Selenium Biofortification of Crop Food by Beneficial Microorganisms
Abstract
1. Introduction
2. Improvement of Se Biofortification by BMOs
2.1. Arbuscular Mycorrhizal Fungi
2.2. Se Biofortification by PGPRs
3. Concluding Remarksand Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chasteen, T.G.; Bentley, R. Biomethylation of selenium and tellurium: Microorganisms and plants. Chem. Rev. 2003, 103, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Gissel-Nielsen, G.; Gupta, U.C.; Lamand, M.; Westermarck, T. Selenium in soil and plants and its importance in livestock and human nutrition. Adv. Agron. 1984, 37, 397–460. [Google Scholar]
- Gupta, U.C.; Gupta, S.C. Selenium in soils and crops, its deficiencies in livestock and humans: Implications for management. Commun. Soil Sci. Plant Anal. 2000, 31, 1791–1807. [Google Scholar] [CrossRef]
- Ylaranta, T. Sorption of selenite and selenate added in the soil. Ann. Agr. Fenn. 1983, 22, 9–39. [Google Scholar]
- Blazina, T.; Sun, Y.; Voegelin, A.; Lenz, M.; Berg, M.; Winkel, L.H.E. Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nat. Commun. 2014, 5, 4717. [Google Scholar] [CrossRef]
- Xu, G.; Wang, S.; Gu, B.; Yang, Y.; Song, H.; Xue, W.; Liang, W.; Zhang, P. Further investigation on the role of selenium deficiency in the aetiology and pathogenesis of Keshan disease. Biomed. Environ. Sci. 1997, 10, 316–326. [Google Scholar]
- Lei, C.; Niu, X.; Ma, X.; Wei, J. Is selenium deficiency really the cause of Keshan disease? Environ. Geochem. Health 2011, 33, 183–188. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, L.; Wang, W.; Li, Y.; Li, H. Environmental selenium in the Kaschin-Beck disease area, Tibetan Plateau, China. Environ. Geochem. Health 2011, 33, 495–501. [Google Scholar] [CrossRef]
- Sun, L.Y.; Yuan, L.J.; Fu, Y.; Deng, J.Y.; Wang, L.H. Prevalence of Kaschin-Beck disease among Tibetan children in Aba Tibetan and Qiang Autonomous Prefecture: A 3-year epidemiological survey. J. Pediatrics 2012, 8, 140–144. [Google Scholar] [CrossRef]
- Encio, I.; Sanmartin, C.; Palop, J.A.; Font, M.; Moreno, E.; Plano, D.; Lamberto, I. Bisacylimidoselenocarbamates cause G2/M arrest associated with the modulation of CDK1 and Chk2 in human breast cancer MCF-7 Cells. Curr. Med. Chem. 2013, 20, 1609–1619. [Google Scholar]
- Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci. 2014, 39, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Yoo, M.H.; Carlson, B.A.; Tsuji, P.A.; Tobe, R.; Naranjo-Suarez, S.; Lee, B.J.; Davis, C.D.; Gladyshev, V.N.; Hatfield, D.L. Selenoproteins harboring a split personality in both preventing and promoting cancer. In Selenium: Its Molecular Biology and Role in Human Health; Hatfield, D.L., Berry, M.J., Gladyshev, V.N., Eds.; Springer: New York, NY, USA, 2011; pp. 325–333. [Google Scholar]
- Patra, A.R.; Hajra, S.; Baral, R.; Bhattacharya, S. Use of selenium as micronutrients and for future anticancer drug: A review. Nucleus 2019. [Google Scholar] [CrossRef]
- Michalke, B. Uncovering the importance of selenium in muscle disease. In Selenium; Michalke, B., Ed.; Molecular and Integrative, Toxicology; Springer: Cham, Switzerland, 2018; pp. 345–362. [Google Scholar]
- Mocchegiani, E.; Malavolta, M. Role of zinc and selenium in oxidative stress and immunosenescence: Implications for healthy aging and longevity. In Handbook of Immunosenescence; Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G., Eds.; Springer: Cham, Switzerland, 2019; pp. 2539–2573. [Google Scholar]
- Zhang, Y. Trace elements and healthcare: A bioinformatics perspective. Adv. Exp. Med. Biol. 2017, 1005, 63. [Google Scholar] [PubMed]
- Varlamova, E.G.; Maltseva, V.N. Micronutrient selenium: Uniqueness and vital functions. Biophysics 2019, 64, 510–521. [Google Scholar] [CrossRef]
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233. [Google Scholar] [CrossRef]
- Combs, G.F. Selenium in global food systems. Br. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Fordyce, F.M. Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology; Springer: Dordrecht, The Netherlands, 2013; pp. 375–416. [Google Scholar]
