40, 602–603. [Google Scholar]
  80. Aldridge, D.C.; Borrow, A.; Foster, R.G.; Large, M.S.; Spencer, H.; Turner, W.B. Metabolites of Nectria coccinea. J. Chem. Soc. Perkin Trans. 1 1972, 17, 2136–2141. [Google Scholar] [CrossRef]
  81. Wang, R.-S.; Gong, T.; Zhu, P.; Cheng, K.-D. Isolation of metabolic products from the fungus Nectria sp. HLS206 that is associated with the marine sponge Gelliodes carnosa collected from the South China Sea. J. Chin. Pharm. Sci. 2012, 21, 183–186. [Google Scholar] [CrossRef]
  82. Kawahara, T.; Itoh, M.; Izumikawa, M.; Sakata, N.; Tsuchida, T.; Shin-ya, K. Cytotoxic sesquiterpenoids MBJ-0009 and MBJ-0010 from a saprobic fungus Nectria sp. f26111. J. Antibiot. 2013, 66, 567–569. [Google Scholar] [CrossRef] [PubMed]
  83. Sreekanth, D.; Sushim, G.K.; Syed, A.; Khan, B.M.; Ahmad, A. Molecular and morphological characterization of a taxol-producing endophytic fungus, Gliocladium sp., from Taxus baccata. Mycobiology 2011, 39, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  84. Fex, T. Chalmicrin, a mannitol ether of methylated monocyclofarnesol, from Chalara microspora. Phytochemistry 1982, 21, 367–369. [Google Scholar] [CrossRef]
  85. Soliman, S.S.M.; Raizada, M.N. Sites of biosynthesis and storage of taxol in Taxus media (Rehder) plants: Mechanism of accumulation. Phytochemistry 2020, 175, 112369. [Google Scholar] [CrossRef] [PubMed]
  86. Flores-Bustamante, Z.R.; Rivera-Orduna, F.N.; Martinez-Cardenas, A.; Flores-Cotera, L.B. Microbial paclitaxel: Advances and perspectives. J. Antibiot. 2010, 63, 460–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  87. Yang, C.; Meng, Q.; Wang, M.; Yuan, J.; Shi, Z.; Zhang, Y.; Fu, S. Study on phenolic compounds of secondary metabolites from the fungus Gliocladium roseum CGMCC.3.3657. J. Zunyi Med. Univ. 2018, 41, 674–677. [Google Scholar]
Figure 1. Linear oligopeptides isolated from Clonostachys fungi.
Figure 1. Linear oligopeptides isolated from Clonostachys fungi.
Jof 06 00229 g001
Figure 2. Cyclopeptides isolated from Clonostachys fungi.
Figure 2. Cyclopeptides isolated from Clonostachys fungi.
Jof 06 00229 g002aJof 06 00229 g002b
Figure 3. Piperazines isolated from Clonostachys fungi.
Figure 3. Piperazines isolated from Clonostachys fungi.
Jof 06 00229 g003aJof 06 00229 g003b
Figure 4. Other nitrogen-containing metabolites isolated from Clonostachys fungi.
Figure 4. Other nitrogen-containing metabolites isolated from Clonostachys fungi.
Jof 06 00229 g004aJof 06 00229 g004b
Figure 5. Pyranones isolated from Clonostachys fungi.
Figure 5. Pyranones isolated from Clonostachys fungi.
Jof 06 00229 g005aJof 06 00229 g005b
Figure 6. Quinones isolated from Clonostachys fungi.
Figure 6. Quinones isolated from Clonostachys fungi.
Jof 06 00229 g006aJof 06 00229 g006b
Figure 7. Sorbicillinoids isolated from Clonostachys fungi.
Figure 7. Sorbicillinoids isolated from Clonostachys fungi.
Jof 06 00229 g007
Figure 8. Other polyketides isolated from Clonostachys fungi.
Figure 8. Other polyketides isolated from Clonostachys fungi.
Jof 06 00229 g008aJof 06 00229 g008b
Figure 9. Monoterpenoids isolated from Clonostachys fungi.
Figure 9. Monoterpenoids isolated from Clonostachys fungi.
Jof 06 00229 g009
Figure 10. Sesquiterpenoids isolated from Clonostachys fungi.
