Selenium Biofortification of Crop Food by Beneficial Microorganisms
Abstract
:1. Introduction
2. Improvement of Se Biofortification by BMOs
2.1. Arbuscular Mycorrhizal Fungi
2.2. Se Biofortification by PGPRs
3. Concluding Remarksand Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chasteen, T.G.; Bentley, R. Biomethylation of selenium and tellurium: Microorganisms and plants. Chem. Rev. 2003, 103, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Gissel-Nielsen, G.; Gupta, U.C.; Lamand, M.; Westermarck, T. Selenium in soil and plants and its importance in livestock and human nutrition. Adv. Agron. 1984, 37, 397–460. [Google Scholar]
- Gupta, U.C.; Gupta, S.C. Selenium in soils and crops, its deficiencies in livestock and humans: Implications for management. Commun. Soil Sci. Plant Anal. 2000, 31, 1791–1807. [Google Scholar] [CrossRef]
- Ylaranta, T. Sorption of selenite and selenate added in the soil. Ann. Agr. Fenn. 1983, 22, 9–39. [Google Scholar]
- Blazina, T.; Sun, Y.; Voegelin, A.; Lenz, M.; Berg, M.; Winkel, L.H.E. Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nat. Commun. 2014, 5, 4717. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Wang, S.; Gu, B.; Yang, Y.; Song, H.; Xue, W.; Liang, W.; Zhang, P. Further investigation on the role of selenium deficiency in the aetiology and pathogenesis of Keshan disease. Biomed. Environ. Sci. 1997, 10, 316–326. [Google Scholar]
- Lei, C.; Niu, X.; Ma, X.; Wei, J. Is selenium deficiency really the cause of Keshan disease? Environ. Geochem. Health 2011, 33, 183–188. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, L.; Wang, W.; Li, Y.; Li, H. Environmental selenium in the Kaschin-Beck disease area, Tibetan Plateau, China. Environ. Geochem. Health 2011, 33, 495–501. [Google Scholar] [CrossRef]
- Sun, L.Y.; Yuan, L.J.; Fu, Y.; Deng, J.Y.; Wang, L.H. Prevalence of Kaschin-Beck disease among Tibetan children in Aba Tibetan and Qiang Autonomous Prefecture: A 3-year epidemiological survey. J. Pediatrics 2012, 8, 140–144. [Google Scholar] [CrossRef]
- Encio, I.; Sanmartin, C.; Palop, J.A.; Font, M.; Moreno, E.; Plano, D.; Lamberto, I. Bisacylimidoselenocarbamates cause G2/M arrest associated with the modulation of CDK1 and Chk2 in human breast cancer MCF-7 Cells. Curr. Med. Chem. 2013, 20, 1609–1619. [Google Scholar]
- Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci. 2014, 39, 112–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, M.H.; Carlson, B.A.; Tsuji, P.A.; Tobe, R.; Naranjo-Suarez, S.; Lee, B.J.; Davis, C.D.; Gladyshev, V.N.; Hatfield, D.L. Selenoproteins harboring a split personality in both preventing and promoting cancer. In Selenium: Its Molecular Biology and Role in Human Health; Hatfield, D.L., Berry, M.J., Gladyshev, V.N., Eds.; Springer: New York, NY, USA, 2011; pp. 325–333. [Google Scholar]
- Patra, A.R.; Hajra, S.; Baral, R.; Bhattacharya, S. Use of selenium as micronutrients and for future anticancer drug: A review. Nucleus 2019. [Google Scholar] [CrossRef]
- Michalke, B. Uncovering the importance of selenium in muscle disease. In Selenium; Michalke, B., Ed.; Molecular and Integrative, Toxicology; Springer: Cham, Switzerland, 2018; pp. 345–362. [Google Scholar]
- Mocchegiani, E.; Malavolta, M. Role of zinc and selenium in oxidative stress and immunosenescence: Implications for healthy aging and longevity. In Handbook of Immunosenescence; Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G., Eds.; Springer: Cham, Switzerland, 2019; pp. 2539–2573. [Google Scholar]
- Zhang, Y. Trace elements and healthcare: A bioinformatics perspective. Adv. Exp. Med. Biol. 2017, 1005, 63. [Google Scholar] [PubMed]
- Varlamova, E.G.; Maltseva, V.N. Micronutrient selenium: Uniqueness and vital functions. Biophysics 2019, 64, 510–521. [Google Scholar] [CrossRef]
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233. [Google Scholar] [CrossRef] [Green Version]
- Combs, G.F. Selenium in global food systems. Br. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef] [Green Version]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Fordyce, F.M. Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology; Springer: Dordrecht, The Netherlands, 2013; pp. 375–416. [Google Scholar]