- Khalid, S.; Asghar, H.N.; Akhtar, M.J.; Aslam, A.; Zahir, Z.A. Biofortification of iron in chickpea by plant growth promoting rhizobacteria. Pak. J. Bot. 2015, 47, 1191–1194. [Google Scholar]
- Kumar, A.; Patel, J.S.; Bahadur, I.; Meena, V.S. The Molecular Mechanisms of KSMs for Enhancement of Crop Production Under Organic Farming; Springer: New Delhi, India, 2016. [Google Scholar]
- Jat, L.K.; Singh, Y.V.; Meena, S.K.; Meena, S.K.; Parihar, M.; Jatav, H.S.; Meena, R.K.; Meena, V.S. Does integrated nutrient management enhance agricultural productivity? J. Pur. Appl. Microbiol. 2015, 9, 1211–1221. [Google Scholar]
- Malagoli, M.; Schiavon, M.; Dall’Acqua, S.; Pilon-Smits, E.A.H. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci. 2015, 6, 280. [Google Scholar] [CrossRef]
- Ahmad, M.; Nadeem, S.M.; Naveed, M.; Zahir, Z.A. Potassium-solubilizing bacteria and their application in agriculture. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Meena, V.S., Maurya, B.R., Verma, J.P., Meena, R.S., Eds.; Springer: New Delhi, India, 2016; pp. 293–313. [Google Scholar]
- Reeves, M.A.; Hoffmann, P.R. The human selenoproteome: Recent insights into functions and regulation. Cell. Mol. Life Sci. 2009, 66, 2457. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta 2013, 1830, 3289–3303. [Google Scholar] [CrossRef]
- Soriano-Garcia, M. Organoselenium compounds as potential therapeutic and chemopreventive agents: A review. Curr. Med. Chem. 2004, 11, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
- Abadin, Z.U.; Yasin, M.; Faisal, M. Bacterial-mediated selenium biofortification of Triticum aestivum: Strategy for improvement in selenium phytoremediation and biofortification. In Agriculturally Important Microbes for Sustainable Agriculture; Meena, V., Mishra, P., Bisht, J., Pattanayak, A., Eds.; Springer: Singapore, 2017; pp. 299–315. [Google Scholar]
- Chomchan, R.; Siripongvutikorn, S.; Puttarak, P.; Rattanapon, R. Influence of selenium bio-fortification on nutritional compositions, bioactive compounds content and anti-oxidative properties of young ricegrass (Oryza sativa L.). Funct. Foods Heal. Dis. 2017, 7, 195–209. [Google Scholar] [CrossRef]
- D’Amato, R.; Fontanella, M.C.; Falcinelli, B.; Beone, G.M.; Bravi, E.; Marconi, O.; Benincasa, P.; Businelli, D. Selenium Biofortification in Rice (Oryza sativa L.) Sprouting: Effects on Se yield and nutritional traits with focus on phenolic acid profile. J. Agric. Food Chem. 2018, 66, 4082–4090. [Google Scholar] [CrossRef]
- Yasin, M.; El-Mehdawi, A.F.; Anwar, A.; Pilon-Smits, E.A.H.; Faisal, M. Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.)—Applications in phytoremediation and biofortification. Int. J. Phytoremediation 2015, 17, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Yasin, M.; El-Mehdawi, A.F.; Pilon-Smits, E.A.H.; Faisal, M. Selenium-fortified wheat: Potential of microbes for biofortification of selenium and other essential nutrients. Int. J. Phytoremediation 2015, 17, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, G.; Patel, P.; Saraf, M. Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. South Afr. J. Bot. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Businelli, D.; D’Amato, R.; Onofri, A.; Tedeschini, E.; Tei, F. Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L. Karst) through fortification in pre-transplanting. Sci. Hortic. 2015, 197, 697–704. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Dhillon, S.K. Accumulation and distribution of selenium in some vegetable crops grown in selenate-Se treated clay loam soil. Front. Agric. China 2009, 3, 366–373. [Google Scholar] [CrossRef]
- Dil, T.; Alex, A.; Indika, M.; Clarice, C.; Pushparajah, T.; Shiv, K. Selecting lentil accessions for global selenium biofortification. Plants 2017, 6, 34. [Google Scholar]
- Bachiega, P.; Salgado, J.M.; de Carvalho, A.L.T.G.; Schwarz, K.; Tezotto, T.; Morzelle, M.C. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem. 2016, 190, 771–776. [Google Scholar] [CrossRef]
- Peng, Q.; Guo, L.; Ali, F.; Li, J.; Qin, S.; Feng, P.; Liang, D. Influence of Pak choi plant cultivation on Se distribution, speciation and bioavailability in soil. Plant Soil 2016, 403, 331–342. [Google Scholar] [CrossRef]