Figure 10. Sesquiterpenoids isolated from Clonostachys fungi.
Jof 06 00229 g010
Figure 11. Diterpenoids isolated from Clonostachys fungi.
Figure 11. Diterpenoids isolated from Clonostachys fungi.
Jof 06 00229 g011
Figure 12. Triterpenoids isolated from Clonostachys fungi.
Figure 12. Triterpenoids isolated from Clonostachys fungi.
Jof 06 00229 g012
Figure 13. Polyterpenoids isolated from Clonostachys fungi.
Figure 13. Polyterpenoids isolated from Clonostachys fungi.
Jof 06 00229 g013
Figure 14. Meroterpenoids isolated from Clonostachys fungi.
Figure 14. Meroterpenoids isolated from Clonostachys fungi.
Jof 06 00229 g014aJof 06 00229 g014b
Figure 15. Miscellaneous metabolites isolated from Clonostachys fungi.
Figure 15. Miscellaneous metabolites isolated from Clonostachys fungi.
Jof 06 00229 g015
Table 1. Nitrogen-containing metabolites in Clonostachys fungi and their biological activities.
Table 1. Nitrogen-containing metabolites in Clonostachys fungi and their biological activities.
Metabolite ClassMetabolite NameFungal SpeciesBiological ActivityRef.
Linear oligopeptidesClonostachin (1)Clonostachys sp. F5898Inhibition on platelet aggregation[2]
Bionectria sp. MSX 47401-[3]
Clonostachin B (2)Bionectria sp. MSX 47401-[3]
Pullularin F (3)Bionectria ochroleuca-[4]
CyclopeptidesArgadin (4)Clonostachys sp. FO-7314Inhibitory activity on chitinase[5]
Argifin (5)Gliocladium sp. FTD-0668Inhibitory activity on chitinase[6,7]
Arthrichitin (6)Nectria sp.-[8]
Antifungal activity on the yeasts[9]
Clonostachysin A (7)Clonostachys rogersonianaAnti-dinoflagellate activity[10]
Clonostachysin B (8)Clonostachys rogersonianaAnti-dinoflagellate activity[10]
Cyclo-(Gly-D-Leu-D-allo-Ile-L-Val-L-Val-D-Trp-β-Ala) (9)Clonostachys roseaCytotoxic activity[11]
Cyclo-(Gly-D-Leu-L-Val-L-Val-L-Val-D-Trp-β-Ala) (10)Clonostachys rosea-[11]
Cyclo-(Gly-D-Leu-D-allo-Ile-D-allo-Ile-L-Val-D-Trp-β-Ala) (11)Clonostachys rosea-[11]
Cyclosporin A (12)Nectria sp. F-4908 -[12]
Immunosuppressive and antifungal activities[13]
Cyclosporin C (13)Nectria sp. F-4908 -[12]
Immunosuppressive and antifungal activities[13]
IB-01212 (14)Clonostachys sp. ESNA-A009Cytotoxic activity[14]
Antileishmanial activity[15]
Pullularin A (15)Bionectria ochroleucaCytotoxic activity[4]
Pullularin C (16)Bionectria ochroleucaCytotoxic activity[4]
Pullularin E (17)Bionectria ochroleuca-[4]
PiperazinesBionectin A (18)Bionectria byssicola F120Antibacterial activity[16]
Bionectin B (19)Bionectria byssicola F120Antibacterial activity[16]
Bionectin C (20)Bionectria byssicola F120-[16]
Bionectin D (21)Bionectria sp. Y1085Antibacterial activity[17]
Bionectin E (22)Bionectria sp. Y1085Antibacterial activity[17]
3,6-Bis(methylthio)-cyclo(alanyltryptophyl) (23)Nectria inventaTrypanocidal activity[18]
Chaetocin (24)Nectria inventaTrypanocidal activity[18]
Chetoseminudin B (25)Nectria inventaTrypanocidal activity[18]
Clonocoprogen A (26)Clonostachys compactiuscula FKR-0021Antimalarial activity[19]
Clonocoprogen B (27)Clonostachys compactiuscula FKR-0021Antimalarial activity[19]
Clonocoprogen C (28)Clonostachys compactiuscula FKR-0021Antimalarial activity[19]
N14-Plmitoylcoprogen (29)Clonostachys compactiuscula FKR-0021Antimalarial activity[19]
Cyclo (L-Pro-L-Leu) (30)Bionectria sp. Y1085-[17]
Dioxopiperazine (31)Bionectria sp. Y1085-[17]
Gliocladicillin A (32)Bionectria sp. Y1085-[17]
Gliocladicillin C (33)Bionectria sp. Y1085Antibacterial activity[17]
Clonostachys rogersonianaCytotoxic activity[20]
Gliocladin A (34)Glicladium roseum OUPS-N132-[21]
Gliocladin B (35)Glicladium roseum OUPS-N132-[21]
