Kids, Difficult Asthma and Fungus
Abstract
:1. Introduction
2. Definition of SAFS and Fungal Bronchitis
2.1. SAFS in Adults
2.2. SAFS in Children
2.3. Beyond SAFS: Fungal Detection in the Airway, Fungal Bronchitis and Asthma
2.4. Fungal Asthma or Fungal Asthmas?
3. Paediatric and Adult Severe Asthma and the Atopies: Important Differences Relevant to Fungal Asthma
4. Epidemiological Data: Associations between Fungi and Asthma Severity
4.1. Cross-Sectional Studies
4.2. SAFS and Control of Asthma
4.3. SAFS and Asthma Attacks: Children
4.4. SAFS and Lung Tissue Destruction
4.5. Fungi and Risk Assessment
5. Clinical Features of SAFS in Children
6. Treatment of SAFS and Fungal Asthma
6.1. Adult Data
6.2. Paediatric Data
6.3. Conclusions: What Is the Role of Antifungals in SAFS?
7. Risk Factors for SAFS: Genetic Studies
8. Pathophysiology of SAFS and Fungal Asthma
8.1. Introduction
8.2. Cell and Animal Studies
8.3. Pathophysiology of SAFS in Adults
8.4. Pathophysiology of SAFS in Children
9. Unsolved Problems and Future Work
10. Summary and Conclusions
Funding
Conflicts of Interest
References
- Denning, D.W.; O’Driscoll, B.R.; Hogaboam, C.M.; Bowyer, P.; Niven, R.M. The link between fungi and severe asthma: A summary of the evidence. Eur. Respir. J. 2006, 27, 615–626. [Google Scholar]
- Girgis, S.T.; Marks, G.B.; Downs, S.H.; Kolbe, A.; Car, G.N.; Paton, R. Thunderstorm-associated asthma in an inland town in southeastern Australia. Who is at risk? Eur. Respir. J. 2000, 16, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigo, M.J.; Morell, F.; Helm, R.M.; Swanson, M.; Greife, A.; Anto, J.M.; Sunyer, J.; Reed, C.E. Identification and partial characterization of the soybean-dust allergens involved in the Barcelona asthma epidemic. J. Allergy Clin. Immunol. 1990, 85, 778–784. [Google Scholar] [CrossRef]
- Wark, P.A.B.; Simpson, J.; Hensley, M.J.; Gibson, P.G. Airway Inflammation in Thunderstorm Asthma. Clin. Exp. Allergy 2002, 32, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Targonski, P.V.; Persky, V.W.; Ramekrishnan, V. Effect of environmental molds on risk of death from asthma during the pollen season. J. Allergy Clin. Immunol. 1995, 95, 955–961. [Google Scholar] [CrossRef]
- O’Hollaren, M.T.; Yunginger, J.W.; Offord, K.P.; Somers, M.J.; O’Connell, E.J.; Ballard, D.J.; Sachs, M.I. Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young patients with asthma. N. Engl. J. Med. 1991, 324, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Downs, S.H.; Mitakakis, T.Z.; Marks, G.B.; Car, N.G.; Belousova, E.G.; Leüppi, J.D.; Xuan, W.; Downie, S.R.; Tobias, A.; Peat, J.K. Clinical importance of Alternaria exposure in children. Am. J. Respir. Crit. Care Med. 2001, 164, 455–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosmidis, C.; Denning, D.W. The clinical spectrum of pulmonary aspergillosis. Thorax 2015, 70, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.; Ashby, D.; Smyth, R.L. Oral steroids for long-term use in cystic fibrosis. Cochrane Database Syst. Rev. 2013, 24, CD000407. [Google Scholar]
- Lands, L.C.; Stanojevic, S. Oral non-steroidal anti-inflammatory drug therapy for lung disease in cystic fibrosis. Cochrane Database Syst. Rev. 2019, 9, CD001505. [Google Scholar] [CrossRef]
- Denning, D.W.; O’Driscoll, B.R.; Powell, G.; Chew, F.; Atherton, G.T.; Vyas, A.; Miles, J.; Morris, J.; Niven, R.M. Randomized controlled trial of oral antifungal treatment for severe asthma with fungal sensitization: The Fungal Asthma Sensitization Trial (FAST) study. Am. J. Respir. Crit. Care Med. 2009, 179, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Driscoll, B.R.; Powell, G.; Chew, F.; Niven, R.M.; Miles, J.F.; Vyas, A.; Denning, D.W. Comparison of skin prick tests with specific serum immunoglobulin E in the diagnosis of fungal sensitization in patients with severe asthma. Clin. Exp. Allergy 2009, 39, 1677–1683. [Google Scholar] [CrossRef]