- Slekovec, M.; Goessier, W. Accumulation of selenium in natural plants and selenium supplemented vegetable and selenium speciation by HPLC-ICPMS. Chem. Speciat. Bioavailab. 2015, 17, 63–73. [Google Scholar] [CrossRef]
- Susana, G.M.; Fabián, P.L.; Ema, G.E.; Paola, L.M.; Julia, M.M.; Irma, D.R.; Antonio, J.M.; Erika, R.M.; Adalberto, B.M. Selenium and sulfur to produce Allium functional crops. Molecules 2017, 22, 558. [Google Scholar]
- Jing, D.-W.; Du, Z.-Y.; Ma, H.-L.; Ma, B.-Y.; Liu, F.-C.; Song, Y.-G.; Xu, Y.-F.; Li, L. Selenium enrichment, fruit quality and yield of winter jujube as affected by addition of sodium selenite. Sci. Hortic. 2017, 225, 1–5. [Google Scholar] [CrossRef]
- Nie, J.; Kuang, L.; Li, Z.; Pang, R.; Yang, L.; Chen, Q.; Li, A.; Zhao, X.; Xu, W. Selenium content of main deciduous fruits from China and its dietary exposure assessment. Sci. Agric. Sinica 2015, 48, 3015–3026. [Google Scholar]
- Sun, X.; Yi, H.; Chen, Y.; Luo, Y.; Ping, T. Effects of different concentrations of Se6+ on selenium absorption, transportation, and distribution of citrus seedlings (C. junos cv. Ziyang xiangcheng). J. Plant Nutr. 2018, 41, 168–177. [Google Scholar]
- Cominetti, C.; de Bortoli, M.C.; Garrido, A.B., Jr.; Cozzolino, S.M.F. Brazilian nut consumption improves selenium status and glutathione peroxidase activity and reduces atherogenic risk in obese women. Nutr. Res. 2012, 32, 403–407. [Google Scholar] [CrossRef]
- Ip, C.; Lisk, D.J. Bioactivity of selenium from Brazil nut for cancer prevention and selenoenzyme maintenance. Nutr. Cancer 1994, 21, 203–212. [Google Scholar] [CrossRef]
- Lima, L.W.; Stonehouse, G.C.; Walters, C.; El Mehdawi, A.F.; Fakra, S.C.; Pilon-Smits, E.A. Selenium accumulation, speciation and localization in Brazil nuts (Bertholletia excelsa H.B.K.). Plants 2019, 8, 289. [Google Scholar] [CrossRef] [PubMed]
- Kápolna, E.; Gergely, V.; Dernovics, M.; Illés, A.; Fodor, P. Fate of selenium species in sesame seeds during simulated bakery process. J. Food Eng. 2007, 79, 494–501. [Google Scholar] [CrossRef]
- Graham, L. Biofortification of cereals with foliar selenium and iodine could reduce hypothyroidism. Front. Plant Sci. 2018, 9, 730. [Google Scholar]
- Kapolna, E.; Hillestrom, P.R.; Laursen, K.H.; Husted, S.; Larsen, E.H. Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chem. 2009, 115, 1357–1363. [Google Scholar] [CrossRef]
- Ros, G.H.; van Rotterdam, A.M.D.; Bussink, D.W.; Bindraban, P.S. Selenium fertilization strategies for bio-fortification of food: An agro-ecosystem approach. Plant Soil 2016, 404, 99–112. [Google Scholar] [CrossRef]
- Xiong, L.; Li, B.; Yang, Y. Effects of foliar selenite on the nutrient components of turnip (Brassica rapa var. rapa Linn.). Front. Chem. 2018, 6, 42. [Google Scholar]
- Broadley, M.R.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; Mcgrath, S.P. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 2010, 332, 5–18. [Google Scholar] [CrossRef]
- Larsen, E.H.; Łobiński, R.; Burger-Meÿer, K.; Hansen, M.; Ruzik, L.; Mazurowska, L.; Rasmussen, P.H.; Sloth, J.J.; Scholten, O.; Kik, C. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal. Bioanal. Chem. 2006, 385, 1098–1108. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Arroyo, I.; Pickering, I.J.; Yang, S.I.; Freeman, J.L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015, 166, 603–608. [Google Scholar] [CrossRef]
- Aspila, P. History of selenium supplemented fertilization in Finland. In Proceedings of the Twenty Years of Selenium Fertilization, Helsinki, Finland, 8–9 September 2005; pp. 8–13. [Google Scholar]
- Lyons, G.H.; Lewis, J.; Lorimer, M.F.; Holloway, R.E.; Graham, R.D. High-selenium wheat: Agronomic biofortification strategies to improve human nutrition. J. Food Agric. Environ. 2004, 22, 171–178. [Google Scholar]
- Deng, X.; Zhao, Z.; Zhou, J.; Chen, J.; Lv, C.; Liu, X. Compositional analysis of typical selenium ore from Enshi and its effect on selenium enrichment in wetland and dryland crops. Plant Soil 2018, 433, 55–64. [Google Scholar] [CrossRef]