- Khalid, S.; Asghar, H.N.; Akhtar, M.J.; Aslam, A.; Zahir, Z.A. Biofortification of iron in chickpea by plant growth promoting rhizobacteria. Pak. J. Bot. 2015, 47, 1191–1194. [Google Scholar]
- Kumar, A.; Patel, J.S.; Bahadur, I.; Meena, V.S. The Molecular Mechanisms of KSMs for Enhancement of Crop Production Under Organic Farming; Springer: New Delhi, India, 2016. [Google Scholar]
- Jat, L.K.; Singh, Y.V.; Meena, S.K.; Meena, S.K.; Parihar, M.; Jatav, H.S.; Meena, R.K.; Meena, V.S. Does integrated nutrient management enhance agricultural productivity? J. Pur. Appl. Microbiol. 2015, 9, 1211–1221. [Google Scholar]
- Malagoli, M.; Schiavon, M.; Dall’Acqua, S.; Pilon-Smits, E.A.H. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci. 2015, 6, 280. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Nadeem, S.M.; Naveed, M.; Zahir, Z.A. Potassium-solubilizing bacteria and their application in agriculture. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Meena, V.S., Maurya, B.R., Verma, J.P., Meena, R.S., Eds.; Springer: New Delhi, India, 2016; pp. 293–313. [Google Scholar]
- Reeves, M.A.; Hoffmann, P.R. The human selenoproteome: Recent insights into functions and regulation. Cell. Mol. Life Sci. 2009, 66, 2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta 2013, 1830, 3289–3303. [Google Scholar] [CrossRef]
- Soriano-Garcia, M. Organoselenium compounds as potential therapeutic and chemopreventive agents: A review. Curr. Med. Chem. 2004, 11, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
- Abadin, Z.U.; Yasin, M.; Faisal, M. Bacterial-mediated selenium biofortification of Triticum aestivum: Strategy for improvement in selenium phytoremediation and biofortification. In Agriculturally Important Microbes for Sustainable Agriculture; Meena, V., Mishra, P., Bisht, J., Pattanayak, A., Eds.; Springer: Singapore, 2017; pp. 299–315. [Google Scholar]
- Chomchan, R.; Siripongvutikorn, S.; Puttarak, P.; Rattanapon, R. Influence of selenium bio-fortification on nutritional compositions, bioactive compounds content and anti-oxidative properties of young ricegrass (Oryza sativa L.). Funct. Foods Heal. Dis. 2017, 7, 195–209. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, R.; Fontanella, M.C.; Falcinelli, B.; Beone, G.M.; Bravi, E.; Marconi, O.; Benincasa, P.; Businelli, D. Selenium Biofortification in Rice (Oryza sativa L.) Sprouting: Effects on Se yield and nutritional traits with focus on phenolic acid profile. J. Agric. Food Chem. 2018, 66, 4082–4090. [Google Scholar] [CrossRef]
- Yasin, M.; El-Mehdawi, A.F.; Anwar, A.; Pilon-Smits, E.A.H.; Faisal, M. Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.)—Applications in phytoremediation and biofortification. Int. J. Phytoremediation 2015, 17, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Yasin, M.; El-Mehdawi, A.F.; Pilon-Smits, E.A.H.; Faisal, M. Selenium-fortified wheat: Potential of microbes for biofortification of selenium and other essential nutrients. Int. J. Phytoremediation 2015, 17, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, G.; Patel, P.; Saraf, M. Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. South Afr. J. Bot. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Businelli, D.; D’Amato, R.; Onofri, A.; Tedeschini, E.; Tei, F. Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L. Karst) through fortification in pre-transplanting. Sci. Hortic. 2015, 197, 697–704. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Dhillon, S.K. Accumulation and distribution of selenium in some vegetable crops grown in selenate-Se treated clay loam soil. Front. Agric. China 2009, 3, 366–373. [Google Scholar] [CrossRef]
- Dil, T.; Alex, A.; Indika, M.; Clarice, C.; Pushparajah, T.; Shiv, K. Selecting lentil accessions for global selenium biofortification. Plants 2017, 6, 34. [Google Scholar]
- Bachiega, P.; Salgado, J.M.; de Carvalho, A.L.T.G.; Schwarz, K.; Tezotto, T.; Morzelle, M.C. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem. 2016, 190, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Guo, L.; Ali, F.; Li, J.; Qin, S.; Feng, P.; Liang, D. Influence of Pak choi plant cultivation on Se distribution, speciation and bioavailability in soil. Plant Soil 2016, 403, 331–342. [Google Scholar] [CrossRef]