Gliocladin C (36)Glicladium roseum OUPS-N132Cytotoxic activity[21]
Gliocladium roseum YMF1.00133Antinematodal activity[22]
Gliocladine A (37)Gliocladium roseum 1AAntinematodal activity[23]
Gliocladine B (38) Gliocladium roseum YMF1.00133Antinematodal activity[23]
Bionectria sp. Y1085-[17]
Gliocladine C (39)Gliocladium roseum 1AAntinematodal activity[23]
Gliocladine D (40)Gliocladium roseum 1AAntinematodal activity[23]
Gliocladine E (41)Gliocladium roseum 1AAntinematodal activity[23]
Glioclatine (42)Gliocladium roseum YMF1.00133Antinematodal activity[24]
Glioperazine (43)Gliocladium sp. OUPS-N132-[21]
Bionectria byssicola F120-[25]
Clonostachys rosea-[11]
Glioperazine B (44)Bionectria byssicola F120Antimicrobial activity[25]
Glioperazine C (45)Bionectria byssicola F120-[25]
Haematocin (46)Nectria haematococcaAntifuangl activity[26]
Lasiodipline D (47)Bionectria sp. Y1085-[17]
Sch52900 (48)Gliocladium roseum 1AAntinematodal activity[23]
Sch52901 (49)Gliocladium roseum 1AAntinematodal activity[23]
Verticillin A (50)Gliocladium roseum 1AAntinematodal activity[23]
Bionectria sp. Y1085-[17]
11′-Deoxyverticillin A (51)Gliocladium roseum 1AAntinematodal activity[23]
11,11′-Dideoxyverticillin A (52)Bionectria sp. Y1085-[17]
Verticillin B (53)Nectria inventaTrypanocidal activity [18]
Verticillin D (54)Bionectria byssicola F120-[16]
Bionectria ochroleucaCytotoxic activity[4]
Clonostachys roseaCytotoxic activity[11]
Verticillin G (55)Bionectria byssicola F120Antibacterial activity[25]
Verticillin H (56)Bionectriaceous strains MSX 64546 and MSX 59553Cytotoxic activity[27]
Other nitrogen-containing metabolitesN-Benzyl-3-phenyllactamide (57)Clonostachys compactiuscula FKR-0021-[19]
N-Benzyl-3-phenylpropanamide (58)Clonostachys compactiuscula FKR-0021-[19]
Bionectriamine A (59)Co-cultivation of Bionectria sp. with Bacillus subtilis or Streptomyceslividans-[28]
Bionectriamine B (60)Co-cultivation of Bionectria sp. with Bacillus subtilis or Streptomyceslividans-[28]
Cinnacidin (61)Nectria sp. DA060097Phytotoxic activity[29]
Clonostalactam (62)Clonostachys rosea-[11]
Cytochalasin D (63)Nectria pseudotrichiaWeak leishmanicidal activity[30]
Fusarin C (64)Nectria coccinea A56-9Antifungal activity[31]
(5Z)-Fusarin C (65)Nectria coccinea A56-9Antifungal activity[31]
(7Z)-Fusarin C (66)Nectria coccinea A56-9Antifungal activity[31]
Gliocladiosin A (67)verM disruption mutant of Clonostachys rogersonianaAntibacterial activity[32]
Gliocladiosin B (68)verM disruption mutant of Clonostachys rogersonianaAntibacterial activity[32]
Rogersonin A (69)verG disruption mutant of Clonostachys rogersoniana-[33]
Rogersonin B (70)verG disruption mutant of Clonostachys rogersoniana-[33]
Ilicicolin H (71)Nectria sp. B-13-[34]
(S)-Phenopyrrozin (72)Bionectria sp.-[28]
(S)-p-Hydroxyphenopyrrozin (73)Bionectria sp.-[28]
1,2-Dihydrophenopyrrozin (74)Bionectria sp.-[28]
1,2-Dehydrovirgineone (75)Bionectria sp. MSX 47401Antibacterial activity[3]
Virgineone (76)Bionectria sp. MSX 47401Antibacterial and antifungal activities[3]
Virgineone aglycone (77)Bionectria sp. MSX 47401Antibacterial activity[3]
Indole-3-acetic acid (78)Bionectria sp. Y1085-[17]
L-Tryptophan (79)Bionectria sp. Y1085-[17]
FR-900483 (80)Nctria lucida F-4490Immunostimulatory activity[35]
Bostrycoidin (81)Nectria haematococca-[36]
5-Deoxybostrycoidin (82)Nectria haematococca-[37]
Penicolinate A (83)Bionectria sp.Cytotoxic activity[28]
Scorpinone (84)Nectria pseudotrichia-[38]
Table 2. Polyketides in Clonostachys fungi and their biological activities.