- Sura-de Jong, M.; Reynolds, R.J.B.; Richterova, K.; Musilova, L.; Staicu, L.C.; Chocholata, I.; Cappa, J.J.; Taghavi, S.; van der Lelie, D.; Frantik, T.; et al. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front. Plant Sci. 2015, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Carrino-Kyker, S.R.; Kluber, L.A.; Coyle, K.P.; Burke, D.J. Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation. Symbiosis 2017, 72, 123–133. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; Buchner, P.; Hopkins, L.; Howarth, J.R. Phosphate transporters in arbuscular myccorhizal symbiosis. In Arbuscular mycorrhzias: Physiology and Functions; Koltai, H., Kapulnik, Y., Eds.; Springer: Dordrencht, The Netherlands, 2010; pp. 117–135. [Google Scholar]
- Tatry, M.-V.; El Kassis, E.; Lambilliotte, R.; Corratgé, C.; van Aarle, I.; Amenc, L.K.; Alary, R.; Zimmermann, S.; Sentenac, H.; Plassard, C. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaste. Plant J. 2009, 57, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Fiorilli, V.; Lanfranco, L.; Bonfante, P. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta 2013, 237, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Lin, H.; Peng, X.; Xu, C.; Sun, Z.; Jian, K.; Huang, A.; Wu, X.; Tang, N. Arbuscular mycorrhizal symbiosis requires a phosphate transporter in the Gigaspora margarita fungal symbiont. Mol. Plant 2016, 9, 1583–1608. [Google Scholar] [CrossRef] [PubMed]
- Glassop, D.; Smith, S.E.; Smith, F.W. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 2005, 222, 688–698. [Google Scholar] [CrossRef]
- Loth-Pereda, V.; Orsini, E.; Courty, P.E.; Lota, F.; Martin, F. Structure and expression profile of the phosphate Pht1 transporter gene family in Mycorrhizal Populus trichocarpa. Plant Physiol. 2011, 156, 2141–2154. [Google Scholar] [CrossRef]
- Pumplin, N.; Zhang, X.; Noar, R.D.; Harrison, M.J. Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. PNAS 2012, 109, E665–E672. [Google Scholar] [CrossRef]
- Nagy, R.; Karandashov, V.; Chagué, V.; Kalinkevich, K.; Tamasloukht, M.; Xu, G.; Jakobsen, I.; Levy, A.A.; Amrhein, N.; Bucher, M. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J. 2005, 42, 236–250. [Google Scholar] [CrossRef]
- Paszkowski, U.; Kroken, S.; Roux, C.; Briggs, S.P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 2002, 99, 13324–13329. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Drijber, R.A.; Li, X.; Miller, D.N.; Wienhold, B.J. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza 2013, 23, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wen, X.; Ding, G. Ectomycorrhizal symbiosis enhances tolerance to low phosphorous through expression of phosphate transporter genes in masson pine (Pinus massoniana). Acta Physiol. Plant 2017, 39, 101. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Arbuscular mycorrhizaes. In Mycorrhizal Symbiosis, 3rd ed.; Smith, S.E., Read, D.J., Eds.; Academic Press: London, UK, 2008; pp. 13–187. [Google Scholar]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Higo, M.; Takahashi, Y.; Gunji, K.; Isobe, K. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation? Sci. Food Agric. 2018, 98, 1388–1396. [Google Scholar] [CrossRef]
- Higo, M.; Tatewaki, Y.; Gunji, K.; Kaseda, A.; Isobe, K. Cover cropping can be a stronger determinant than host crop identity for arbuscular mycorrhizal fungal communities colonizing maize and soybean. Peer J. 2019, 7, e6403. [Google Scholar] [CrossRef]
- Higo, M.; Tatewaki, Y.; Iida, K.; Yokota, K.; Isobe, K. Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems. Sci. Rep. 2020, 10, 6093. [Google Scholar] [CrossRef]
- Eah, P.-S. Se in plants. In Progress in Botany; Lüttge, U., Beyschlag, W., Eds.; Springer: Cham, Switzerland, 2015; Volume 76, pp. 93–107. [Google Scholar]
- Ellis, D.R.; Salt, D.E. Plants, selenium and human health. Curr. Opin. Plant Biol. 2003, 6, 273–279. [Google Scholar] [CrossRef]
- Sors, T.G.; Ellis, D.R.; Na, G.N.; Lahner, B.; Salt, D.E. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J. 2005, 42, 785–797. [Google Scholar] [CrossRef]
- Wessjohann, L.A.; Schneider, A.; Abbas, M.; Brandt, W. Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem. 2007, 388, 997–1006. [Google Scholar] [CrossRef]