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastella, G.; Rainisio, M.; Harms, H.K.; Hodson, M.E.; Koch, C.; Navarro, J.; Strandvik, B.; McKenzie, S.G. Allergic bronchopulmonary aspergillosis in cystic fibrosis. A European epidemiological study. Epidemiologic Registry of Cystic Fibrosis. Eur. Respir. J. 2000, 16, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Frith, J.; Fleming, L.; Bossley, C.; Ullmann, N.; Bush, A. The complexities of defining atopy in severe childhood asthma. Clin. Exp. Allergy 2011, 41, 948–953. [Google Scholar] [CrossRef]
- Shoseyov, D.; Brownlee, K.G.; Conway, S.P.; Kerem, E. Aspergillus bronchitis in cystic fibrosis. Chest 2006, 130, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Amin, R.; Dupuis, A.; Aaron, S.D.; Ratjen, F. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 2010, 137, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Brandt, C.; Roehmel, J.; Rickerts, V.; Melichar, V.; Niemann, N.; Schwarz, C. Aspergillus Bronchitis in Patients with Cystic Fibrosis. Mycopathologia 2018, 183, 61–69. [Google Scholar] [CrossRef]
- Farrant, J.; Brice, H.; Fowler, S.; Niven, R. Fungal sensitisation in severe asthma is associated with the identification of Aspergillus fumigatus in sputum. J. Asthma. 2016, 53, 732–735. [Google Scholar] [CrossRef]
- Vincent, M.; Percier, P.; Prins, S.; Huygen, K.; G Potemberg, G.; Muraille, E.; Romano, M.; Michel, O.; Denis, O. Investigation of inflammatory and allergic responses to common mold species: Results from in vitro experiments, from a mouse model of asthma and from a group of asthmatic patients. Indoor Air 2017, 27, 933–945. [Google Scholar] [CrossRef]
- Vincent, M.; Romano, M.; Corazza, F.; Huygen, K.; Michel, O.; Denis, O. Development of a dot-blot assay for the detection of mold-specific IgE in the Belgian population. Mycopathologia 2017, 182, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.; Hunt, E.B.; Ward, C.; Lapthorne, S.; Eustace, J.A.; Fanning, L.J.; Plant, B.J.; O’Byrne, P.M.; MacSharry, J.A.; Murphy, D.M. The presence of Aspergillus fumigatus in asthmatic airways is not clearly related to clinical disease severity. Allergy 2019. [Google Scholar] [CrossRef] [PubMed]
- Bossley, C.; Fleming, L.; Gupta, A.; Regamey, N.; Frith, J.; Oates, T.; Tsartali, L.; Lloyd, C.; Bush, A.; Saglani, S. Pediatric severe asthma is characterized by eosinophilia and remodeling without TH2 cytokines. J. Allergy Clin. Immunol. 2012, 129, 974–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enfumosa Study Group. The ENFUMOSA Cross-Sectional European Multicentre Study of the Clinical Phenotype of Chronic Severe Asthma. European Network for Understanding Mechanisms of Severe Asthma. Eur. Respir. J. 2003, 22, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Shaw, D.E.; Sousa, A.R.; Fowler, S.J.; Fleming, L.J.; Roberts, G.; Corfield, J.; Pandis, I.; Aruna, T.; Bansal, A.T.; Bel, E.H.; et al. U-BIOPRED Study Group. Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. Eur. Respir. J. 2015, 46, 1308–1321. [Google Scholar] [CrossRef] [Green Version]
- Marinho, S.; Simpson, A.; Söderström, L.; Woodcock, A.; Ahlstedt, S.; Custovic, A. Quantification of atopy and the probability of rhinitis in preschool children: A population-based birth cohort study. Allergy 2007, 62, 1379–1386. [Google Scholar] [CrossRef]