Table 2. Polyketides in Clonostachys fungi and their biological activities.
Metabolite
Class
Metabolite NameFungal SpeciesBiological ActivityRef.
PyranonesAGI-7 (85)Bionectria sp. MSX 47401-[3]
Alternariol (86)Clonostachys rosea YRS-06-[44]
Alternariol 5-O-methyl ether (87)Clonostachys rosea YRS-06-[44]
Cephalochromin (88)Nectria viridescens-[45]
Cytotoxic activity[46]
Coniochaetone G (89)Clonostachys compactiuscula FKR-0021-[19]
Citreoisocoumarinol (90)Nectria sp. HN001Inhibitory activity on α-glucosidase[47]
12-Epicitreoisocoumarinol (91)Nectria sp. HN001-[47]
Citreoisocoumarin (92)Nectria sp. HN001Inhibitory activity on α-glucosidase[47]
6,8-Dihydroxyisocoumarin
-3-carboxylic acid (93)
Co-cultivation of Bionectria sp. with Bacillus subtilis or Streptomyceslividans-[28]
Macrocarpon C (94)Nectria sp. HN001Inhibitory activity on α-glucosidase[47]
3-(3-Chloro-2-hydroxypropyl)-8-hydroxy-6-methoxyisochromen-1-one (95)Clonostachys sp. AP4.1-[48]
Dichlorodiaportin (96)Clonostachys sp. AP4.1-[48]
Mellein (97)Nectria fuckeliana-[49]
3,4-Dimethyl-6,8-dihydroxyisocoumarin (98)Nectria pseudotrichia 120-1NP-[50]
Nectriapyrone A (99)Nectria pseudotrichia 120-1NP-[50]
Nectriapyrone B (100)Nectria pseudotrichia 120-1NP-[50]
(S)-4-Methoxy-6-pentanoyl-5,6-dihydro-2H-pyran-2-one (101)Nectria sp.-[51]
Necpyrone A (102)Nectria sp.-[51]
Necpyrone B (103)Nectria sp.-[51]
Necpyrone C (104)Nectria sp.-[51]
Necpyrone D (105)Nectria sp.-[51]
Necpyrone E (106)Nectria sp.-[51]
LL-P880α (107)Nectria sp.-[51]
LL-P880β (108)Nectria sp.-[51]
(1S, 2R)-1-Hydroxy-1-((S)-4-methoxy-6-oxo-3,6-dihydro-2H-pyran-2-yl)-pentan-2-yl acetate (109)Nectria sp.-[51]
LL-P880γ (110)Nectria sp.-[51]
PC-2 (111)Nectria sp.-[51]
QuinonesAnhydrofusarubin lactone (112)Nectria haematococca-[52]
Aurantiogliocladin (113)Clonostachys candelabrum-[53]
2,5-Dimethyoxy-3,6-dimethyl-1,4-benzoquinone (114)Nectria coryliAntibacterial activity[54]
Nectria fuckeliana-[49]
Fusarubin (115)Nectria haematococca-[36]
4-Deoxyfusarubin (116)Nectria haematococca-[55]
4-Deoxyanhydrofusarubin (117)Nectria haematococca-[55]
5-Deoxyfusarubin (118)Nectria haematococca-[55]
5-Deoxyanhydrofusarubin (119)Nectri haematococca-[55]
Fusarubinoic acid (120)Nectria haematococca-[56]
13-Hydroxynorjavanicin (121)Nectria haematococca-[56]
Herbarin (122)Nectria pseudotrichia 120-1NPAntibacterial and phytotoxic activities[50]
Nectria pseudotrichiaCytotoxic activity[38]
O-Methylherbarin (123)Nectria pseudotrichia 120-1NPCytotoxic activity[50]
Dehydroherbarin (124)Nectria pseudotrichiaCytotoxi activity[38]
2-Acetoxyl-5,7-dimethoxy-3-methyl-1,4-naphthoquinone (125)Nectria pseudotrichiaCytotoxic activity[38]
Pseudonectrin A (126)Nectria pseudotrichiaCytotoxic activity[38]
Pseudonectrin B (127)Nectria pseudotrichiaCytotoxic activity[38]
Pseudonectrin C (128)Nectria pseudotrichiaCytotoxic activity[38]
Pseudonectrin D (129)Nectria pseudotrichia-[38]