- Chauhan, R.; Awasthi, S.; Srivastava, S.; Dwivedi, S.; Pilon-Smits, E.A.H.; Dhankher, O.P.; Tripathi, R.D. Understanding selenium metabolism in plants and its role as a beneficial element. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1937–1958. [Google Scholar] [CrossRef]
- Lauchli, A. Selenium in plants: Uptake, functions, and environmental toxicity. Bot. Acta 1993, 106, 455–468. [Google Scholar] [CrossRef]
- Lass, B.; Ullrich-Eberius, C.I. Evidence for proton/sulfate cotransport and its kinetics inLemna gibba G1. Planta 1984, 161, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.; Davidian, J.C.; Grignon, C. Sulphate/proton cotransport in plasma-membrane vesicles isolated from roots of Brassica napus L.: Increased transport in membranes isolated from sulphur-starved plants. Planta 1993, 190, 297–304. [Google Scholar] [CrossRef]
- Shibagaki, N.; Rose, A.; McDermott, J.P.; Fujiwara, T.; Hayashi, H.; Yoneyama, T.; Davies, J.P. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1:2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 2002, 29, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Inostroza-Blancheteau, C.; Reyes-Díaz, M.; Alberdi, M.; Godoy, K.; Rojas-Lillo, Y.; Cartes, P.; de la Luz Mora, M. Influence of selenite on selenium uptake, differential antioxidant performance and gene expression of sulfate transporters in wheat genotypes. Plant Soil 2013, 369, 47–59. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Mitani, N.; Yamaji, N.; Shen, R.F.; Ma, J.F. Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol. 2010, 153, 1871–1877. [Google Scholar] [CrossRef]
- Wang, M.; Yang, W.; Zhou, F.; Du, Z.; Xue, M.; Chen, T.; Liang, D. Effect of phosphate and silicate on selenite uptake and phloem-mediated transport in tomato (Solanum lycopersicum L.). Environ. Sci. Pollut. Res. 2019, 26, 20475–20484. [Google Scholar] [CrossRef]
- Li, H.F.; Mcgrath, S.P.; Zhao, F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008, 178, 92–102. [Google Scholar] [CrossRef]
- Chen, G.H.; Yan, W.; Yang, S.P.; Wang, A.; Zhu, Y.L. Overexpression of rice phosphate transporter gene OsPT2 enhances tolerance to low phosphorus stress in soybean. J. Agric. Sci. Technol. 2015, 17, 469–482. [Google Scholar]
- Zhang, L.; Hu, B.; Li, W.; Chen, R.; Deng, K.; Li, H.; Yu, F.; Ling, H.; Li, Y.; Chu, C. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol. 2014, 201, 1183–1191. [Google Scholar] [CrossRef]
- Zhang, M.; Wilson, L.; Xing, G.; Jiang, L.; Tang, S. Optimizing root architecture and increasing transporter gene expression are strategies to promote selenium uptake by high-se accumulating rice cultivar. Plant Soil 2020, 447, 319–332. [Google Scholar] [CrossRef]
- Lazard, M.; Blanquet, S.; Fisicaro, P.; Labarraque, G.; Plateau, P. Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. J. Biol. Chem. 2010, 285, 32029–32037. [Google Scholar] [CrossRef]
- Pérez-Sampietro, M.; Serra-Cardona, A.; Canadell, D.; Casas, C.; Ario, J.; Herrero, E. The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system. Sci. Rep. 2016, 6, 32836. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.R.; Rosen, B.P.; Liu, Z. Jen1p: A high affinity selenite transporter in yeast. Mol. Biol. Cell 2010, 21, 3934–3941. [Google Scholar] [CrossRef] [PubMed]
- Hopper, J.L.; Parker, D.R. Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 1999, 210, 199–207. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Zhong, J.; Qian, Y.; Zhao, Z.; Liu, X. The Positive effect of sulfur on selenium detoxification under selenite condition in wheat. Commun. Soil Sci. Plant Anal. 2017, 48, 1564–1573. [Google Scholar] [CrossRef]
- Zhang, D.; Dong, T.; Ye, J.; Hou, Z. Selenium accumulation in wheat (Triticum aestivum L.) as affected by coapplication of either selenite or selenate with phosphorus. Soil Sci. Plant Nutr. 2017, 63, 37–44. [Google Scholar] [CrossRef]
- Cabannes, E.; Buchner, P.; Broadley, M.R.; Hawkesford, M.J. A Comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus Species. Plant Physiol. 2011, 157, 2227–2239. [Google Scholar] [CrossRef]