- Simpson, A.; Tan, V.Y.; Winn, J.; Svensén, M.; Bishop, C.M.; Heckerman, D.E.; Buchan, I.; Custovic, A. Beyond atopy: Multiple patterns of sensitization in relation to asthma in a birth cohort study. Am. J. Respir. Crit. Care Med. 2010, 181, 1200–1206. [Google Scholar] [CrossRef] [Green Version]
- Lazic, N.; Roberts, G.; Custovic, A.; Belgrave, D.; Bishop, C.M.; Winn, J.; Curtin, J.A.; Hasan Arshad, S.; Simpson, A. Multiple atopy phenotypes and their associations with asthma: Similar findings from two birth cohorts. Allergy 2013, 68, 764–770. [Google Scholar] [CrossRef]
- Belgrave, D.C.; Buchan, I.; Bishop, C.; Lowe, L.; Simpson, A.; Custovic, A. Trajectories of lung function during childhood. Am. J. Respir. Crit. Care Med. 2014, 189, 1101–1109. [Google Scholar] [CrossRef]
- Roberts, G.; Fontanella, S.; Selby, A.; Howard, R.; Filippi, S.; Hedlin, G.; Nordlund, B.; Howarth, P.; Hashimoto, S.; Brinkman, P.; et al. Connectivity patterns between multiple allergen specific IgE antibodies and their association with severe asthma. J. Allergy Clin. Immunol. 2020. [Google Scholar] [CrossRef]
- Zureik, M.; Neukirch, C.; Leynaert, B.; Liard, R.; Bousquet, J.; Neukirch, F.; European Community Respiratory Health Survey. Sensitisation to airborne moulds and severity of asthma: Cross sectional study from European Community respiratory health survey. BMJ 2002, 325, 411–414. [Google Scholar] [CrossRef] [Green Version]
- Kwizera, R.; Musaazi, J.; Meya, D.B.; Worodria, W.; Bwanga, F.; Kajumbula, H.; Fowler, S.J.; Kirenga, B.J.; Gore, R.; Denning, D.W. Burden of fungal asthma in Africa: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0216568. [Google Scholar] [CrossRef] [PubMed]
- Masaki, K.; Fukunaga, K.; Matsusaka, M.; Kabata, H.; Tanosaki, T.; Mochimaru, T.; Kamatani, T.; Ohtsuka, K.; Baba, R.; Ueda, S.; et al. Characteristics of severe asthma with fungal sensitization. Ann. Allergy Asthma Immunol. 2017, 119, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Medrek, S.K.; Kao, C.C.; Yang, D.H.; Hanania, N.A.; Parulekar, A.D. Fungal Sensitization Is Associated with Increased Risk of Life-Threatening Asthma. J. Allergy Clin. Immunol. Pract. 2017, 5, 1025–1031.e2. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R. Severe asthma with fungal sensitization. Curr. Allergy Asthma Rep. 2011, 11, 403–413. [Google Scholar] [CrossRef]
- Rajagopal, T.V.; Kant, S.; Verma, S.K.; Kushwaha, R.A.S.; Kumar, S.; Garg, R.; Srivastava, A.; Bajaj, D.K. Aspergillus sensitization in bronchial asthma: A separate phenotype. Allergy Asthma Proc. 2020, 41, e26–e32. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Fujiwara, A.; Uchida, Y.; Yamaguchi, M.; Ohta, S.; Homma, T.; Watanabe, Y.; Yamamoto, M.; Suzuki, S.; Yokoe, T.; et al. Evaluation of the association between sensitization to common inhalant fungi and poor asthma control. Ann. Allergy Asthma Immunol. 2016, 117, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Su, L.; Fang, Q.H.; Ma, Y.M. Correlation between fungal sIgE and bronchial asthma severity. Exp. Ther. Med. 2013, 6, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.J.; Yii, A.C.A.; Lapperre, T.S.; Chan, A.K.; Chew, F.T.; Chotirmall, S.H.; Koh, M.S. Sensitization to Aspergillus species is associated with frequent exacerbations in severe asthma. J. Asthma Allergy 2017, 10, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, S.; Sprünken, A.; Wagner, N.; Tenbrock, K.; Ott, H. Clinical relevance of IgE-mediated sensitization against the mould Alternaria alternata in children with asthma. Ther. Adv. Respir. Dis. 2017, 11, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Tham, R.; Vicendese, D.; Dharmage, S.C.; Hyndman, R.J.; Newbigin, E.; Lewis, E.; O’Sullivan, M.; Lowe, A.J.; Taylor, P.; Bardin, P.; et al. Associations between outdoor fungal spores and childhood and adolescent asthma hospitalizations. J. Allergy Clin. Immunol. 