- Slekovec, M.; Goessier, W. Accumulation of selenium in natural plants and selenium supplemented vegetable and selenium speciation by HPLC-ICPMS. Chem. Speciat. Bioavailab. 2015, 17, 63–73. [Google Scholar] [CrossRef]
- Susana, G.M.; Fabián, P.L.; Ema, G.E.; Paola, L.M.; Julia, M.M.; Irma, D.R.; Antonio, J.M.; Erika, R.M.; Adalberto, B.M. Selenium and sulfur to produce Allium functional crops. Molecules 2017, 22, 558. [Google Scholar]
- Jing, D.-W.; Du, Z.-Y.; Ma, H.-L.; Ma, B.-Y.; Liu, F.-C.; Song, Y.-G.; Xu, Y.-F.; Li, L. Selenium enrichment, fruit quality and yield of winter jujube as affected by addition of sodium selenite. Sci. Hortic. 2017, 225, 1–5. [Google Scholar] [CrossRef]
- Nie, J.; Kuang, L.; Li, Z.; Pang, R.; Yang, L.; Chen, Q.; Li, A.; Zhao, X.; Xu, W. Selenium content of main deciduous fruits from China and its dietary exposure assessment. Sci. Agric. Sinica 2015, 48, 3015–3026. [Google Scholar]
- Sun, X.; Yi, H.; Chen, Y.; Luo, Y.; Ping, T. Effects of different concentrations of Se6+ on selenium absorption, transportation, and distribution of citrus seedlings (C. junos cv. Ziyang xiangcheng). J. Plant Nutr. 2018, 41, 168–177. [Google Scholar]
- Cominetti, C.; de Bortoli, M.C.; Garrido, A.B., Jr.; Cozzolino, S.M.F. Brazilian nut consumption improves selenium status and glutathione peroxidase activity and reduces atherogenic risk in obese women. Nutr. Res. 2012, 32, 403–407. [Google Scholar] [CrossRef]
- Ip, C.; Lisk, D.J. Bioactivity of selenium from Brazil nut for cancer prevention and selenoenzyme maintenance. Nutr. Cancer 1994, 21, 203–212. [Google Scholar] [CrossRef]
- Lima, L.W.; Stonehouse, G.C.; Walters, C.; El Mehdawi, A.F.; Fakra, S.C.; Pilon-Smits, E.A. Selenium accumulation, speciation and localization in Brazil nuts (Bertholletia excelsa H.B.K.). Plants 2019, 8, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kápolna, E.; Gergely, V.; Dernovics, M.; Illés, A.; Fodor, P. Fate of selenium species in sesame seeds during simulated bakery process. J. Food Eng. 2007, 79, 494–501. [Google Scholar] [CrossRef]
- Graham, L. Biofortification of cereals with foliar selenium and iodine could reduce hypothyroidism. Front. Plant Sci. 2018, 9, 730. [Google Scholar]
- Kapolna, E.; Hillestrom, P.R.; Laursen, K.H.; Husted, S.; Larsen, E.H. Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chem. 2009, 115, 1357–1363. [Google Scholar] [CrossRef]
- Ros, G.H.; van Rotterdam, A.M.D.; Bussink, D.W.; Bindraban, P.S. Selenium fertilization strategies for bio-fortification of food: An agro-ecosystem approach. Plant Soil 2016, 404, 99–112. [Google Scholar] [CrossRef]
- Xiong, L.; Li, B.; Yang, Y. Effects of foliar selenite on the nutrient components of turnip (Brassica rapa var. rapa Linn.). Front. Chem. 2018, 6, 42. [Google Scholar]
- Broadley, M.R.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; Mcgrath, S.P. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 2010, 332, 5–18. [Google Scholar] [CrossRef]
- Larsen, E.H.; Łobiński, R.; Burger-Meÿer, K.; Hansen, M.; Ruzik, L.; Mazurowska, L.; Rasmussen, P.H.; Sloth, J.J.; Scholten, O.; Kik, C. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal. Bioanal. Chem. 2006, 385, 1098–1108. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Arroyo, I.; Pickering, I.J.; Yang, S.I.; Freeman, J.L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015, 166, 603–608. [Google Scholar] [CrossRef]
- Aspila, P. History of selenium supplemented fertilization in Finland. In Proceedings of the Twenty Years of Selenium Fertilization, Helsinki, Finland, 8–9 September 2005; pp. 8–13. [Google Scholar]
- Lyons, G.H.; Lewis, J.; Lorimer, M.F.; Holloway, R.E.; Graham, R.D. High-selenium wheat: Agronomic biofortification strategies to improve human nutrition. J. Food Agric. Environ. 2004, 22, 171–178. [Google Scholar]
- Deng, X.; Zhao, Z.; Zhou, J.; Chen, J.; Lv, C.; Liu, X. Compositional analysis of typical selenium ore from Enshi and its effect on selenium enrichment in wetland and dryland crops. Plant Soil 2018, 433, 55–64. [Google Scholar] [CrossRef]