- Hawkesford, J.M. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. J. Exp. Bot. 2000, 51, 131–138. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; Buchner, P.; Hopkins, L.; Howarth, J.R. The plant sulfate transporter family: Specialized functions and integration with whole plant nutrition. In Sulfur Transport and Assimilation in Plants: Regulation, Interaction and Signaling; Davidian, J.C., Grill, D., DeKok, L.J., Stulen, I., Hawkesford, M.J., Schnug, E., Rennenberg, H., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2003; pp. 1–10. [Google Scholar]
- Shinmachi, F.; Buchner, P.; Stroud, J.L.; Parmar, S.; Zhao, F.J.; McGrath, S.P.; Hawkesford, M.J. Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol. 2010, 153, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, M.; Tolosano, M.; Volpe, V.; Kopriva, S.; Bonfante, P. Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol. 2014, 204, 609–619. [Google Scholar] [CrossRef]
- Luo, W.; Li, J.; Ma, X.; Niu, H.; Hou, S.; Wu, F. Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat. Plant Soil 2019, 438, 71–83. [Google Scholar] [CrossRef]
- Sanmartín, C.; Garmendia, I.; Romano, B.; Díaz, M.; Palop, J.A.; Goicoechea, N. Mycorrhizal inoculation affected growth, mineral composition, proteins and sugars in lettuces biofortified with organic or inorganic selenocompounds. Sci. Hortic. 2014, 180, 40–51. [Google Scholar] [CrossRef]
- Conversa, G.; Lazzizera, C.; Chiaravalle, A.E.; Miedico, O.; Bonasia, A.; La Rotonda, P.; Elia, A. Selenium fern application and arbuscular mycorrhizal fungi soil inoculation enhance Se content and antioxidant properties of green asparagus (Asparagus officinalis L.) spears. Sci. Hortic. 2019, 252, 176–191. [Google Scholar] [CrossRef]
- Goicoechea, N.; Garmendia, I.; Fabbrin, E.G.; Bettoni, M.M.; Palop, J.A.; Sanmartín, C. Selenium fertilization and mycorrhizal technology may interfere in enhancing bioactive compounds in edible tissues of lettuces. Sci. Hortic. 2015, 195, 163–172. [Google Scholar] [CrossRef]
- Durán, P.; Acuña, J.J.; Jorquera, M.A.; Azcón, R.; Mora, M.L. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. J. Cereal Sci. 2013, 57, 275–280. [Google Scholar] [CrossRef]
- Patharajan, S.; Raaman, N. Influence of arbuscular mycorrhizal fungi on growth and selenium uptake by garlic plants. Arch. Phytopathol. Plant Prot. 2012, 45, 138–151. [Google Scholar] [CrossRef]
- Munier-Lamy, C.; Deneux-Mustin, S.; Mustin, C.; Merlet, D.; Berthelin, J.; Leyval, C. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. J. Environ. Radioact. 2007, 97, 148–158. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, S.; Wen, B.; Huang, H.; Luo, L. Accumulation and Speciation of Selenium in Plants as Affected by Arbuscular Mycorrhizal Fungus Glomus mosseae. Biol. Trace Elem. Res. 2011, 143, 1789–1798. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Zamana, S.; Seredin, T.; Poluboyarinov, P.A.; Sokolov, S.; Baranova, H.; Krivenkov, L.; Pietrantonio, L.; Caruso, G. Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plants 2019, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Lindblom, S.D.; Valdez-Barillas, J.R.; Fakra, S.C.; Marcus, M.A.; Pilon-Smits, E.A.H. Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ. Exp. Bot. 2013, 88, 33–42. [Google Scholar] [CrossRef]
- Lei, X.; Yao, S.; Zu, X.; Huang, Z.; Liu, L.; Zhong, M.; Zhu, B.; Tang, S.; Liao, D. Apoptosis induced by diallyl disulfide in human breast cancer cell line MCF-7. Acta Pharm. Sin. 2008, 29, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.S.; Kok, L.F.; Lin, Y.H.; Kuo, T.C.; Chung, J.G. Diallyl disulfide inhibits WEHI-3 leukemia cells in vivo. Anticancer Res. 2006, 26, 219–225. [Google Scholar] [PubMed]
- Suangtamai, T.; Tanyong, D.I. Diallyl disulfide induces apoptosis and autophagy via mTOR pathway in myeloid leukemic cell line. Tumor Biol. 2016, 37, 10993–10999. [Google Scholar] [CrossRef]
- Nicolle, C.; Cardinault, N.; Gueux, E.; Jaffrelo, L.; Rock, E.; Mazur, A.; Amouroux, P.; Rémésy, C. Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr. 2004, 23, 605–614. [Google Scholar] [CrossRef]
