Integrated Phenotypic, Physiological, Biochemical, and Transcriptomic Analyses Reveal the Molecular Response Mechanisms of Populus to Poplar Canker
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Materials and Treatment
2.2. RNA Extraction and cDNA Synthesis
2.3. Quantitative Real-Time PCR (qPCR) Analysis
2.4. Growth and Physiological Parameter Measurements
2.5. RNA-seq Library Construction and Sequencing
2.6. Differential Expression Gene Analysis and Functional Annotation
2.7. qRT-PCR Validation of Gene Expression
2.8. WGCNA
2.9. Identification and Characterization of PtrPP2C Gene Family in P. trichocarpa
2.10. qRT-PCR Validation of Key PtrPP2C Genes
2.11. Statistical Analysis
3. Results
3.1. Morphological and Physiological Responses of Pdpap to B. dothidea Infection
3.2. The DEGs of the Transcriptome and Functional Enrichment
3.3. Analysis of Core Disease Resistance Pathways in Transcriptome
3.4. Validation of RNA-seq Results by qPCR
3.5. Identification of Key Disease Resistance Genes in PdPap via WGCNA
3.6. Identification and Characterization of PtrPP2C Family in P. trichocarpa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, F.; Li, H.; Guo, X.; Sun, P.; Ma, N.; Li, L.; Xuan, M.; Luo, Z.; Tian, Y.; You, C.; et al. MdPOB1L Positively Regulates Disease Resistance Against Botryosphaeria dothidea by Manipulating MdNPR1 Protein Stability in Malus domestica. Mol. Plant Pathol. 2025, 26, e70129. [Google Scholar] [CrossRef]
- Wu, W.; Yan, C.; Pan, N.; An, J.; Chen, H.; Fei, Q.; Xu, S.; Yang, L.-L.; Yang, S. Design and Synthesis of Ferulic Acid Derivatives with Trifluoromethyl Pyrimidine and Amide Frameworks for Combating Postharvest Kiwifruit Soft Rot Fungi. J. Agric. Food Chem. 2025, 73, 14806–14816. [Google Scholar] [CrossRef]
- Marsberg, A.; Kemler, M.; Jami, F.; Nagel, J.H.; Postma-Smidt, A.; Naidoo, S.; Wingfield, M.J.; Crous, P.W.; Spatafora, J.W.; Hesse, C.N.; et al. Botryosphaeria dothidea: A latent pathogen of global importance to woody plant health. Mol. Plant Pathol. 2017, 18, 477–488. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, W.; Crous, P.; Wang, H.; Jiao, C.; Huang, F.; Pu, Z.; Zhu, Z.; Li, H. Species of Botryosphaeriaceae associated with citrus branch diseases in China. Persoonia-Mol. Phylogeny Evol. Fungi 2021, 47, 106–135. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Xiong, M.; Sun, Y.; Xiong, X.; Cheng, L.; Luo, C.; Wang, L.; Chao, S. BdUth1 Mediates Mitophagy by Recruiting BdAtg8 to Govern the Pathogenicity of Botryosphaeria dothidea. Plant Cell Environ. 2025, 48, 6304–6306. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.-L.; Cheng, Z.-Z.; Leng, W.-F.; Li, B.-H.; Xu, X.-M.; Lian, S.; Wang, C.-X. Progression of Symptoms Caused by Botryosphaeria dothidea on Apple Branches. Phytopathology 2021, 111, 1551–1559. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Meng, J.; Zhang, D.; Zeng, C.; Wang, X.; Wang, F.; Zhu, K.; Li, G.; Liu, J. Genome Sequence Resource of Botryosphaeria dothidea Strain XNHG241, a Causal Agent of Peach Gummosis. Plant Dis. 2023, 107, 2205–2208. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, Y.; Liu, L.; Liu, Y.; Gong, K.; Zhao, Z.; Chi, W.; Li, Y.; Li, C.; Pan, H. First Report of Botryosphaeria dothidea Causing Leaf Spot on Euonymus japonicus in China. Plant Dis. 2025, 109, 2209. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Wang, H.; Zheng, Y.; Zhao, Z.; Gong, K.; Chi, W.; Li, X.; Sun, X.; Pan, H. First Report of Botryosphaeria dothidea Causing Leaf Spot on Euonymus fortunei in China. Plant Dis. 2025, 109, 2208. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, M.; Shi, X.; Cheng, Y.; Zhu, L.; Xue, L.; Ruan, X.; Zhao, K. First Report of Botryosphaeria dothidea Causing Leaf Blight on Parrotia subaequalis in China. Plant Dis. 2024, 108, 3418. [Google Scholar] [CrossRef]