- Sura-de Jong, M.; Reynolds, R.J.B.; Richterova, K.; Musilova, L.; Staicu, L.C.; Chocholata, I.; Cappa, J.J.; Taghavi, S.; van der Lelie, D.; Frantik, T.; et al. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front. Plant Sci. 2015, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Carrino-Kyker, S.R.; Kluber, L.A.; Coyle, K.P.; Burke, D.J. Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation. Symbiosis 2017, 72, 123–133. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; Buchner, P.; Hopkins, L.; Howarth, J.R. Phosphate transporters in arbuscular myccorhizal symbiosis. In Arbuscular mycorrhzias: Physiology and Functions; Koltai, H., Kapulnik, Y., Eds.; Springer: Dordrencht, The Netherlands, 2010; pp. 117–135. [Google Scholar]
- Tatry, M.-V.; El Kassis, E.; Lambilliotte, R.; Corratgé, C.; van Aarle, I.; Amenc, L.K.; Alary, R.; Zimmermann, S.; Sentenac, H.; Plassard, C. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaste. Plant J. 2009, 57, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Fiorilli, V.; Lanfranco, L.; Bonfante, P. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta 2013, 237, 1267–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Lin, H.; Peng, X.; Xu, C.; Sun, Z.; Jian, K.; Huang, A.; Wu, X.; Tang, N. Arbuscular mycorrhizal symbiosis requires a phosphate transporter in the Gigaspora margarita fungal symbiont. Mol. Plant 2016, 9, 1583–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glassop, D.; Smith, S.E.; Smith, F.W. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 2005, 222, 688–698. [Google Scholar] [CrossRef]
- Loth-Pereda, V.; Orsini, E.; Courty, P.E.; Lota, F.; Martin, F. Structure and expression profile of the phosphate Pht1 transporter gene family in Mycorrhizal Populus trichocarpa. Plant Physiol. 2011, 156, 2141–2154. [Google Scholar] [CrossRef] [Green Version]
- Pumplin, N.; Zhang, X.; Noar, R.D.; Harrison, M.J. Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. PNAS 2012, 109, E665–E672. [Google Scholar] [CrossRef] [Green Version]
- Nagy, R.; Karandashov, V.; Chagué, V.; Kalinkevich, K.; Tamasloukht, M.; Xu, G.; Jakobsen, I.; Levy, A.A.; Amrhein, N.; Bucher, M. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J. 2005, 42, 236–250. [Google Scholar] [CrossRef]
- Paszkowski, U.; Kroken, S.; Roux, C.; Briggs, S.P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 2002, 99, 13324–13329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Drijber, R.A.; Li, X.; Miller, D.N.; Wienhold, B.J. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza 2013, 23, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Wen, X.; Ding, G. Ectomycorrhizal symbiosis enhances tolerance to low phosphorous through expression of phosphate transporter genes in masson pine (Pinus massoniana). Acta Physiol. Plant 2017, 39, 101. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Arbuscular mycorrhizaes. In Mycorrhizal Symbiosis, 3rd ed.; Smith, S.E., Read, D.J., Eds.; Academic Press: London, UK, 2008; pp. 13–187. [Google Scholar]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higo, M.; Takahashi, Y.; Gunji, K.; Isobe, K. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation? Sci. Food Agric. 2018, 98, 1388–1396. [Google Scholar] [CrossRef]
- Higo, M.; Tatewaki, Y.; Gunji, K.; Kaseda, A.; Isobe, K. Cover cropping can be a stronger determinant than host crop identity for arbuscular mycorrhizal fungal communities colonizing maize and soybean. Peer J. 2019, 7, e6403. [Google Scholar] [CrossRef]
- Higo, M.; Tatewaki, Y.; Iida, K.; Yokota, K.; Isobe, K. Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems. Sci. Rep. 2020, 10, 6093. [Google Scholar] [CrossRef] [Green Version]
- Eah, P.-S. Se in plants. In Progress in Botany; Lüttge, U., Beyschlag, W., Eds.; Springer: Cham, Switzerland, 2015; Volume 76, pp. 93–107. [Google Scholar]
- Ellis, D.R.; Salt, D.E. Plants, selenium and human health. Curr. Opin. Plant Biol. 2003, 6, 273–279. [Google Scholar] [CrossRef]
- Sors, T.G.; Ellis, D.R.; Na, G.N.; Lahner, B.; Salt, D.E. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J. 2005, 42, 785–797. [Google Scholar] [CrossRef]