- Serafini, M.; Bugianesi, R.; Salucci, M.; Azzini, E.; Maiani, G. Effect of acute ingestion of fresh and stored lettuce (Latuca sativa) on plasma total antioxidant capacity and antioxidant levels in human subjects. Br. J. Nutr. 2003, 88, 615–623. [Google Scholar] [CrossRef]
- Llorach, R.; Martínez-Sánchez, A.; Tomás-Barberán, F.A.; Gil, M.I.; Ferreres, F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008, 108, 1028–1038. [Google Scholar] [CrossRef]
- Slejkovec, Z.; Elteren, J.T.V.; Woroniecka, U.D.; Kroon, K.J.; Byrne, A.R. Preliminary study on the determination of selenium compounds in some selenium-accumulating mushrooms. Biol. Trace Elem. Res. 2000, 75, 139–155. [Google Scholar] [CrossRef]
- Stijve, T.; Noorloos, T.; Byrne, A.R.; Šlejkovec, Z.; Goessler, W.T. High selenium levels in edible Albatrellus mushroom. Deut Lebens-Rundsch 1998, 94, 275–279. [Google Scholar]
- Borovička, J.; Řanda, Z. Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol. Prog. 2007, 6, 249–259. [Google Scholar] [CrossRef]
- Etesami, H.; Maheshwari, D.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 156, 225–246. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, R.Z.; Reddy, M.S.; Antonius, S. Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture; Springer: Singapore, 2019. [Google Scholar]
- Sapre, S.; Gontia-Mishra, I.; Tiwari, S. ACC Deaminase-Producing Bacteria: A Key Player in Alleviating Abiotic Stresses in Plants; Springer: Singapore, 2019. [Google Scholar]
- Etesami, H.; Adl, S.M. Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. In Phyto-Microbiome in Stress Regulation; Kumar, M., Kumar, V., Prasad, R., Eds.; Environmental and Microbial Biotechnology; Springer: Singapore, 2020; pp. 147–203. [Google Scholar]
- Cartes, P.; Gianfreda, L.; Mora, M.L. Uptake of Selenium and its Antioxidant Activity in Ryegrass When Applied as Selenate and Selenite Forms. Plant Soil 2005, 276, 359–367. [Google Scholar] [CrossRef]
- Mora, M.D.L.L.; Pinilla, L.; Rosas, A.; Cartes, P. Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant Soil 2008, 303, 139–149. [Google Scholar] [CrossRef]
- Nakamaru, Y.M.; Altansuvd, J. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere 2014, 111, 366–371. [Google Scholar] [CrossRef]
- Yli-Halla, M. Influence of Se fertilization on soil Se status. In Proceedings of the Twenty Years of Se Fertilization, Helsinki, Finland, 8–9 September 2005; pp. 25–32. [Google Scholar]
- Durán, P.; Acuña, J.J.; Gianfreda, L.; Azcón, R.; Funes-Collado, V.; Mora, M.L. Endophytic selenobacteria as new inocula for selenium biofortification. Appl. Soil Ecol. 2015, 96, 319–326. [Google Scholar] [CrossRef]
- Acuña, J.J.; Jorquera, M.A.; Barra, P.J.; Crowley, D.E.; María, D.L.L.M. Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol. Fertil. Soils 2013, 49, 175–185. [Google Scholar] [CrossRef]
- Artursson, V.; Finlay, R.D.; Jansson, J.K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 2006, 8, 1–10. [Google Scholar] [CrossRef]
- Barea, J.; Pozo, M.; Azcón, R.; Azcón-Aguilar, C. Microbial co-operation in the rhizosphere. J. Exp. Bot. 2005, 56, 1761–1778. [Google Scholar] [CrossRef]
- Marschner, P.; Baumann, K. Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant Soil 2003, 251, 279–289. [Google Scholar] [CrossRef]
- Hrynkiewicz, K.; Ciesielska, A.; Haug, I.; Baum, C. Ectomycorrhiza formation and willow growth promotion as affected by associated bacteria: Role of microbial metabolites and use of C sources. Biol. Fertil. Soils 2010, 46, 139–150. [Google Scholar] [CrossRef]
- Alford, É.; Lindblom, S.; Pittarello, M.; Freeman, J.; Fakra, S.; Marcus, M.; Broeckling, C.; Pilon-Smits, E.; Paschke, M. Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae). Am. J. Bot. 2014, 101, 1895–1905. [Google Scholar] [CrossRef] [PubMed]
- Durán, P.; Acuña, J.J.; Jorquera, M.A.; Azcón, R.; Paredes, C.; Rengel, Z.; Mora, M.D.L.L. Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification andGaeumannomyces graminisbiocontrol in wheat production. Biol. Fertil. Soils 2014, 50, 983–990. [Google Scholar] [CrossRef]
