Cladobotryum rhodochroum sp. nov. (Hypocreales, Ascomycota): A New Fungicolous Species Revealed by Morphology, Phylogeny, and Comparative Genomics
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Material/Strains
2.2. Morphological Study
2.3. Molecular Phylogenetic Analyses
2.4. DNA Extraction and Whole Genome Sequencing
2.5. Long Read Filtering, Correction, and Assembly
2.6. Gene Prediction and Functional Annotation
2.7. Mitochondrial DNA Characterization
2.8. Comparative Genomics
2.9. Biosynthetic Gene Clusters and Secondary Metabolism Comparative Analysis
2.10. Average Nucleotide Identity/Genomic Distance Analysis
3. Results and Discussion
3.1. Cladobotryum Rpb2-Based Phylogeny
3.2. Morphological Study
3.2.1. Diagnosis
3.2.2. Types
3.2.3. Description
3.3. Ecology-Distribution
3.3.1. Strains Examined
3.3.2. Notes
3.4. Comparative Genomics
3.4.1. Genome Features and Gene Prediction
3.4.2. Transposable Elements
3.4.3. Mitochondrial Genomes and Plasmids
3.5. Phylogenomics
3.6. Synteny and Genome Rearrangements in the Genus Cladobotryum
3.7. Orthologous Analysis
3.8. Secondary Metabolism and Biosynthetic Gene Clusters (BGCs)
3.9. Genomic Distance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Põldmaa, K. The Genus Hypomyces and Allied Fungicolous Fungi in Estonia. I. Species Growing on Aphyllophoralean Basidiomycetes. Folia Cryptogam. Est. 1999, 34, 15–31. [Google Scholar]
- Põldmaa, K. Three Species of Hypomyces Growing on Basidiomata of Stereaceae. Mycologia 2003, 95, 921–933. [Google Scholar] [CrossRef]
- Rogerson, C.T.; Samuels, G.J. Agaricicolous Species of Hypomyces. Mycologia 1994, 86, 839–866. [Google Scholar] [CrossRef]
- Sun, J.-Z.; Liu, X.-Z.; McKenzie, E.H.C.; Jeewon, R.; Liu, J.-K.J.; Zhang, X.-L.; Zhao, Q.; Hyde, K.D. Fungicolous Fungi: Terminology, Diversity, Distribution, Evolution, and Species Checklist. Fungal Divers. 2019, 95, 337–430. [Google Scholar] [CrossRef]
- Gea, F.J.; Navarro, M.J.; Santos, M.; Diánez, F.; Carrasco, J. Control of Fungal Diseases in Mushroom Crops while Dealing withFungicide Resistance: A Review. Microorganisms 2021, 9, 585. [Google Scholar] [CrossRef]
- Milic, N.; Christinaki, A.C.; Benaki, D.; Stavrou, A.A.; Tsafantakis, N.; Fokialakis, N.; Kouvelis, V.N.; Gonou-Zagou, Z. Polyphasic Systematics of the Fungicolous Genus Cladobotryum Based on Morphological, Molecular and Metabolomics Data. J. Fungi 2022, 8, 877. [Google Scholar] [CrossRef]
- Helfer, W. Pilze Auf Pilzfruchtkörpern: Untersuchungen Zur Ökologie, Systematik Und Chemie; Libri Botanici; IHW-Verlag: Eching, Germany, 1991; Volume 1, 157p. [Google Scholar]
- Wagner, C.; Anke, H.; Sterner, O. Rubrobramide, a Cytotoxic and Phytotoxic Metabolite from Cladobotryum rubrobrunnescens. J. Nat. Prod. 1998, 61, 501–502. [Google Scholar] [CrossRef]
- Tamm, H.; Põldmaa, K. Diversity, Host Associations, and Phylogeography of Temperate Aurofusarin-Producing Hypomyces/Cladobotryum Including Causal Agents of Cobweb Disease of Cultivated Mushrooms. Fungal Biol. 2013, 117, 348–367. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.-T.; Williams, K.; de Mattos-Shipley, K.M.J.; Song, Z.; Takebayashi, Y.; Simpson, T.J.; Spencer, J.; Bailey, A.M.; Willis, C.L. Cladobotric Acids: Metabolites from Cultures of Cladobotryum sp., Semisynthetic Analogues and Antibacterial Activity. J. Nat. Prod. 2022, 85, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Diánez, F.; Moreno-Gavíra, A.; Sánchez-Montesinos, B.; Gea, F.J. Cladobotryum mycophilum as Potential Biocontrol Agent. Agronomy 2019, 9, 891. [Google Scholar] [CrossRef]
- Zhang, Z.; Tamura, Y.; Tang, M.; Qiao, T.; Sato, M.; Otsu, Y.; Sasamura, S.; Taniguchi, M.; Watanabe, K.; Tang, Y. Biosynthesis of the Immunosuppressant (−)-FR901483. J. Am. Chem. Soc. 2021, 143, 132–136. [Google Scholar] [CrossRef]
- Zhou, T.; Katsuragawa, M.; Xing, T.; Fukaya, K.; Okuda, T.; Tokiwa, T.; Tashiro, E.; Imoto, M.; Oku, N.; Urabe, D.; et al. Cyclopeptides from the Mushroom Pathogen Fungus Cladobotryum varium. J. Nat. Prod. 2021, 84, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Gams, W.; Diederich, P.; Põldmaa, K. Fungicolous Fungi. In Biodiversity of Fungi; Mueller, G.M., Bills, G.F., Foster, M.S., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2004; pp. 343–392. [Google Scholar] [CrossRef]
- Samuels, G.J.; Seifert, K.A. Taxonomic Implications of Variation among Hypocrealean Anamorphs. In Pleomorphic Fungi: The Diversity and Its Taxonomic Implications; Sugiyama, J., Ed.; Elsevier: Tokyo, Japan, 1987; pp. 29–56. [Google Scholar] [CrossRef]
- Põldmaa, K. Generic Delimitation of the Fungicolous Hypocreaceae. Stud. Mycol. 2000, 45, 83–94. [Google Scholar]
- Põldmaa, K. Tropical Species of Cladobotryum and Hypomyces Producing Red Pigments. Stud. Mycol. 2011, 68, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Rossman, A.Y.; Seifert, K.A.; Samuels, G.J.; Minnis, A.M.; Schroers, H.-J.; Lombard, L.; Crous, P.W.; Põldmaa, K.; Cannon, P.F.; Summerbell, R.C.; et al. Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus 2013, 4, 41–51. [Google Scholar] [CrossRef]
- McKay, G.J.; Egan, D.; Morris, E.; Scott, C.; Brown, A.E. Genetic and morphological characterization of Cladobotryum species causing cobweb disease of mushrooms. Appl. Environ. Microbiol. 1999, 65, 606–610. [Google Scholar] [CrossRef]
- Xu, R.; Liu, X.; Peng, B.; Liu, P.; Li, Z.; Dai, Y.; Xiao, S. Genomic Features of Cladobotryum dendroides, Which Causes Cobweb Disease in Edible Mushrooms, and Identification of Genes Related to Pathogenicity and Mycoparasitism. Pathogens 2020, 9, 232. [Google Scholar] [CrossRef]
- Christinaki, A.C.; Myridakis, A.I.; Kouvelis, V.N. Genomic insights into the evolution and adaptation of secondary metabolite gene clusters in fungicolous species Cladobotryum mycophilum ATHUM6906. G3 Genes Genomes Genet. 2024, 14, jkae006. [Google Scholar] [CrossRef]
- Lan, Y.; Cong, Q.; Yu, Q.; Liu, L.; Cui, X.; Li, X.; Wang, Q.; Yang, S.; Yu, H.; Kong, Y. Genome Sequencing of Three Pathogenic Fungi Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease on Cultivated Mushrooms. Foods 2024, 13, 2779. [Google Scholar] [CrossRef]
- Kornerup, A.; Wanscher, J.H. Methuen Handbook of Colour, 3rd ed.; Methuen: London, UK, 1978. [Google Scholar]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Naser-Khdour, S.; Minh, B.Q.; Lanfear, R. Assessing Confidence in Root Placement on Phylogenies: An Empirical Study Using Nonreversible Models for Mammals. Syst. Biol. 2022, 71, 959–972. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Humann, J.L.; Lee, T.; Ficklin, S.; Main, D. Structural and Functional Annotation of Eukaryotic Genomes with GenSAS. Methods Mol. Biol. 2019, 1962, 29–51. [Google Scholar] [CrossRef] [PubMed]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Staerfeldt, H.-H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Kent, W.J. BLAT--the BLAST-like alignment tool. Genome Res. 2002, 12, 656–664. [Google Scholar] [CrossRef]
- Buchfink, B.; Reuter, K.; Drost, H.G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 2021, 18, 366–368. [Google Scholar] [CrossRef]
- Haas, B.J.; Salzberg, S.L.; Zhu, W.; Pertea, M.; Allen, J.E.; Orvis, J.; White, O.; Buell, C.R.; Wortman, J.R. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008, 9, R7. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef]
- Harris, M.A.; Clark, J.; Ireland, A.; Lomax, J.; Ashburner, M.; Foulger, R.; Eilbeck, K.; Lewis, S.; Marshall, B.; Mungall, C.; et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32, D258–D261. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.; Cuzick, A.; Seager, J.; Wood, V.; Rutherford, K.; Venkatesh, S.Y.; Sahu, J.; Iyer, S.V.; Khamari, L.; De Silva, N.; et al. PHI-base in 2022: A multi-species phenotype database for Pathogen-Host Interactions. Nucleic Acids Res. 2022, 50, D837–D847. [Google Scholar] [CrossRef] [PubMed]
- Drula, E.; Garron, M.-L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 2022, 50, D571–D577. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Waller, M.; Barrett, A.J.; Bateman, A. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014, 42, D503–D509. [Google Scholar] [CrossRef]
- Pierleoni, A.; Martelli, P.L.; Casadio, R. PredGPI: A GPI-anchor predictor. BMC Bioinform. 2008, 9, 392. [Google Scholar] [CrossRef]
- Saier, M.H., Jr.; Reddy, V.S.; Moreno-Hagelsieb, G.; Hendargo, K.J.; Zhang, Y.; Iddamsetty, V.; Lam, K.J.K.; Tian, N.; Russum, S.; Wang, J.; et al. The Transporter Classification Database (TCDB): 2021 update. Nucleic Acids Res. 2021, 49, D461–D467. [Google Scholar] [CrossRef]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef]
- Sun, J.; Lu, F.; Luo, Y.; Bie, L.; Xu, L.; Wang, Y. OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 2023, 51, W397–W403. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Mendes, F.K.; Vanderpool, D.; Fulton, B.; Hahn, M.W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 2021, 36, 5516–5518. [Google Scholar] [CrossRef]
- Kumar, S.; Suleski, M.; Craig, J.M.; Kasprowicz, A.E.; Sanderford, M.; Li, M.; Stecher, G.; Hedges, S.B. TimeTree 5: An Expanded Resource for Species Divergence Times. Mol. Biol. Evol. 2022, 39, msac174. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Navarro-Muñoz, J.C.; Selem-Mojica, N.; Mullowney, M.W.; Kautsar, S.A.; Tryon, J.H.; Parkinson, E.I.; De Los Santos, E.L.C.; Yeong, M.; Cruz-Morales, P.; Abubucker, S.; et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 2020, 16, 60–68. [Google Scholar] [CrossRef]
- Lalanne, C.; Silar, P. FungANI, a BLAST-based program for analyzing average nucleotide identity (ANI) between two fungal genomes, enables easy fungal species delimitation. Fungal Genet. Biol. 2025, 177, 103969. [Google Scholar] [CrossRef]
- Vu, D.; Groenewald, M.; De Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W. Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Index Fungorum Partnership. Species Fungorum. Royal Botanic Gardens, Kew. 2024. Available online: http://www.speciesfungorum.org/Names/Names.asp (accessed on 2 October 2025).
- Castanera, R.; López-Varas, L.; Borgognone, A.; LaButti, K.; Lapidus, A.; Schmutz, J.; Grimwood, J.; Pérez, G.; Pisabarro, A.G.; Grigoriev, I.V.; et al. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles. PLoS Genet. 2016, 12, e1006108. [Google Scholar] [CrossRef] [PubMed]
- Lorrain, C.; Feurtey, A.; Möller, M.; Haueisen, J.; Stukenbrock, E. Dynamics of transposable elements in recently diverged fungal pathogens: Lineage-specific transposable element content and efficiency of genome defenses. G3 2021, 11, jkab068. [Google Scholar] [CrossRef] [PubMed]
- Megarioti, A.H.; Kouvelis, V.N. The Coevolution of Fungal Mitochondrial Introns and Their Homing Endonucleases (GIY-YIG and LAGLIDADG). Genome Biol. Evol. 2020, 12, 1337–1354. [Google Scholar] [CrossRef]
- Christinaki, A.C.; Kanellopoulos, S.G.; Kortsinoglou, A.M.; Andrikopoulos, M.A.; Theelen, B.; Boekhout, T.; Kouvelis, V.N. Mitogenomics and mitochondrial gene phylogeny decipher the evolution of Saccharomycotina yeasts. Genome Biol. Evol. 2022, 14, evac073. [Google Scholar] [CrossRef]
- Monteiro-Vitorello, C.B.; Baidyaroy, D.; Bell, J.A.; Hausner, G.; Fulbright, D.W.; Bertrand, H. A circular mitochondrial plasmid incites hypovirulence in some strains of Cryphonectria parasitica. Curr. Genet. 2000, 37, 242–256. [Google Scholar] [CrossRef]
- Hausner, G. Fungal Genomics. Fungal Mitochondrial Genomes, Plasmids and Introns. Appl. Mycol. Biotechnol. 2003, 3, 101–131. [Google Scholar] [CrossRef]
- Altenhoff, A.M.; Boeckmann, B.; Capella-Gutierrez, S.; Dalquen, D.A.; DeLuca, T.; Forslund, K.; Huerta-Cepas, J.; Linard, B.; Pereira, C.; Pryszcz, L.P.; et al. Standardized benchmarking in the quest for orthologs. Nat. Methods 2016, 13, 425–430. [Google Scholar] [CrossRef]
- Tekaia, F.; Yeramian, E. Genome trees from conservation profiles. PLoS Comput. Biol. 2005, 1, e75. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar] [CrossRef]
- Rokas, A.; Williams, B.L.; King, N.; Carroll, S.B. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 2003, 425, 798–804. [Google Scholar] [CrossRef]
- Gabaldón, T.; Koonin, E.V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 2013, 14, 360–366. [Google Scholar] [CrossRef]
- Potočnik, I.; Vukojević, J.; Stajić, M.; Rekanović, E.; Milijašević, S.; Todorović, B.; Stepanović, M. In vitro toxicity of selected fungicides from the groups of benzimidazoles and demethylation inhibitors to Cladobotryum dendroides and Agaricus bisporus. J. Environ. Sci. health. Part. B Pestic. Food Contam. Agric. Wastes 2009, 44, 365–370. [Google Scholar] [CrossRef]
- Zhang, X.; Leahy, I.; Collemare, J.; Seidl, M.F. Genomic Localization Bias of Secondary Metabolite Gene Clusters and Association with Histone Modifications in Aspergillus. Genome Biol. Evol. 2024, 16, evae228. [Google Scholar] [CrossRef]
- Navarro-Muñoz, J.C.; Collemare, J. Evolutionary Histories of Type III Polyketide Synthases in Fungi. Front. Microbiol. 2020, 10, 3018. [Google Scholar] [CrossRef]
- Menicucci, A.; Iacono, S.; Ramos, M.; Fiorenzani, C.; Peres, N.A.; Timmer, L.W.; Prodi, A.; Baroncelli, R. Can whole genome sequencing resolve taxonomic ambiguities in fungi? The case study of Colletotrichum associated with ferns. Front. Fungal Biol. 2025, 6, 1540469. [Google Scholar] [CrossRef]












| Genome Statistics and Features | C. rhodochroum ATHUM 6904 | C. tenue CBS152.92 | C. rubrobrunnescens CBS176.92 |
|---|---|---|---|
| Genome size (bp) | 41,067,690 | 39,686,118 | 38,610,303 |
| Number of fragments | 12 | 45 | 60 |
| N50 (bp) | 5,646,276 | 1,727,773 | 1,766,473 |
| Largest fragment (bp) | 8,188,398 | 4,373,917 | 4,397,480 |
| Mean genome coverage | 36 | 74 | 35 |
| Number of predicted tRNA genes | 271 | 269 | 249 |
| Number of predicted rRNA genes | 60 | 57 | 52 |
| Number of predicted PCGs | 11,737 | 11,654 | 11,555 |
| Transposable elements (%) | 6.04 | 4.62 | 2.08 |
| Mitochondrial genome size (bp) | 82,745 | 115,194 | 103,881 |
| Mitochondrial plasmid(s) size (bp) | 15,129|8925 | 7786 | 4532 |
| BUSCO hypocreales_odb10 (%): | 99.1 | 99.2 | 98.8 |
| BUSCO fungi_odb10 (%): | 99.7 | 99.8 | 99.4 |
| Gene | ATHUM 6904 | CBS 152.92 | CBS 176.92 |
|---|---|---|---|
| rns | II | II | II |
| rnl | IC1, IC1, IC2, IA | II, IC1, IC1, IC2, IA | II, IC1, IC1, IC2, IA |
| atp6 | IB | IB | IB |
| atp9 | IA | IA | IA |
| cob | I (unclassified), ID, IA, IB | I (unclassified), ID, IB, IA, IB | I (unclassified), ID, IB, IA, IB |
| cox1 | IB, IB, ID, IB, IB, IB, IB, IB | IB, IB, ID, IB, IB, IB, IB, IB | IB, ID, IB, IB, IB, IB, IB |
| cox2 | IC2, IC2, IB, IC1 | IC2, IC2, IB | IC2, IC1 |
| cox3 | IC2, ID | IC2, ID, IA | IB, IC2, ID, IA |
| nad1 | I (unclassified), IB, IA | I (unclassified), IB, IA, IB | I (unclassified), IB, IA |
| nad2 | — | IC2 | IC2 |
| nad3 | — | IC2 | — |
| nad4L | — | — | IB |
| nad5 | IC2 | ID, IC2 | ID, IC2, ID |
| Total | 29 | 35 | 34 |
| C. rhodochroum | C. tenue | C. rubrobrunnescens | |
|---|---|---|---|
| Total synthase/synthatase PCGs | 148 | 161 | 146 |
| T1PKS | 56 | 56 | 56 |
| NRPS (-like) | 46 | 50 | 39 |
| terpene | 19 | 26 | 21 |
| fungal-RiPP (-like) | 19 | 21 | 23 |
| NI-siderophore | 2 | 2 | 2 |
| indole | 2 | 2 | 1 |
| isocyanide | 2 | 2 | 2 |
| NRP-metallophore | 1 | 1 | 1 |
| NAPAA | 1 | 1 | 1 |
| Total number of BGCs | 107 | 119 | 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Christinaki, A.C.; Floudas, D.; Myridakis, A.I.; Gonou-Zagou, Z.; Kouvelis, V.N. Cladobotryum rhodochroum sp. nov. (Hypocreales, Ascomycota): A New Fungicolous Species Revealed by Morphology, Phylogeny, and Comparative Genomics. J. Fungi 2026, 12, 117. https://doi.org/10.3390/jof12020117
Christinaki AC, Floudas D, Myridakis AI, Gonou-Zagou Z, Kouvelis VN. Cladobotryum rhodochroum sp. nov. (Hypocreales, Ascomycota): A New Fungicolous Species Revealed by Morphology, Phylogeny, and Comparative Genomics. Journal of Fungi. 2026; 12(2):117. https://doi.org/10.3390/jof12020117
Chicago/Turabian StyleChristinaki, Anastasia C., Dimitrios Floudas, Antonis I. Myridakis, Zacharoula Gonou-Zagou, and Vassili N. Kouvelis. 2026. "Cladobotryum rhodochroum sp. nov. (Hypocreales, Ascomycota): A New Fungicolous Species Revealed by Morphology, Phylogeny, and Comparative Genomics" Journal of Fungi 12, no. 2: 117. https://doi.org/10.3390/jof12020117
APA StyleChristinaki, A. C., Floudas, D., Myridakis, A. I., Gonou-Zagou, Z., & Kouvelis, V. N. (2026). Cladobotryum rhodochroum sp. nov. (Hypocreales, Ascomycota): A New Fungicolous Species Revealed by Morphology, Phylogeny, and Comparative Genomics. Journal of Fungi, 12(2), 117. https://doi.org/10.3390/jof12020117