- Wessjohann, L.A.; Schneider, A.; Abbas, M.; Brandt, W. Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem. 2007, 388, 997–1006. [Google Scholar] [CrossRef]
- Chauhan, R.; Awasthi, S.; Srivastava, S.; Dwivedi, S.; Pilon-Smits, E.A.H.; Dhankher, O.P.; Tripathi, R.D. Understanding selenium metabolism in plants and its role as a beneficial element. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1937–1958. [Google Scholar] [CrossRef]
- Lauchli, A. Selenium in plants: Uptake, functions, and environmental toxicity. Bot. Acta 1993, 106, 455–468. [Google Scholar] [CrossRef]
- Lass, B.; Ullrich-Eberius, C.I. Evidence for proton/sulfate cotransport and its kinetics inLemna gibba G1. Planta 1984, 161, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.; Davidian, J.C.; Grignon, C. Sulphate/proton cotransport in plasma-membrane vesicles isolated from roots of Brassica napus L.: Increased transport in membranes isolated from sulphur-starved plants. Planta 1993, 190, 297–304. [Google Scholar] [CrossRef]
- Shibagaki, N.; Rose, A.; McDermott, J.P.; Fujiwara, T.; Hayashi, H.; Yoneyama, T.; Davies, J.P. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1:2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 2002, 29, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Inostroza-Blancheteau, C.; Reyes-Díaz, M.; Alberdi, M.; Godoy, K.; Rojas-Lillo, Y.; Cartes, P.; de la Luz Mora, M. Influence of selenite on selenium uptake, differential antioxidant performance and gene expression of sulfate transporters in wheat genotypes. Plant Soil 2013, 369, 47–59. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Mitani, N.; Yamaji, N.; Shen, R.F.; Ma, J.F. Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol. 2010, 153, 1871–1877. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yang, W.; Zhou, F.; Du, Z.; Xue, M.; Chen, T.; Liang, D. Effect of phosphate and silicate on selenite uptake and phloem-mediated transport in tomato (Solanum lycopersicum L.). Environ. Sci. Pollut. Res. 2019, 26, 20475–20484. [Google Scholar] [CrossRef]
- Li, H.F.; Mcgrath, S.P.; Zhao, F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008, 178, 92–102. [Google Scholar] [CrossRef]
- Chen, G.H.; Yan, W.; Yang, S.P.; Wang, A.; Zhu, Y.L. Overexpression of rice phosphate transporter gene OsPT2 enhances tolerance to low phosphorus stress in soybean. J. Agric. Sci. Technol. 2015, 17, 469–482. [Google Scholar]
- Zhang, L.; Hu, B.; Li, W.; Chen, R.; Deng, K.; Li, H.; Yu, F.; Ling, H.; Li, Y.; Chu, C. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol. 2014, 201, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wilson, L.; Xing, G.; Jiang, L.; Tang, S. Optimizing root architecture and increasing transporter gene expression are strategies to promote selenium uptake by high-se accumulating rice cultivar. Plant Soil 2020, 447, 319–332. [Google Scholar] [CrossRef]
- Lazard, M.; Blanquet, S.; Fisicaro, P.; Labarraque, G.; Plateau, P. Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. J. Biol. Chem. 2010, 285, 32029–32037. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Sampietro, M.; Serra-Cardona, A.; Canadell, D.; Casas, C.; Ario, J.; Herrero, E. The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system. Sci. Rep. 2016, 6, 32836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, J.R.; Rosen, B.P.; Liu, Z. Jen1p: A high affinity selenite transporter in yeast. Mol. Biol. Cell 2010, 21, 3934–3941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopper, J.L.; Parker, D.R. Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 1999, 210, 199–207. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Zhong, J.; Qian, Y.; Zhao, Z.; Liu, X. The Positive effect of sulfur on selenium detoxification under selenite condition in wheat. Commun. Soil Sci. Plant Anal. 2017, 48, 1564–1573. [Google Scholar] [CrossRef]
- Zhang, D.; Dong, T.; Ye, J.; Hou, Z. Selenium accumulation in wheat (Triticum aestivum L.) as affected by coapplication of either selenite or selenate with phosphorus. Soil Sci. Plant Nutr. 2017, 63, 37–44. [Google Scholar] [CrossRef]
- Cabannes, E.; Buchner, P.; Broadley, M.R.; Hawkesford, M.J. A Comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus Species. Plant Physiol. 2011, 157, 2227–2239. [Google Scholar] [CrossRef] [Green Version]