Nectriafurone (130)Nectria haematococca-[52]
Nectriaquinone A (131)Nectria pseudotrichia 120-1NPCytotoxic activity[50]
Nectriaquinone B (132)Nectria pseudotrichia 120-1NPAntibacterial and cytotoxic activities[50]
P-Toluquinone (133)Nectria erubescens-[57]
SorbicillinoidsSorbicillin (134)Clonostachys rosea YRS-06-[44]
Dihydrotrichodimer ether A (135)Clonostachys rosea YRS-06Antibacterial activity[44]
Dihydrotrichodimer ether B (136)Clonostachys rosea YRS-06Antibacterial activity[44]
Tetrahydrotrichodimer ether (137)Clonostachys rosea YRS-06-[44]
Dihydrotrichodimerol (138)Clonostachys rosea YRS-06Antibacterial activity[44]
Tetrahydrotrichodimerol (139)Clonostachys rosea YRS-06Antibacterial activity[44]
Trichodimerol (140)Clonostachys rosea YRS-06-[44]
Other polyketides3,5-Dihydroxyfuran-2(5H)-one (141)Gliocladium roseum 1A-[23]
Clonostachys rosea-[11]
Sapinofuranone B (142)Gliocladium roseum 1A-[23]
Clonostachys rosea-[11]
(-)-Vertinolide (143)Clonostachys rosea B5-2-[58]
(-)-Dihydrovertinolide (144)Clonostachys rosea B5-2Phytotoxic activity[58]
Clonostachydiol (145)Clonostachys cylindrospora FH-A 6607Anthelmintic activity[59]
Bionectriol A (146)Bionectria sp.-[60]
Bionectriol B (147)Bionectria ochroleuca-[61]
Bionectriol C (148)Bionectria ochroleucaAntifungal activity[61]
Bionectriol D (149)Bionectria ochroleuca-[61]
Rogerson A (150)Clonostachys rogersoniana-[62]
Rogerson B (151)Clonostachys rogersoniana-[62]
Nectriacid A (152)Nectria sp. HN001-[47]
Nectriacid B (153)Nectria sp. HN001Inhibitory activity on α-glucosidase[47]
Nectriacid C (154)Nectria sp. HN001Inhibitory activity on α-glucosidase[47]
Curvularin (155)Clonostachys compactiuscula FKR-0021-[19]
α,β-Dehydrocurvularin (156)Nectria glligenaCytotoxic and phytotoxic activities[63]
Nectriatone B (157)Nectria sp. B-13-[64]
Nectriatone C (158)Nectria sp. B-13-[64]
TMC-151A (159)Clonostachys rosea-[65]
Gliocladium catenulatumModerate cytotoxicity to tumor cells[66]
Bionectria ochroleuca-[67]
TMC-151B (160)Clonostachys rosea-[67]
Gliocladium catenulatumModerate cytotoxicity to tumor cells[66]
TMC-151C (161)Clonostachys rosea-[67]
Gliocladium catenulatumModerate cytotoxicity to tumor cells[66]
TMC-151D (162)Clonostachys rosea-[67]
Gliocladium catenulatumModerate cytotoxicity to tumor cells[66]
TMC-151E (163)Clonostachys rosea-[67]
Gliocladium catenulatumModerate cytotoxicity to tumor cells[66]
Bionectria ochroleucaAntifungal activity[61]
TMC-151F (164)Clonostachys rosea-[67]
Gliocladium catenulatumModerate cytotoxicity to tumor cells[66]
Bionectria ochroleucaAntifungal activity[61]
TMC-154 (165)Gliocladium roseum-[67]
TMC-171A (166)Gliocladium roseum-[67]
TMC-171B (167)Gliocladium roseum-[67]
TMC-171C (168)Gliocladium roseum-[67]
Usnic acid (169)Bionectria ochroleuca Bo-1Antibacterial activity[68]
Table 3. Terpenoids in Clonostachys fungi and their biological activities.