2017, 139, 1140–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolnough, K.F.; Richardson, M.; Newby, C.; Craner, M.; Bourne, M.; Monteiro, W.; Siddiqui, S.; Bradding, P.; Pashley, C.H.; Wardlaw, A.J. The relationship between biomarkers of fungal allergy and lung damage in asthma. Clin. Exp. Allergy 2017, 47, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castanhinha, S.; Sherburn, R.; Walker, S.; Gupta, A.; Bossley, C.J.; Buckley, J.; Ullmann, N.; Grychtol, R.; Campbell, G.; Maglione, M.; et al. Pediatric severe asthma with fungal sensitization is mediated by steroid-resistant IL-33. J. Allergy Clin. Immunol. 2015, 136, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, A.; Saglani, S. Management of severe asthma in children. Lancet 2010, 376, 814–825. [Google Scholar] [CrossRef] [Green Version]
- Cook, J.; Beresford, F.; Fainardi, V.; Hall, P.; Housley, G.; Jamalzadeh, A.; Nightingale, M.; Winch, D.; Bush, A.; Fleming, L.; et al. Managing the paediatric patient with refractory asthma: A multidisciplinary approach. J. Asthma Allergy 2017, 10, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Bush, A.; Fleming, L.; Saglani, S. Severe asthma in children. Respirology 2017, 22, 886–897. [Google Scholar] [CrossRef]
- Vicencio, A.G.; Santiago, M.T.; Tsirilakis, K.; Stone, A.; Worgall, S.; Foley, E.A.; Bush, D.; Goldman, D.L. Fungal sensitization in childhood persistent asthma is associated with disease severity. Pediatr. Pulmonol. 2014, 49, 8–14. [Google Scholar] [CrossRef]
- Lyons, T.W.; Wakefield, D.B.; Cloutier, M.M. Mold and Alternaria skin test reactivity and asthma in children in Connecticut. Ann. Allergy Asthma Immunol. 2011, 106, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Agbetile, J.; Bourne, M.; Fairs, A.; Hargadon, B.; Desai, D.; Broad, C.; Morley, J.; Bradding, P.; Brightling, C.E.; Green, R.H.; et al. Effectiveness of voriconazole in the treatment of Aspergillus fumigatus-associated asthma (EVITA3 study). J. Allergy Clin. Immunol. 2014, 134, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Blondin, M.C.; Beauregard, H.; Serri, O. Iatrogenic Cushing syndrome in patients receiving inhaled budesonide and itraconazole or ritonavir: Two cases and literature review. Endocr Pract. 2013, 19, e138–e141. [Google Scholar] [CrossRef]
- Bolland, M.J.; Bagg, W.; Thomas, M.G.; Lucas, J.A.; Ticehurst, R.; Black, P.N. Cushing’s syndrome due to interaction between inhaled corticosteroids and itraconazole. Ann. Pharmacother. 2004, 38, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Tsai, C.-L.; Maskatia, Z.K.; Kakkar, E.; Porter, P.D.; Rossen, R.D.; Perusich, S.; Knight, J.M.; Kheradmand, F.; Corry, D.B. Benefits of Antifungal Therapy in Asthma Patients With Airway Mycosis: A Retrospective Cohort Analysis. Immunity Inflamm. Disease 2018, 6, 264–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holguin, F.; Cardet, J.C.; Chung, K.F.; Diver, S.; Ferreira, D.S.; Fitzpatrick, A.; Gaga, M.; Kellermeyer, L.; Khurana, S.; Knight, S.; et al. Management of severe asthma: A European Respiratory Society/American Thoracic Society guideline. Eur. Respir. J. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirsadraee, M.; Dehghan, S.; Ghaffari, S.; Mirsadraee, N. Long-term effect of antifungal therapy for the treatment of severe resistant asthma: An active comparator clinical trial. Curr. Med. Mycol. 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Katsube, O.; Kono, Y.; Tsuzuki, R.; Yamawaki, S.; Soeda, S.; To, M.; To, Y. An Exacerbation of Severe Asthma With Fungal Sensitization Successfully Treated With Voriconazole via a Reduction of the Fungal Burden. Allergol Int. 2019, 68, 549–551. [Google Scholar] [CrossRef]