- Hawkesford, J.M. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. J. Exp. Bot. 2000, 51, 131–138. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; Buchner, P.; Hopkins, L.; Howarth, J.R. The plant sulfate transporter family: Specialized functions and integration with whole plant nutrition. In Sulfur Transport and Assimilation in Plants: Regulation, Interaction and Signaling; Davidian, J.C., Grill, D., DeKok, L.J., Stulen, I., Hawkesford, M.J., Schnug, E., Rennenberg, H., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2003; pp. 1–10. [Google Scholar]
- Shinmachi, F.; Buchner, P.; Stroud, J.L.; Parmar, S.; Zhao, F.J.; McGrath, S.P.; Hawkesford, M.J. Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol. 2010, 153, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannetti, M.; Tolosano, M.; Volpe, V.; Kopriva, S.; Bonfante, P. Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol. 2014, 204, 609–619. [Google Scholar] [CrossRef]
- Luo, W.; Li, J.; Ma, X.; Niu, H.; Hou, S.; Wu, F. Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat. Plant Soil 2019, 438, 71–83. [Google Scholar] [CrossRef]
- Sanmartín, C.; Garmendia, I.; Romano, B.; Díaz, M.; Palop, J.A.; Goicoechea, N. Mycorrhizal inoculation affected growth, mineral composition, proteins and sugars in lettuces biofortified with organic or inorganic selenocompounds. Sci. Hortic. 2014, 180, 40–51. [Google Scholar] [CrossRef]
- Conversa, G.; Lazzizera, C.; Chiaravalle, A.E.; Miedico, O.; Bonasia, A.; La Rotonda, P.; Elia, A. Selenium fern application and arbuscular mycorrhizal fungi soil inoculation enhance Se content and antioxidant properties of green asparagus (Asparagus officinalis L.) spears. Sci. Hortic. 2019, 252, 176–191. [Google Scholar] [CrossRef]
- Goicoechea, N.; Garmendia, I.; Fabbrin, E.G.; Bettoni, M.M.; Palop, J.A.; Sanmartín, C. Selenium fertilization and mycorrhizal technology may interfere in enhancing bioactive compounds in edible tissues of lettuces. Sci. Hortic. 2015, 195, 163–172. [Google Scholar] [CrossRef]
- Durán, P.; Acuña, J.J.; Jorquera, M.A.; Azcón, R.; Mora, M.L. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. J. Cereal Sci. 2013, 57, 275–280. [Google Scholar] [CrossRef]
- Patharajan, S.; Raaman, N. Influence of arbuscular mycorrhizal fungi on growth and selenium uptake by garlic plants. Arch. Phytopathol. Plant Prot. 2012, 45, 138–151. [Google Scholar] [CrossRef]
- Munier-Lamy, C.; Deneux-Mustin, S.; Mustin, C.; Merlet, D.; Berthelin, J.; Leyval, C. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. J. Environ. Radioact. 2007, 97, 148–158. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, S.; Wen, B.; Huang, H.; Luo, L. Accumulation and Speciation of Selenium in Plants as Affected by Arbuscular Mycorrhizal Fungus Glomus mosseae. Biol. Trace Elem. Res. 2011, 143, 1789–1798. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Zamana, S.; Seredin, T.; Poluboyarinov, P.A.; Sokolov, S.; Baranova, H.; Krivenkov, L.; Pietrantonio, L.; Caruso, G. Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plants 2019, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindblom, S.D.; Valdez-Barillas, J.R.; Fakra, S.C.; Marcus, M.A.; Pilon-Smits, E.A.H. Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ. Exp. Bot. 2013, 88, 33–42. [Google Scholar] [CrossRef]
- Lei, X.; Yao, S.; Zu, X.; Huang, Z.; Liu, L.; Zhong, M.; Zhu, B.; Tang, S.; Liao, D. Apoptosis induced by diallyl disulfide in human breast cancer cell line MCF-7. Acta Pharm. Sin. 2008, 29, 1233–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.S.; Kok, L.F.; Lin, Y.H.; Kuo, T.C.; Chung, J.G. Diallyl disulfide inhibits WEHI-3 leukemia cells in vivo. Anticancer Res. 2006, 26, 219–225. [Google Scholar] [PubMed]
- Suangtamai, T.; Tanyong, D.I. Diallyl disulfide induces apoptosis and autophagy via mTOR pathway in myeloid leukemic cell line. Tumor Biol. 2016, 37, 10993–10999. [Google Scholar] [CrossRef]
- Nicolle, C.; Cardinault, N.; Gueux, E.; Jaffrelo, L.; Rock, E.; Mazur, A.; Amouroux, P.; Rémésy, C. Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr. 2004, 23, 605–614. [Google Scholar] [CrossRef]