- Rana, A.; Joshi, M.; Prasanna, R.; Shivay, Y.S.; Nain, L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur. J. Soil Biol. 2012, 50, 118–126. [Google Scholar] [CrossRef]
- Jianfei, W.; Cheng, Z.; Xin, X.; Yue, X.; Lin, Z.; Zhongyou, M. Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06). Appl. Sci. 2017, 7, 85. [Google Scholar]
- Lampis, S.; Ferrari, A.; Cunhaqueda, A.C.; Alvarenga, P.; Di, G.S.; Vallini, G. Selenite resistant rhizobacteria stimulate SeO(3) (2−) phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds. Environ. Sci. Pollut. Res. Int. 2009, 16, 663. [Google Scholar] [CrossRef]
- Souza, M.P.D.; Huang, C.P.A.; Chee, N.; Terry, N. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 1999, 209, 259–263. [Google Scholar] [CrossRef]
- Souza, M.P.D.; Chu, D.; Zhao, M.; Zayed, A.M.; Ruzin, S.E.; Terry, S.N. Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol. 1999, 119, 565–573. [Google Scholar] [CrossRef]
- Patel, P.J.; Trivedi, G.R.; Shah, R.K.; Saraf, M. Selenorhizobacteria: As biofortification tool in sustainable agriculture. Biocatal. Agric. Biotechnol. 2018, 14, 198–203. [Google Scholar] [CrossRef]
Microbes | Microbial Types | Host Plants | References |
---|---|---|---|
Funneliformis mosseae | AMF | Triticum aestivum, Lactuca sativa, Asparagus officinalis, | [105,106,107,108] |
Glomus claroideum | AMF | Triticum aestivum | [109] |
Glomus fasciculatum | AMF | Allium sativum | [110] |
Glomus irtraradices | AMF | Allium sativum | [55] |
Glomus mosseae | AMF | Lolium perenne, Allium sativum, Medicago sativa, Glycine max, Zea mays | [110,111,112] |
Glomus versiform | AMF | Triticum aestivum | [105] |
Rhizophagus intraradices | AMF | Lactuca sativa, Asparagus officinalis, Lactuca sativa, Allium cepa | [106,107,108,113] |
Alternaria seleniiphila | REF | Stanleya pinnata | [114] |
Alternaria astragali | REF | Astragalus bisulcatus | [114] |
Aspergillus leporis | REF | Stanleya pinnata | [114] |
Fusarium acuminatum | REF | Astragalus racemosus | [114] |
Trichoderma harzianum | REF | Allium cepa | [106] |
Microbes | Host Plants | References |
---|---|---|
Acinetobacters sp. E6.2 | - | [132] |
Acinetobater sp. | Triticum aestivum | [139] |
Alcaligenes faecalis | Ricinus communis, Glycine max | [35] |
Anabaena sp. | Triticum aestivum | [30,140] |
Bacillus amyloliquefaciens | Arabidopsis thaliana | [141] |
Bacillus axarquiens | Triticum aestivum | [139] |
Bacillus cereus | Triticum aestivum | [34] |
Bacillus licheniformis | Triticum aestivum | [34] |
Bacillus mycoides | Brassica juncea | [142] |
Bacillus pichinotyi | Triticum aestivum | [33] |
Bacillus sp. E5 | - | [132] |
Bacillus sp. E6.1 | Triticum aestivum | [139] |
Bacillus sp. R12 | Triticum aestivum | [109] |
Bacillus subtilis | Allium cepa | [113] |
Calothrix sp. | Triticum aestivum | [30,140] |
Enterobacter ludwigii | Triticum aestivum | [139] |
Enterobacter sp. B16 | Triticum aestivum | [109] |
Klebsiella oxytoca | Triticum aestivum | [139] |
Paraburkholderia megapolitana | Ricinus communis, Glycine max | [35] |
Providencia sp. | Triticum aestivum | [30,140] |
Pseudomnas sp. R8 | Triticum aestivum | [109,133] |
Rhizobium sp. | Astragalus bisulcatus, A. drummondii | [138] |
Rhizosphere bacteria | Scirpus robustus, Polypogon monspeliensis | [143] |
Se-tolerant bacteria | Brassica juncea | [144] |
Stenotrophomonas maltophilia | Ricinus communis, Glycine max, Brassica juncea | [35,142] |
Stenotrophomonas sp. B19 | Triticum aestivum | [109,133] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Qu, J.; Pu, Y.; Rao, S.; Xu, F.; Wu, C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J. Fungi 2020, 6, 59. https://doi.org/10.3390/jof6020059
Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. Journal of Fungi. 2020; 6(2):59. https://doi.org/10.3390/jof6020059
Chicago/Turabian StyleYe, Yuanming, Jingwang Qu, Yao Pu, Shen Rao, Feng Xu, and Chu Wu. 2020. "Selenium Biofortification of Crop Food by Beneficial Microorganisms" Journal of Fungi 6, no. 2: 59. https://doi.org/10.3390/jof6020059
APA StyleYe, Y., Qu, J., Pu, Y., Rao, S., Xu, F., & Wu, C. (2020). Selenium Biofortification of Crop Food by Beneficial Microorganisms. Journal of Fungi, 6(2), 59. https://doi.org/10.3390/jof6020059