- Simmonds, E.J.; Littlewood, J.M.; Hopwood, V.; Evans, E.G. Aspergillus fumigatus colonisation and population density of place of residence in cystic fibrosis. Arch. Dis. Child. 1994, 70, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Cullinan, P.; MacNeill, S.J.; Harris, J.M.; Moffat, S.; White, C.; Mills, P.; Newman Taylor, A.J. Early allergen exposure, skin prick responses, and atopic wheeze at age 5 in English children: A cohort study. Thorax 2004, 59, 855–861. [Google Scholar] [CrossRef] [Green Version]
- Vicencio, A.G.; Muzumdar, H.; Tsirilakis, K.; Kessel, A.; Nandalike, K.; Goldman, D.L. Severe asthma with fungal sensitization in a child: Response to itraconazole therapy. Pediatrics 2010, 125, e1255–e1258. [Google Scholar] [CrossRef]
- Di Stefano, F.; Cinti, B.; Antonicelli, L. Efficacy of omalizumab in severe asthma with fungal sensitisation: A case report. Eur. Ann. Allergy Clin. Immunol. 2014, 46, 56–59. [Google Scholar]
- Pizzimenti, S.; Bussolino, C.; Badiu, I.; Rolla, G. Itraconazole as ‘bridge therapy’ to anti-IgE in a patient with severe asthma with fungal sensitisation. BMJ Case Rep. 2013. [Google Scholar] [CrossRef] [Green Version]
- De Wachter, E.; Malfroot, A.; De Schutter, I.; Vanbesien, J.; De Schepper, J. Inhaled budesonide induced Cushing’s syndrome in cystic fibrosis patients, due to drug inhibition of cytochrome P450. J. Cyst. Fibros. 2003, 2, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Overton, N.L.; Simpson, A.; Bowyer, P.; Denning, D.W. Genetic susceptibility to severe asthma with fungal sensitization. Int. J. Immunogenet. 2017, 44, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Pasqualotto, A.C.; Pitzurra, L.; Romani, L.; Denning, D.W.; Rodrigues, F. Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J. Infect. Dis. 2008, 197, 618–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicencio, A.G.; Chupp, G.L.; Tsirilakis, K.; He, X.; Kessel, A.; Nandalike, K.; Veler, H.; Kipperman, S.; Young, M.C.; Goldman, D.L. CHIT1 mutations: Genetic risk factor for severe asthma with fungal sensitization? Pediatrics 2010, 126, e982–e985. [Google Scholar] [CrossRef] [PubMed]
- Sabroe, I.; Postma, D.; Heijink, I.; Dockrell, D.H. The yin and the yang of immunosuppression with inhaled corticosteroids. Thorax 2013, 68, 1085–1087. [Google Scholar] [CrossRef] [Green Version]
- Brassard, P.; Suissa, S.; Kezouh, A.; Ernst, P. Inhaled corticosteroids and risk of tuberculosis in patients with respiratory diseases. Am. J. Respir. Crit. Care Med. 2011, 183, 675–678. [Google Scholar] [CrossRef]
- Andréjak, C.; Nielsen, R.; Thomsen, V.Ø.; Duhaut, P.; Sørensen, H.T.; Thomsen, R.W. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax 2013, 68, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Halpin, D.M.G.; Gray, J.; Edwards, S.J.; Morais, J.; Singh, D. Budesonide/formoterol vs. salmeterol/fluticasone in COPD: A systematic review and adjusted indirect comparison of pneumonia in randomised controlled trials. Int. J. Clin. Pract. 2011, 65, 764–774. [Google Scholar] [CrossRef] [Green Version]