- Serafini, M.; Bugianesi, R.; Salucci, M.; Azzini, E.; Maiani, G. Effect of acute ingestion of fresh and stored lettuce (Latuca sativa) on plasma total antioxidant capacity and antioxidant levels in human subjects. Br. J. Nutr. 2003, 88, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Llorach, R.; Martínez-Sánchez, A.; Tomás-Barberán, F.A.; Gil, M.I.; Ferreres, F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008, 108, 1028–1038. [Google Scholar] [CrossRef]
- Slejkovec, Z.; Elteren, J.T.V.; Woroniecka, U.D.; Kroon, K.J.; Byrne, A.R. Preliminary study on the determination of selenium compounds in some selenium-accumulating mushrooms. Biol. Trace Elem. Res. 2000, 75, 139–155. [Google Scholar] [CrossRef]
- Stijve, T.; Noorloos, T.; Byrne, A.R.; Šlejkovec, Z.; Goessler, W.T. High selenium levels in edible Albatrellus mushroom. Deut Lebens-Rundsch 1998, 94, 275–279. [Google Scholar]
- Borovička, J.; Řanda, Z. Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol. Prog. 2007, 6, 249–259. [Google Scholar] [CrossRef]
- Etesami, H.; Maheshwari, D.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 156, 225–246. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, R.Z.; Reddy, M.S.; Antonius, S. Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture; Springer: Singapore, 2019. [Google Scholar]
- Sapre, S.; Gontia-Mishra, I.; Tiwari, S. ACC Deaminase-Producing Bacteria: A Key Player in Alleviating Abiotic Stresses in Plants; Springer: Singapore, 2019. [Google Scholar]
- Etesami, H.; Adl, S.M. Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. In Phyto-Microbiome in Stress Regulation; Kumar, M., Kumar, V., Prasad, R., Eds.; Environmental and Microbial Biotechnology; Springer: Singapore, 2020; pp. 147–203. [Google Scholar]
- Cartes, P.; Gianfreda, L.; Mora, M.L. Uptake of Selenium and its Antioxidant Activity in Ryegrass When Applied as Selenate and Selenite Forms. Plant Soil 2005, 276, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Mora, M.D.L.L.; Pinilla, L.; Rosas, A.; Cartes, P. Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant Soil 2008, 303, 139–149. [Google Scholar] [CrossRef]
- Nakamaru, Y.M.; Altansuvd, J. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere 2014, 111, 366–371. [Google Scholar] [CrossRef]
- Yli-Halla, M. Influence of Se fertilization on soil Se status. In Proceedings of the Twenty Years of Se Fertilization, Helsinki, Finland, 8–9 September 2005; pp. 25–32. [Google Scholar]
- Durán, P.; Acuña, J.J.; Gianfreda, L.; Azcón, R.; Funes-Collado, V.; Mora, M.L. Endophytic selenobacteria as new inocula for selenium biofortification. Appl. Soil Ecol. 2015, 96, 319–326. [Google Scholar] [CrossRef]
- Acuña, J.J.; Jorquera, M.A.; Barra, P.J.; Crowley, D.E.; María, D.L.L.M. Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol. Fertil. Soils 2013, 49, 175–185. [Google Scholar] [CrossRef]
- Artursson, V.; Finlay, R.D.; Jansson, J.K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 2006, 8, 1–10. [Google Scholar] [CrossRef]
- Barea, J.; Pozo, M.; Azcón, R.; Azcón-Aguilar, C. Microbial co-operation in the rhizosphere. J. Exp. Bot. 2005, 56, 1761–1778. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P.; Baumann, K. Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant Soil 2003, 251, 279–289. [Google Scholar] [CrossRef]
- Hrynkiewicz, K.; Ciesielska, A.; Haug, I.; Baum, C. Ectomycorrhiza formation and willow growth promotion as affected by associated bacteria: Role of microbial metabolites and use of C sources. Biol. Fertil. Soils 2010, 46, 139–150. [Google Scholar] [CrossRef]
- Alford, É.; Lindblom, S.; Pittarello, M.; Freeman, J.; Fakra, S.; Marcus, M.; Broeckling, C.; Pilon-Smits, E.; Paschke, M. Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae). Am. J. Bot. 2014, 101, 1895–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durán, P.; Acuña, J.J.; Jorquera, M.A.; Azcón, R.; Paredes, C.; Rengel, Z.; Mora, M.D.L.L. Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification andGaeumannomyces graminisbiocontrol in wheat production. Biol. Fertil. Soils 2014, 50, 983–990. [Google Scholar] [CrossRef]