Table 3. Terpenoids in Clonostachys fungi and their biological activities.
Metabolite ClassMetabolite NameFungal SpeciesBiological ActivityRef.
MonoterpenoidsNectriapyrone (170)Nectria sp. HLS206-[72]
Nectriapyrone C (171)Nectria sp. HLS206-[72]
Nectriapyrone D (172)Nectria sp. HLS206-[72]
Sesquiterpenoids5,6-Dihydroxybisabolol (173)Bionectria sp. MSX 47401-[3]
Nectrianolin C (174)Nectria pseudotrichia 120-1NPCytotoxic activity[73]
10-Acetyl trichoderonic acid A (175)Nectria pseudotrichiaLeishmanicidal activity[30]
Hydroheptelidic acid (176)Nectria pseudotrichiaLeishmanicidal activity[30]
Ophioceric acid (177)Clonostachys compactiuscula FKR-0021-[19]
Xylaric acid D (178)Nectria pseudotrichia-[30]
DiterpenoidsAgathic acid (179)Bionectria sp.-[28]
Nectriatone A (180)Nectria sp. B-13Cytotoxic activity[64]
Zythiostromic acid C (181)Nectria pseudotrichia 120-1NP-[50]
TriterpentoidsEburicol (182)Clonostachys rosea MMS1090Cytotoxic activity[74]
Helvolic acid (183)Nectria sp.-[51]
Antimicrobial activity[75,76]
PolyterpenoidsGlisoprenin A (184)Gliocladium sp. FO-1513Inhibition on acyl-CoA:cholesterol acyltransferase[77]
Glisoprenin B (185)Gliocladium sp. FO-1513Inhibition on acyl-CoA:cholesterol acyltransferase[77]
Glisoprenin C (186)Gliocladium roseum HA190-95Inhibition on appressorium formation of Magnaporthe grisea[78]
Glisoprenin D (187)Gliocladium roseum HA190-95Inhibition on appressorium formation of Magnaporthe grisea[78]
Glisoprenin E (188)Gliocladium roseum HA190-95Inhibition on appressorium formation of Magnaporthe grisea[78]
Bionectin F (189)Bionectria sp. Y1085-[17]
MeroterpenoidsAscochlorin = Ilicicolin D = LL-Z 1272γ (190)Nectria lucida-[79]
Nectria sp.Antifungal activity[8]
Nectria sp. B-13-[34]
Nectria sp. B-13Cytotoxic activity[64]
Dechloroilicicolin D = Cylindrol (191)Nectria sp.Antifungal activity[8]
3-Bromoascochlorin (192)Nectria coccinea-[80]
Chloronectrin (193)Nectria coccinea-[80]
Deacetylchloronectrin (194)Nectria sp. B-13-[34]
Dechlorodihydroascochlorin = Dechloro-12,13-dihydroascochlorin = LL-Z 1272ε (195)Nectria lucida-[79]
Nectria sp. B-13-[34]
Ilicicolin C = LL-Z 1272δ (196)Nectria sp. B-13-[34]
Nectria galligenaInhibitory activity on AChE and α-glucuronidase[63]
Ilicicolin E = 8′,9′-Dehydroascochorin = Cylindrochlorin (197)Nectria sp. B-13Antibacterial activity[34]
Nectria sp.Antifungal activity[8]
Nectria sp. B-13Cytotoxic and antibacterial activities[64]
Nectria galligenaInhibitory activity on AChE and α-glucuronidase[63]
Ilicicolin F = LL-Z 1272ζ (198)Nectria sp. B-13-[34]
Nectria galligena-[63]
Nectria sp.Antifungal activity[8]
Nectrianolin A (199)Nectria pseudotrichia 120-1NPCytotoxic activity against HL60 and HeLa cells[73]
Nectrianolin B (200)Nectria pseudotrichia 120-1NPCytotoxic activity against HL60 and HeLa cells[73]