- Fraczek, M.G.; Chishimba, L.; Niven, R.M.; Bromley, M.; Simpson, A.; Smyth, L.; Denning, D.W.; Bowyer, P. Corticosteroid treatment is associated with increased filamentous fungal burden in allergic fungal disease. J. Allergy Clin. Immunol. 2018, 142, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Reeder, K.M.; Dunaway, C.W.; Blackburn, J.P.; Yu, Z.; Matalon, S.; Hastie, A.T.; Ampleford, E.J.; Meyers, D.A.; Steele, C. The common γ-chain cytokine IL-7 promotes immunopathogenesis during fungal asthma. Mucosal Immunol. 2018, 11, 1352–1362. [Google Scholar] [CrossRef] [Green Version]
- Lilly, L.M.; Gessner, M.A.; Dunaway, C.W.; Metz, A.E.; Schwiebert, L.; Weaver, C.T.; Brown, G.D.; Steele, C. The β-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. J. Immunol. 2012, 189, 3653–3660. [Google Scholar] [CrossRef] [Green Version]
- Godwin, M.S.; Reeder, K.M.; Garth, J.M.; Blackburn, J.P.; Jones, M.; Yu, Z.; Matalon, S.; Hastie, A.T.; Meyers, D.A.; Steele, C. IL-1RA regulates immunopathogenesis during fungal-associated allergic airway inflammation. JCI Insight. 2019, 4, e129055. [Google Scholar] [CrossRef]
- Snelgrove, R.J.; Gregory, L.G.; Peiró, T.; Akthar, S.; Campbell, G.A.; Walker, S.A.; Lloyd, C.M. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations. J. Allergy Clin. Immunol. 2014, 134, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Leino, M.S.; Loxham, M.; Blume, C.; Swindle, E.J.; Jayasekera, N.P.; Dennison, P.W.; Shamji, B.W.; Edwards, M.J.; Holgate, S.T.; Howarth, P.H.; et al. Barrier disrupting effects of alternaria alternata extract on bronchial epithelium from asthmatic donors. PLoS ONE 2013, 8, e71278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.K.; Lund, S.; Baum, R.; Rosenthal, P.; Khorram, N.; Doherty, T.A. Innate type 2 response to Alternaria extract enhances ryegrass-induced lung inflammation. Int. Arch. Allergy Immunol. 2014, 163, 92–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yee, M.C.; Nichols, H.L.; Polley, D.; Saifeddine, M.; Pal, K.; Lee, K.; Wilson, E.H.; Daines, M.O.; Hollenberg, M.D.; Boitano, S.; et al. Protease-activated receptor-2 signaling through β-arrestin-2 mediates Alternaria alkaline serine protease-induced airway inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 315, L1042–L1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namvar, S.; Warn, P.; Farnell, E.; Bromley, M.; Fraczek, M.; Bowyer, P.; Herrick, S. Aspergillus fumigatus proteases, Asp f 5 and Asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model. Clin. Exp. Allergy 2015, 45, 982–993. [Google Scholar] [CrossRef]
- Balenga, N.A.; Klichinsky, M.; Xie, Z.; Chan, E.C.; Zhao, M.; Jude, J.; Laviolette, M.; Panettieri, R.A., Jr.; Druey, K.M. A fungal protease allergen provokes airway hyper-responsiveness in asthma. Nat. Commun. 2015, 6, 6763. [Google Scholar] [CrossRef]
- Ghosh, S.; Samarasinghe, A.E.; Hoselton, S.A.; Dorsam, G.P.; Schuh, J.M. Hyaluronan deposition and co-localization with inflammatory cells and collagen in a murine model of fungal allergic asthma. Inflamm. Res. 2014, 63, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Labram, B.; Namvar, S.; Hussell, T.; Herrick, S.E. Endothelin-1 mediates Aspergillus fumigatus-induced airway inflammation and remodelling. Clin. Exp. Allergy 2019, 49, 861–873. [Google Scholar] [CrossRef] [Green Version]
- Saglani, S. Innate helper cells: A novel cell type essential in the initiation of asthma? Thorax 2011, 66, 834–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prefontaine, D.; Nadigel, J.; Chouiali, F.; Audusseau, S.; Semlali, A.; Chakir, J.; Martin, J.G.; Hamid, Q. Increased IL-33 expression by epithelial cells in bronchial asthma. J. Allergy Clin. Immunol. 2010, 125, 752–754. [Google Scholar] [CrossRef] [PubMed]