- Rana, A.; Joshi, M.; Prasanna, R.; Shivay, Y.S.; Nain, L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur. J. Soil Biol. 2012, 50, 118–126. [Google Scholar] [CrossRef]
- Jianfei, W.; Cheng, Z.; Xin, X.; Yue, X.; Lin, Z.; Zhongyou, M. Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06). Appl. Sci. 2017, 7, 85. [Google Scholar]
- Lampis, S.; Ferrari, A.; Cunhaqueda, A.C.; Alvarenga, P.; Di, G.S.; Vallini, G. Selenite resistant rhizobacteria stimulate SeO(3) (2−) phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds. Environ. Sci. Pollut. Res. Int. 2009, 16, 663. [Google Scholar] [CrossRef]
- Souza, M.P.D.; Huang, C.P.A.; Chee, N.; Terry, N. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 1999, 209, 259–263. [Google Scholar] [CrossRef]
- Souza, M.P.D.; Chu, D.; Zhao, M.; Zayed, A.M.; Ruzin, S.E.; Terry, S.N. Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol. 1999, 119, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.J.; Trivedi, G.R.; Shah, R.K.; Saraf, M. Selenorhizobacteria: As biofortification tool in sustainable agriculture. Biocatal. Agric. Biotechnol. 2018, 14, 198–203. [Google Scholar] [CrossRef]
Microbes | Microbial Types | Host Plants | References |
---|---|---|---|
Funneliformis mosseae | AMF | Triticum aestivum, Lactuca sativa, Asparagus officinalis, | [105,106,107,108] |
Glomus claroideum | AMF | Triticum aestivum | [109] |
Glomus fasciculatum | AMF | Allium sativum | [110] |
Glomus irtraradices | AMF | Allium sativum | [55] |
Glomus mosseae | AMF | Lolium perenne, Allium sativum, Medicago sativa, Glycine max, Zea mays | [110,111,112] |
Glomus versiform | AMF | Triticum aestivum | [105] |
Rhizophagus intraradices | AMF | Lactuca sativa, Asparagus officinalis, Lactuca sativa, Allium cepa | [106,107,108,113] |
Alternaria seleniiphila | REF | Stanleya pinnata | [114] |
Alternaria astragali | REF | Astragalus bisulcatus | [114] |
Aspergillus leporis | REF | Stanleya pinnata | [114] |
Fusarium acuminatum | REF | Astragalus racemosus | [114] |
Trichoderma harzianum | REF | Allium cepa | [106] |
Microbes | Host Plants | References |
---|---|---|
Acinetobacters sp. E6.2 | - | [132] |
Acinetobater sp. | Triticum aestivum | [139] |
Alcaligenes faecalis | Ricinus communis, Glycine max | [35] |
Anabaena sp. | Triticum aestivum | [30,140] |
Bacillus amyloliquefaciens | Arabidopsis thaliana | [141] |
Bacillus axarquiens | Triticum aestivum | [139] |
Bacillus cereus | Triticum aestivum | [34] |
Bacillus licheniformis | Triticum aestivum | [34] |
Bacillus mycoides | Brassica juncea | [142] |
Bacillus pichinotyi | Triticum aestivum | [33] |
Bacillus sp. E5 | - | [132] |
Bacillus sp. E6.1 | Triticum aestivum | [139] |
Bacillus sp. R12 | Triticum aestivum | [109] |
Bacillus subtilis | Allium cepa | [113] |
Calothrix sp. | Triticum aestivum | [30,140] |
Enterobacter ludwigii | Triticum aestivum | [139] |
Enterobacter sp. B16 | Triticum aestivum | [109] |
Klebsiella oxytoca | Triticum aestivum | [139] |
Paraburkholderia megapolitana | Ricinus communis, Glycine max | [35] |
Providencia sp. | Triticum aestivum | [30,140] |
Pseudomnas sp. R8 | Triticum aestivum | [109,133] |
Rhizobium sp. | Astragalus bisulcatus, A. drummondii | [138] |
Rhizosphere bacteria | Scirpus robustus, Polypogon monspeliensis | [143] |
Se-tolerant bacteria | Brassica juncea | [144] |
Stenotrophomonas maltophilia | Ricinus communis, Glycine max, Brassica juncea | [35,142] |
Stenotrophomonas sp. B19 | Triticum aestivum | [109,133] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Qu, J.; Pu, Y.; Rao, S.; Xu, F.; Wu, C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J. Fungi 2020, 6, 59. https://doi.org/10.3390/jof6020059
Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. Journal of Fungi. 2020; 6(2):59. https://doi.org/10.3390/jof6020059
Chicago/Turabian StyleYe, Yuanming, Jingwang Qu, Yao Pu, Shen Rao, Feng Xu, and Chu Wu. 2020. "Selenium Biofortification of Crop Food by Beneficial Microorganisms" Journal of Fungi 6, no. 2: 59. https://doi.org/10.3390/jof6020059
APA StyleYe, Y., Qu, J., Pu, Y., Rao, S., Xu, F., & Wu, C. (2020). Selenium Biofortification of Crop Food by Beneficial Microorganisms. Journal of Fungi, 6(2), 59. https://doi.org/10.3390/jof6020059