- Zhi, X.; Rong, X.; Liang, H.; Shan, H.; Chen, Z. First Report of Leaf Blight of Syringa oblata Caused by Botryosphaeria dothidea in China. Plant Dis. 2024, 108, 3417. [Google Scholar] [CrossRef]
- Remolif, G.; Guarnaccia, V.; Spadaro, D. First Report of Nut Rot Caused by Botryosphaeria dothidea on Almond in Italy. Plant Dis. 2024, 108, 3414. [Google Scholar] [CrossRef]
- Vučković, N.; Duduk, N.; Rekanović, E.; Duduk, B.; Vico, I. First Report of Botryosphaeria dothidea Causing Root Rot of Sugar Beet in Serbia. Plant Dis. 2024, 108, 3658. [Google Scholar] [CrossRef]
- Chen, Y.; Bi, F.; Yang, Y.; Yang, R.; Guo, X.; Xu, Y. First Report of Botryosphaeria dothidea Causing Fruit Soft Rot on Pyracantha fortuneana in China. Plant Dis. 2025, 109, 2224. [Google Scholar] [CrossRef]
- Sun, Z.; Hao, B.; Wang, C.; Li, S.; Xu, Y.; Li, B.; Wang, C. Biocontrol features of Pseudomonas syringae B-1 against Botryosphaeria dothidea in apple fruit. Front. Microbiol. 2023, 14, 1131737. [Google Scholar] [CrossRef]
- Gu, K.-D.; Zhang, Q.-Y.; Yu, J.-Q.; Wang, J.-H.; Zhang, F.-J.; Wang, C.-K.; Zhao, Y.-W.; Sun, C.-H.; You, C.-X.; Hu, D.-G.; et al. R2R3-MYB Transcription Factor MdMYB73 Confers Increased Resistance to the Fungal Pathogen Botryosphaeria dothidea in Apples via the Salicylic Acid Pathway. J. Agric. Food Chem. 2021, 69, 447–458. [Google Scholar] [CrossRef]
- Sun, X.; Wang, F.; Wang, Y.; Zhang, Y.; Zhang, Y.; Liu, Y.; Sun, X.; Qi, K.; Xie, Z.; Zhang, S. Transcription factors Pbr3RAV2 and PbrTTG1 regulate pear resistance to Botryosphaeria dothidea via the autophagy pathway. Plant Physiol. 2024, 195, 3024–3038. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, D.; Wang, D.; Chen, H.; Jin, Z.; Fang, Y.; Huang, Y.; Lin, H. Infection mechanism of Botryosphaeria dothidea and the disease resistance strategies of Chinese hickory (Carya cathayensis). BMC Plant Biol. 2024, 24, 938. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, P.; Han, X.; Li, X.; Wang, H.; Wang, Y.; Wang, X.; Zeng, Q. Genome and CRISPR/Cas9 system of a widespread forest tree (Populus alba) in the world. Plant Biotechnol. J. 2025, 23, 857–859. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Liu, Q.; Gong, J.; Wulan, T.; Zhou, M.; Zheng, Y.; Shen, Z. Determinants of growth and carbon accumulation of common plantation tree species in the three northern regions, China: Responses to climate and management strategies. Sci. Total Environ. 2023, 900, 165831. [Google Scholar] [CrossRef] [PubMed]
- Craig, M.E.; Harman-Ware, A.E.; Cope, K.R.; Kalluri, U.C. Intraspecific variability in plant and soil chemical properties in a common garden plantation of the energy crop Populus. PLoS ONE 2024, 19, e0309321. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, E.H.; Springer, C.J.; Helliker, B.R.; Poethig, R.S. The carbon economics of vegetative phase change. Plant Cell Environ. 2022, 45, 1286–1297. [Google Scholar] [CrossRef]
- Ghezehei, S.B.; Nichols, E.G.; Hazel, D.W. Productivity and cost-effectiveness of short-rotation hardwoods on various land types in the southeastern USA. Int. J. Phytoremediat. 2020, 22, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Fu, Y.; Li, J.; Shen, W.; Wang, L.; Li, Z.; Zhang, S.; Liu, H.; Su, X.; Zhao, J. Why the adventitious roots of poplar are so colorful: RNAseq and metabolomic analysis reveal anthocyanin accumulation in canker pathogens-induced adventitious roots in poplar. Planta 2025, 261, 19. [Google Scholar] [CrossRef]
- Li, A.; He, W. Molecular Aspects of an Emerging Poplar Canker Caused by Lonsdalea populi. Front. Microbiol. 2019, 10, 2496. [Google Scholar] [CrossRef]
- Fan, K.; Wang, J.; Fu, L.; Zhang, G.F.; Bin Wu, H.; Feng, C.; Qu, J.L. Baseline Sensitivity and Control Efficacy of Pyraclostrobin Against Botryosphaeria dothidea Isolates in China. Plant Dis. 2019, 103, 1458–1463. [Google Scholar] [CrossRef]
- Dong, F.; Wang, Y.; Tang, M. Effects of Laccaria bicolor on Gene Expression of Populus trichocarpa Root under Poplar Canker Stress. J. Fungi 2021, 7, 1024. [Google Scholar] [CrossRef]
- Xu, S.; Li, Q.; Jin, H.; Li, A.; Wang, Y. Trehalose Biosynthetic Genes Are Involved in the Development and Pathogenesis in the Poplar Canker Fungus Cytospora chrysosperma. Phytopathology 2025, 115, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Luomaranta, M.; Grones, C.; Choudhary, S.; Milhinhos, A.; Kalman, T.A.; Nilsson, O.; Robinson, K.M.; Street, N.R.; Tuominen, H. Systems genetic analysis of lignin biosynthesis in Populus tremula. New Phytol. 2024, 243, 2157–2174. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Chen, T.; Zhang, R.; Wang, Y.; Xiao, J.; Ding, X.; Zhang, S.; Li, Q. A global survey of bicarbonate stress-induced pre-mRNA alternative splicing in soybean via integrative analysis of Iso-seq and RNA-seq. Int. J. Biol. Macromol. 2024, 278, 135067. [Google Scholar] [CrossRef]
- Hu, H.; Liu, Y.; He, B.; Chen, X.; Ma, L.; Luo, Y.; Fei, X.; Wei, A. Integrative physiological, transcriptome, and metabolome analysis uncovers the drought responses of two Zanthoxylum bungeanum cultivars. Ind. Crops Prod. 2022, 189, 115812. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Wang, W.; Zhang, H.; Wu, Y.; Gao, X.; Gao, D.; Li, X. Physiological, cytological and multi-omics analysis revealed the molecular response of Fritillaria cirrhosa to Cd toxicity in Qinghai-Tibet Plateau. J. Hazard. Mater. 2024, 472, 134611. [Google Scholar] [CrossRef]
- Xu, X.; Yu, T.; Wei, J.; Ma, X.; Liu, Y.; Zhang, J.; Zheng, L.; Hou, Z.; Chen, J.; Zhou, Y.; et al. TaWRKY24 integrates the tryptophan metabolism pathways to participate in defense against Fusarium crown rot in wheat. Plant J. 2024, 120, 1764–1785. [Google Scholar] [CrossRef]
- Diao, J.; Wang, J.; Zhang, P.; Hao, X.; Wang, Y.; Liang, L.; Zhang, Y.; Ma, W.; Ma, L. Transcriptome Analysis Reveals the Important Role of WRKY28 in Fusarium oxysporum Resistance. Front. Plant Sci. 2021, 12, 720679. [Google Scholar] [CrossRef]
- Diao, J.; Gu, W.; Jiang, Z.; Wang, J.; Zou, H.; Zong, C.; Ma, L. Comprehensive Analysis of Universal Stress Protein Family Genes and Their Expression in Fusarium oxysporum Response of Popul. davidiana × P. alba var. pyramidalis Louche Based Transcriptome. Int. J. Mol. Sci. 2023, 24, 5405. [Google Scholar] [CrossRef]
- Jilin Provincial Bureau of Quality and Technical Supervision. DB22/T 1768-2013; Technical Regulation for Comprehensive Management of Poplar Canker Disease. Jilin Standard Press: Changchun, China, 2013.
- Liu, S.; Dai, L.; Qu, G.; Lu, X.; Pan, H.; Fu, X.; Dong, A.; Yang, L. Integrative transcriptome and WGCNA analysis reveal key genes mainly in response to Alternaria alternata in Populus simonii × P. nigra. Front. Plant Sci. 2025, 16, 1540718. [Google Scholar] [CrossRef]
- Liu, J.; Tang, X.; Zhang, H.; Wei, M.; Zhang, N.; Si, H. Transcriptome Analysis of Potato Leaves under Oxidative Stress. Int. J. Mol. Sci. 2024, 25, 5994. [Google Scholar] [CrossRef]
- Ayatollahi, Z.; Kazanaviciute, V.; Shubchynskyy, V.; Kvederaviciute, K.; Schwanninger, M.; Rozhon, W.; Stumpe, M.; Mauch, F.; Bartels, S.; Ulm, R.; et al. Dual control of MAPK activities by AP2C1 and MKP1 MAPK phosphatases regulates defence responses in Arabidopsis. J. Exp. Bot. 2022, 73, 2369–2384. [Google Scholar] [CrossRef]
- Mamun, M.A.; Lee, B.R.; Park, S.H.; Muchlas, M.; Bae, D.W.; Kim, T.H. Interactive regulation of immune-related resistance genes with salicylic acid and jasmonic acid signaling in systemic acquired resistance in the Xanthomonas-Brassica pathosystem. J. Plant Physiol. 2024, 302, 154323. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, H.; Xiao, M.; Liu, H.; He, H.; Peng, L.; Tao, Q.; Tang, X.; Zhang, Y.; Huang, R.; et al. A plant growth-promoting bacterium supports cadmium detoxification of rice by inducing phenylpropanoid and flavonoid biosynthesis. J. Hazard. Mater. 2025, 484, 136795. [Google Scholar] [CrossRef]
- Liu, C.; Dong, X.; Yang, D.; Ge, Q.; Dai, J.; Ma, Z.; Wang, R.; Zhao, H. Genome-Wide Identification and Expression Analysis of PP2C Gene Family in Eelgrass. Genes 2025, 16, 657. [Google Scholar] [CrossRef]
- Yang, J.; Chen, R.; Liu, W.; Fan, C. Genome-wide identification, phylogenetic investigation and abiotic stress responses analysis of the PP2C gene family in litchi (Litchi chinensis Sonn.). Front. Plant Sci. 2025, 16, 1547526. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Z.; Luo, S.; Li, X.; Lyu, J.; Liu, Z.; Wan, Z.; Yu, J. Genome-wide identification and expression analysis of the cucumber PP2C gene family. BMC Genom. 2022, 23, 563. [Google Scholar] [CrossRef]
- Guo, L.; Lu, S.; Liu, T.; Nai, G.; Ren, J.; Gou, H.; Chen, B.; Mao, J. Genome-Wide Identification and Abiotic Stress Response Analysis of PP2C Gene Family in Woodland and Pineapple Strawberries. Int. J. Mol. Sci. 2023, 24, 4049. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, L.; Wan, Y.; Liu, F. Genome-wide characterization of the PP2C gene family in peanut (Arachis hypogaea L.) and the identification of candidate genes involved in salinity-stress response. Front. Plant Sci. 2023, 14, 1093913. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Wang, Y.; Qiu, X.; Gao, G.; Zhu, A.; Chen, P.; Wang, X.; Chen, K.; Chen, J.; et al. Genome-Wide Identification and Expression Analysis of BnPP2C Gene Family in Response to Multiple Stresses in Ramie (Boehmeria nivea L.). Int. J. Mol. Sci. 2023, 24, 15282. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shen, D.; Lin, H.; Gu, Y.; Diao, J.; Ma, L. Integrated Phenotypic, Physiological, Biochemical, and Transcriptomic Analyses Reveal the Molecular Response Mechanisms of Populus to Poplar Canker. J. Fungi 2026, 12, 3. https://doi.org/10.3390/jof12010003
Shen D, Lin H, Gu Y, Diao J, Ma L. Integrated Phenotypic, Physiological, Biochemical, and Transcriptomic Analyses Reveal the Molecular Response Mechanisms of Populus to Poplar Canker. Journal of Fungi. 2026; 12(1):3. https://doi.org/10.3390/jof12010003
Chicago/Turabian StyleShen, Dongchen, Hui Lin, Yaru Gu, Jian Diao, and Ling Ma. 2026. "Integrated Phenotypic, Physiological, Biochemical, and Transcriptomic Analyses Reveal the Molecular Response Mechanisms of Populus to Poplar Canker" Journal of Fungi 12, no. 1: 3. https://doi.org/10.3390/jof12010003
APA StyleShen, D., Lin, H., Gu, Y., Diao, J., & Ma, L. (2026). Integrated Phenotypic, Physiological, Biochemical, and Transcriptomic Analyses Reveal the Molecular Response Mechanisms of Populus to Poplar Canker. Journal of Fungi, 12(1), 3. https://doi.org/10.3390/jof12010003