- Moffat, M.F.; Gut, I.G.; Demenais, F.; Strachan, D.P.; Bouzigon, E.; Heath, S.; von Mutius, E.; Farrall, M.; Lathrop, M.; Cookson, W.O.C.M.; et al. A large scale, consortium based genomewide association study of asthma. N. Engl. J. Med. 2010, 363, 1211–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saglani, S.; Lui, S.; Ullmann, N.; Campbell, G.A.; Sherburn, R.T.; Mathie, S.A.; Denney, L.; Bossley, C.J.; Oates, T.; Walker, S.A.; et al. IL-33 promotes airway remodeling in pediatric patients with severe, steroid-resistant asthma. J. Allergy Clin. Immunol. 2013, 132, 676–685. [Google Scholar] [CrossRef] [Green Version]
- Saglani, S.; Mathie, S.A.; Gregory, L.G.; Bell, M.J.; Bush, A.; Lloyd, C.M. Pathophysiological Features of Asthma Develop in Parallel in House Dust Mite Exposed Neonatal Mice. Am. J. Respir. Cell Mol. Biol. 2009, 41, 281–289. [Google Scholar] [CrossRef]
- Murray, C.S.; Poletti, G.; Kebadze, T.; Morris, J.; Woodcock, A.; Johnston, S.L.; Custovic, A. Study of modifiable risk factors for asthma exacerbations: Virus infection and allergen exposure increase the risk of asthma hospital admissions in children. Thorax 2006, 61, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Bush, A. Azithromycin is the answer in paediatric respiratory medicine, but what was the question? Paediatr. Respir. Rev. 2020, 34, 67–74. [Google Scholar] [CrossRef]
Fungal Sensitization (Positive Skin Prick Test and/or Specific IgE to One or More Fungus) | Other Adult Criteria | Other Paediatric Criteria |
---|---|---|
Aspergillus fumigatus Cladosporium herbarum Penicillium chrysogenum (notatum) Candida albicansa Trichophyton mentagrophytes Alternaria alternate Botrytis cinere | Treatment with 500 mcg Fluticasone Propionate/day, or Continuous oral corticosteroids, or 4 prednisolone bursts in 12 months or 6 bursts in 24 months | Severe, therapy resistant asthma (ERS/ATS Task Force criteria) |
IgE < 1000 | IgE can be any level | |
Negative IgG precipitins to Aspergillus fumigatus | IgG precipitins to Aspergillus fumigatus can be positive or negative |
No. | Unanswered Questions |
---|---|
1 | Is the concept of fungal asthma, comprising SAFS and low-grade fungal bronchitis, a useful one? |
2 | Are fungal allergens qualitatively different in their effects from other aeroallergens, or is fungal sensitization merely a manifestation of poly-sensitization? |
3 | Is the significance of fungal asthma different in children with severe asthma, when multiple aeroallergen sensitization is much more common, compared with adults? |
4 | There are multiple fungi which could be significant, and molecular techniques will detect fungi with ever greater sensitivity, so we what biomarkers will enable us to differentiate fungi causing pathology from those which are harmless commensals? |
5 | Are there different fungal asthma, with different molecular pathways; in other words, are all fungi equal and equivalent, which seems unlikely? |
6 | How do fungi interact with other aeroallergens, viruses and bacteria within the airway? |
7 | Should anti-neutrophilic strategies such as azithromycin be used to mitigate the effects of neutrophilic inflammation and tissue damage? |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bush, A. Kids, Difficult Asthma and Fungus. J. Fungi 2020, 6, 55. https://doi.org/10.3390/jof6020055
Bush A. Kids, Difficult Asthma and Fungus. Journal of Fungi. 2020; 6(2):55. https://doi.org/10.3390/jof6020055
Chicago/Turabian StyleBush, Andrew. 2020. "Kids, Difficult Asthma and Fungus" Journal of Fungi 6, no. 2: 55. https://doi.org/10.3390/jof6020055