Ascofuranone (201)Nectria sp.Antifungal activity[8]
Chalmicrin (202)Nectria sp. HLS206-[81]
Colletochlorin B (203)Nectria sp. B-13-[34]
Nectria galligenaInhibitory activity on AChE and α-glucuronidase[63]
Colletorin B (204)Nectria galligena-[63]
Ilicicolin A (205)Nectria sp. B-13-[34]
Ilicicolin B = LL-Z 1272β (206)Nectria coccinea-[80]
Nectria lucida-[79]
MBJ-0009 (207)Nectria sp. f26111Cytotoxic activity[82]
MBJ-0010 (208)Nectria sp. f26111Cytotoxic activity[82]
Taxol = Paclitaxel (209)Gliocladium sp.Cytotoxicity on cancer cells[83]
Table 4. Miscellaneous metabolites in Clonostachys fungi and their biological activities.
Table 4. Miscellaneous metabolites in Clonostachys fungi and their biological activities.
Metabolite NameFungal SpeciesBiological ActivityRef.
4-Hydroxybenzoic aldehyde (210)Gliocladium roseum CGMCC 3.3657-[87]
4-Hydroxy-benzoic acid (211)Gliocladium roseum CGMCC 3.3657-[87]
3,4-Dihydroxy-benzoic acid (212)Gliocladium roseum CGMCC 3.3657-[87]
3,5-Dihydroxy-benzoic acid (213)Gliocladium roseum CGMCC 3.3657-[87]
2,5-Dimethoxy-3,6-dimethylbenzene-1,4-diol (214)Nectria coryli-[54]
3,5-Dihydroxybenzyl alcohol (215)Nectria sp. B-13-[34]
3,5-Dihydroxytoluene (216)Nectria sp. B-13-[34]
5-n-Heneicosylresorcinol (217)Gliocladium roseum YMF1.00133Antinematodal activity[22]
Toluquinol (218)Nectria erubescens-[57]
Clonostach acid A (219)Clonostachys rosea B5-2-[58]
Clonostach acid B (220)Clonostachys rosea B5-2-[58]
Clonostach acid C (221)Clonostachys rosea B5-2-[58]
2-Furoic acid (222)Bionectria sp. Y1085-[17]
5-Hydroxymethyl furoic acid (223)Bionectria sp. Y1085-[17]
2-Hydroxy-5-hydroxymethyl furan (224)Bionectria sp. Y1085-[17]
3-(R)-Piliformic acid (225)Bionectria sp.-[28]
3-(S)-Piliformic acid (226)Nectria pseudotrichiaLeishmanicidal activity[30]
6′-Acetoxy-piliformic acid (227)Nectria pseudotrichiaLeishmanicidal activity[30]
5′,6′-Dehydropiliformic acid (228)Nectria pseudotrichia-[30]
Hypocrealesate (229)Nectria sp. HLS206-[81]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Han, P.; Zhang, X.; Xu, D.; Zhang, B.; Lai, D.; Zhou, L. Metabolites from Clonostachys Fungi and Their Biological Activities. J. Fungi 2020, 6, 229. https://doi.org/10.3390/jof6040229

AMA Style

Han P, Zhang X, Xu D, Zhang B, Lai D, Zhou L. Metabolites from Clonostachys Fungi and Their Biological Activities. Journal of Fungi. 2020; 6(4):229. https://doi.org/10.3390/jof6040229

Chicago/Turabian Style

Han, Peipei, Xuping Zhang, Dan Xu, Bowen Zhang, Daowan Lai, and Ligang Zhou. 2020. "Metabolites from Clonostachys Fungi and Their Biological Activities" Journal of Fungi 6, no. 4: 229. https://doi.org/10.3390/jof6040229

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop