Tuning FLO1 Expression via Promoter Engineering Modulates Flocculation Degree and Acetic Acid Stress Tolerance in Saccharomyces cerevisiae
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Culture Media
2.2. Construction of Recombinant Yeast Strains
2.3. Ethanol Fermentation
2.4. Characterizations of Flocculated Particle
2.5. Flocculation Rate Measurement
2.6. Real-Time Quantitative PCR Analysis
2.7. Evaluation of Stress Tolerance
2.8. Analysis of Antioxidant Capacity and Intracellular ATP Concentration
2.9. Statistical Analysis
3. Results and Discussion
3.1. Enhancement of Cell Flocculation by Promoter Replacement
3.2. Variation in Flocculation Character by Different Recombinants
3.3. Effects of Flocculation Degree on Stress Tolerance of S. cerevisiae
3.4. Enhanced Expression of Stress-Responsive Genes in Flocculating Yeast
3.5. Flocculation Enhances Acetic Acid Tolerance by Sustaining High Intracellular ATP Levels
3.6. Ethanol Fermentation in Bioreactors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Pan, R.; den Haan, R.; Jiang, Y.; Xin, F. Recent progress on the bioconversion of lignocellulose to fuels and chemicals. 3 Biotech 2025, 15, 443. [Google Scholar] [CrossRef]
- Arruda, G.L.; Raymundo, M.T.F.R.; Cruz-Santos, M.M.; Shibukawa, V.P.; Jofre, F.M.; Prado, C.A.; da Silva, S.S.; Mussatto, S.I.; Santos, J.C. Lignocellulosic materials valorization in second generation biorefineries: An opportunity to produce fungal biopigments. Crit. Rev. Biotechnol. 2025, 45, 393–412. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cai, D.; Su, C.; Liao, Z.; Zhang, G.; Jiang, Y.; Wang, Y.; Gao, Y.; Liu, Y.; Tan, T. Robust Saccharomyces cerevisiae by rational metabolic engineering for effective ethanol production from undetoxified steam-exploded corn stover hydrolysate. Bioresour. Technol. 2025, 431, 132605. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Cui, Q.; Feng, Y.; Xuan, J. Composition of lignocellulose hydrolysate in different biorefinery strategies: Nutrients and inhibitors. Molecules 2024, 29, 2275. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, C.; Cheng, Y.; Guo, S.; Lu, H.; Xie, X.; Ji, H.; Qiao, Y. Mechanism and improvement of yeast tolerance to biomass-derived inhibitors: A review. Biotechnol. Adv. 2025, 81, 108562. [Google Scholar] [CrossRef]
- Cámara, E.; Olsson, L.; Zrimec, J.; Zelezniak, A.; Geijer, C.; Nygård, Y. Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol. Adv. 2022, 57, 107947. [Google Scholar] [CrossRef] [PubMed]
- Menegon, Y.A.; Gross, J.; Jacobus, A.P. How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses. Curr. Genet. 2022, 68, 319–342. [Google Scholar] [CrossRef]
- Wan, C.; Zhang, M.M.; Fang, Q.; Xiong, L.; Zhao, X.Q.; Bai, F.W. Impact of zinc sulfate addition on dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in antioxidant effect of zinc. Metallomics 2015, 7, 322–332. [Google Scholar] [CrossRef]
- Saha, N.; Swagatika, S.; Tomar, R.S. Investigation of the acetic acid stress response in Saccharomyces cerevisiae with mutated H3 residues. Microb. Cell 2023, 10, 217–232. [Google Scholar] [CrossRef]
- Vall-Llaura, N.; Mir, N.; Garrido, L.; Vived, C.; Cabiscol, E. Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity. Redox Biol. 2019, 24, 101229. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, W.B.; Sun, M.L.; Tang, R.Q.; Bai, L.; Alper, H.S.; Zhao, X.Q. Deletion of NGG1 in a recombinant Saccharomyces cerevisiae improved xylose utilization and affected transcription of genes related to amino acid metabolism. Front. Microbiol. 2022, 13, 960114. [Google Scholar] [CrossRef]
- Ye, P.L.; Wang, X.Q.; Yuan, B.; Liu, C.G.; Zhao, X.Q. Manipulating cell flocculation-associated protein kinases in Saccharomyces cerevisiae enables improved stress tolerance and efficient cellulosic ethanol production. Bioresour. Technol. 2022, 348, 126758. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Bai, F.W. Yeast flocculation: New story in fuel ethanol production. Biotechnol. Adv. 2009, 27, 849–856. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, M.; Xue, C.; Bai, F.; Zhao, X. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation. J. Biosci. Bioeng. 2017, 123, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Westman, J.O.; Mapelli, V.; Taherzadeh, M.J.; Franzén, C.J. Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production. Appl. Environ. Microbiol. 2014, 80, 6908–6918. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Zhao, X.; Ge, X.; Bai, F. Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution. J. Biotechnol. 2007, 131, 270–275. [Google Scholar] [CrossRef]
- Xue, C.; Zhao, X.Q.; Bai, F.W. Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions. Biotechnol. Bioeng. 2010, 105, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Sae-Tang, K.; Bumrungtham, P.; Mhuantong, W.; Horphul, P.; Thammarongtham, C.; Laoteng, K. Engineering flocculation for improved tolerance and production of d-lactic acid in Pichia pastoris. J. Fungi 2023, 9, 409. [Google Scholar] [CrossRef]
- He, L.Y.; Zhao, X.Q.; Bai, F.W. Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production. Appl. Energ. 2012, 100, 33–40. [Google Scholar]
- Fleming, A.B.; Beggs, S.; Church, M.; Tsukihashi, Y.; Pennings, S. The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochim. Biophys. Acta 2014, 1839, 1242–1255. [Google Scholar]
- Sariki, S.K.; Kumawat, R.; Singh, V.; Tomar, R.S. Flocculation of Saccharomyces cerevisiae is dependent on activation of Slt2 and Rlm1 regulated by the cell wall integrity pathway. Mol. Microbiol. 2019, 112, 1350–1369. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.; Marcondes, W.F.; Carvalho, W.; Arantes, V. High yield biorefinery products from sugarcane bagasse: Prebiotic xylooligosaccharides, cellulosic ethanol, cellulose nanofibrils and lignin nanoparticles. Bioresour. Technol. 2021, 342, 125970. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, O.; Hayashi, N.; Kuroki, R.; Sone, H. Region of Flo1 proteins responsible for sugar recognition. J. Bacteriol. 1998, 180, 6503–6510. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Smukalla, S.; Caldara, M.; Pochet, N.; Beauvais, A.; Guadagnini, S.; Yan, C.; Vinces, M.D.; Jansen, A.; Prevost, M.C.; Latgé, J.P.; et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 2008, 135, 726–737. [Google Scholar] [CrossRef]
- Deed, R.C.; Fedrizzi, B.; Gardner, R.C. Saccharomyces cerevisiae FLO1 gene demonstrates genetic linkage to increased fermentation rate at low temperatures. G3 Genes Genomes Genet. 2017, 7, 1039–1048. [Google Scholar] [CrossRef]
- Souza, B.C.; Vargas, B.O.; Seguchi, G.; Carazzolle, M.F.; Guimarães Pereira, G.A.; de Mello, F.D.S.B. Promoter choice for XKS1 overexpression impacts xylose metabolism in Saccharomyces cerevisiae. J. Appl. Microbiol. 2025, 136, lxaf042. [Google Scholar] [CrossRef]
- Cui, D.; Liu, L.; Sun, L.; Lin, X.; Lin, L.; Zhang, C. Genome-wide analysis reveals Hsf1 maintains high transcript abundance of target genes controlled by strong constitutive promoter in Saccharomyces cerevisiae. Biotechnol. Biofuels Bioprod. 2023, 16, 72. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, X.Q.; Chang, A.K.; Zhang, Q.M.; Bai, F.W. Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab. Eng. 2012, 14, 1–8. [Google Scholar] [CrossRef]
- Jilani, S.B.; Olson, D.G. Mechanism of furfural toxicity and metabolic strategies to engineer tolerance in microbial strains. Microb. Cell Fact. 2023, 22, 221. [Google Scholar] [CrossRef]
- Yang, P.; Feng, J.; Chen, J. Engineered S. cerevisiae construction for high-gravity ethanol production and targeted metabolomics. Appl. Microbiol. Biotechnol. 2025, 109, 67. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Z.; Chen, J.; Wang, T.; Wu, P.; Ying, Y. Simultaneous determination of 12 preservatives in pastries using gas chromatography-mass spectrometry. Foods 2023, 12, 3819. [Google Scholar]
- Guaragnella, N.; Antonacci, L.; Passarella, S.; Marra, E.; Giannattasio, S. Hydrogen peroxide and superoxide anion production during acetic acid-induced yeast programmed cell death. Folia Microbiol. 2007, 52, 237–240. [Google Scholar] [CrossRef]
- Zheng, D.Q.; Wu, X.C.; Wang, P.M.; Chi, X.Q.; Tao, X.L.; Li, P.; Li, Y.D. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2011, 38, 415–422. [Google Scholar]
- Lee, Y.; Nasution, O.; Lee, Y.M.; Kim, E.; Choi, W.; Kim, W. Overexpression of PMA1 enhances tolerance to various types of stress and constitutively activates the SAPK pathways in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2017, 101, 229–239. [Google Scholar]
- Nasution, O.; Lee, Y.M.; Kim, E.; Lee, Y.; Kim, W.; Choi, W. Overexpression of OLE1 enhances stress tolerance and constitutively activates the MAPK HOG pathway in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2017, 114, 620–631. [Google Scholar]
- Oh, E.J.; Wei, N.; Kwak, S.; Kim, H.; Jin, Y.S. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae. J. Biotechnol. 2019, 292, 1–4. [Google Scholar] [CrossRef]
- Chen, G.; Shan, Y.; Wang, J.; Zhang, Q.; Yao, L.; Chen, X. Multiple lignocellulosic inhibitor-tolerant Saccharomyces cerevisiae strains developed by evolutionary engineering and CRISPR/Cas9 gene editing technology. J. Agric. Food Chem. 2025, 73, 23486–23497. [Google Scholar]
- Martani, F.; Fossati, T.; Posteri, R.; Signori, L.; Porro, D.; Branduardi, P. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains. Yeast 2013, 30, 365–378. [Google Scholar]
- Cheng, C.; Zhao, X.Q.; Zhang, M.M.; Bai, F.W. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae. FEMS Yeast Res. 2016, 16, fow010. [Google Scholar]
- Zhang, M.M.; Xiong, L.; Tang, Y.J.; Zhang, F.L.; Li, Y.; Zhao, X.Q.; Bai, F.W. Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. Biotechnol. Biofuels 2019, 12, 116. [Google Scholar] [CrossRef]
- Beck, T.; Hall, M.N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 1999, 402, 689–692. [Google Scholar] [CrossRef]
- Palma, M.; Guerreiro, J.F.; Sá-Correia, I. Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A physiological genomics perspective. Front. Microbiol. 2018, 9, 274. [Google Scholar] [CrossRef]
- Guaragnella, N.; Stirpe, M.; Marzulli, D.; Mazzoni, C.; Giannattasio, S. Acid stress triggers resistance to acetic acid-induced regulated cell death through Hog1 activation which requires RTG2 in yeast. Oxid. Med. Cell. Longev. 2019, 2019, 4651062. [Google Scholar] [CrossRef]
- Pampulha, M.E.; Loureiro-Dias, M.C. Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2000, 184, 69–72. [Google Scholar] [CrossRef]
- Stratford, M.; Nebe-von-Caron, G.; Steels, H.; Novodvorska, M.; Ueckert, J.; Archer, D.B. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Int. J. Food Microbiol. 2013, 161, 164–171. [Google Scholar]
- Ding, J.; Holzwarth, G.; Penner, M.H.; Patton-Vogt, J.; Bakalinsky, A.T. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. FEMS Microbiol. Lett. 2015, 362, 1–7. [Google Scholar] [CrossRef]
- Mukherjee, V.; Lind, U.; St Onge, R.P.; Blomberg, A.; Nygård, Y. A CRISPR interference screen of essential genes reveals that proteasome regulation dictates acetic acid tolerance in Saccharomyces cerevisiae. mSystems 2021, 6, e0041821. [Google Scholar] [CrossRef]
- N’Guessan, A.; Tong, W.Y.; Heydari, H.; Nguyen Ba, A.N. Refining the resolution of the yeast genotype–phenotype map using single-cell RNA-sequencing. eLife 2025, 13, RP93906. [Google Scholar]
- Nabeela, S.; McSwiggin, H.; Magalhaes, R.D.M.; Mattos, E.C.; Mannan, M.; Dillon, J.T.; Barbarino, A.; Youssef, E.G.; Singh, S.; Yan, W.; et al. A spatial transcriptomic atlas of the host response to oropharyngeal candidiasis. mBio 2025, 16, e008492548. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.Y.; Chen, Y.F.; Zhao, C.C.; Zhang, S.J.; Guo, X.W.; Xiao, D.G. Simultaneous determination of furfural, acetic acid, and 5-hydroxymethylfurfural in corncob hydrolysates using liquid chromatography with ultraviolet detection. J. AOAC Int. 2013, 96, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Albillos-Arenal, S.; Alonso Del Real, J.; Adam, A.C.; Barrio, E.; Querol, A. Chromosome III aneuploidy enhances ethanol tolerance in industrial Saccharomyces cerevisiae by increasing the TUP1 copy number. Microb. Biotechnol. 2025, 18, e70244. [Google Scholar] [CrossRef]







| Strains | Description | Source |
|---|---|---|
| Escherichia coli DH5α | For plasmid construction and propagation | Lab preservation, Shanghai, China |
| BY4741 | S. cerevisiae, haploid, MATa, his3∆1, leu2∆0, met15∆0 and ura3∆0 | Euroscarf, Oberursel, Germany |
| Cas9-G418 | p414, ARS/CEN, KanMX, TEF1p-SpCas9-CYC1t | Lab preservation, Shanghai, China |
| BY4741-Cas9 | Transform Cas9-G418 plasmid into BY4741 | This study |
| gRNA-FLO1p | Plasmid expressing gRNA targeting to the native promoter of FLO1 | This study |
| BY4741 PGK1p-FLO1 | BY4741, FLO1p::PGK1p | This study |
| BY4741 TPS1p-FLO1 | BY4741, FLO1p::TPS1p | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ye, P.-L.; Wang, W.-B.; Xiong, L.; Peng, G.-X.; Cheng, C.; Zhao, X.-Q. Tuning FLO1 Expression via Promoter Engineering Modulates Flocculation Degree and Acetic Acid Stress Tolerance in Saccharomyces cerevisiae. J. Fungi 2026, 12, 47. https://doi.org/10.3390/jof12010047
Ye P-L, Wang W-B, Xiong L, Peng G-X, Cheng C, Zhao X-Q. Tuning FLO1 Expression via Promoter Engineering Modulates Flocculation Degree and Acetic Acid Stress Tolerance in Saccharomyces cerevisiae. Journal of Fungi. 2026; 12(1):47. https://doi.org/10.3390/jof12010047
Chicago/Turabian StyleYe, Pei-Liang, Wei-Bin Wang, Liang Xiong, Guang-Xian Peng, Cheng Cheng, and Xin-Qing Zhao. 2026. "Tuning FLO1 Expression via Promoter Engineering Modulates Flocculation Degree and Acetic Acid Stress Tolerance in Saccharomyces cerevisiae" Journal of Fungi 12, no. 1: 47. https://doi.org/10.3390/jof12010047
APA StyleYe, P.-L., Wang, W.-B., Xiong, L., Peng, G.-X., Cheng, C., & Zhao, X.-Q. (2026). Tuning FLO1 Expression via Promoter Engineering Modulates Flocculation Degree and Acetic Acid Stress Tolerance in Saccharomyces cerevisiae. Journal of Fungi, 12(1), 47. https://doi.org/10.3390/jof12010047
