Trametes polyzona as a Source for Bioremediation and Industrial Applications: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection
2.4. Data Extraction
3. Results and Discussion
3.1. Study Selection Results
3.2. Content Analysis. Systematic Literature Review
3.2.1. General Characteristics
3.2.2. Biological Activities of T. polyzona
3.2.3. Enzymatic Activity of T. polyzona
| Fungus/Strain | Substrate | Fermentation Type a | Culture Conditions b | Enzyme Activity | Reported Yield/Titer (Maximum) | Method of Analysis c | Ref. |
|---|---|---|---|---|---|---|---|
| C. polyzona MUCL 38443 | Tree leaves | SSF | pH = 6, T = 27 °C, t = 7–14 days | CMC, Xyl, FPA, Lac, MnP | CMC: 9 U/mL | DNS; ABTS; Phenol red (UV–Vis) | [36] |
| C. polyzona MUCL 38443 | Wheat straw | SSF | pH = 6, T = 27 °C, t = 7–14 days | CMC, Xyl, FPA, Lac, MnP | CMC: 5 U/mL | DNS; ABTS; Phenol red (UV–Vis) | [36] |
| C. polyzona MUCL 38443 | Apple peels | SSF | pH = 6, T = 27 °C, t = 7–14 days | CMC, Xyl, FPA, Lac, MnP | CMC: 16 U/mL | DNS; ABTS; Phenol red (UV–Vis) | [36] |
| C. polyzona MUCL 38443 | Banana peels | SSF | pH = 6, T = 27 °C, t = 7–14 days | CMC, Xyl, FPA, Lac, MnP | CMC: 21 U/mL | DNS; ABTS; Phenol red (UV–Vis) | [36] |
| C. polyzona MUCL 38443 | Tree leaves | SmF | pH = 6, T = 27 °C, t = 3–10 days | CMC, Xyl, FPA, Lac, MnP | Lac: 1.78 U/mL | DNS; ABTS; Phenol red (UV–Vis) | [36] |
| C. polyzona MUCL 38443 | Mandarin peels | SmF | pH = 6, T = 27 °C, t = 3–10 days | CMC, Xyl, FPA, Lac, MnP | CMC: 94 U/mL | DNS; ABTS; Phenol red (UV–Vis) | [36] |
| T. polyzona BKW-001 | Cassava peels | SSF | pH = 5, T = 30 °C, t = 14 days | EG, β-Glu, Exg, Xyl, Amy, Cel | Amy: 56.2 U/mL | HPLC/PAHBAH (UV–Vis) | [20] |
| T. polyzona BKW-001 | Cassava peels | SSF | pH = 6, T = 30 °C | EG, β-Glu, Exg, Xyl, Amy | EG: 1.97 U/mL | PAHBAH (UV–Vis) | [37] |
| T. polyzona BKW-001 | Cocoa pod husk | SSF | pH = 6, T = 30 °C | EG, β-Glu, Exg, Xyl, Amy | Amy: 0.9 U/mL | PAHBAH (UV–Vis) | [37] |
| T. polyzona BKW-001 | Water Hyacinth | SSF | pH = 6, T = 30 °C | EG, β-Glu, Exg, Xyl, Amy | Amy: 0.4 U/mL | PAHBAH (UV–Vis) | [37] |
| T. polyzona HHM001 | Corn leaf residues | SSF | T = 37 °C, t = 11–15 days | Lac, LiP, MnP, Cel, Xyl | Lac: 80 U/mL | ABTS; Veratryl alcohol; Phenol red | [19] |
| C. polyzona CCBAS 740 | Wheat straw | SSF | pH = 4.5, T = 28 °C, t = 25 days | Lac, MnP | MnP: 22 U/mL | MBTH + DMAB (UV–Vis) | [38] |
| T. polyzona WRF03 | ABTS | SSF | pH = 4.5, T = 55 °C, t = 9 days | Lac (purified) | Lac: 1637 U/mg protein (66 kDa) | SDS-PAGE; ABTS | [39] |
| T. polyzona KU-RNW027 | ABTS/guaiacol | NR | pH = 4.5, T = 50 °C | MnP, Lac (purified) | MnP: 16.5 U/mg protein | SDS-PAGE; UV–Vis | [17] |
| T. polyzona WR710–1 | Tangerine orange peels | SSF | pH = 2.2, T = 50 °C | Lac | Lac: 1.36 U/mg/71 kDa (SDS-PAGE)/68 kDa (Gel filtration) | Oxidation of 2,6-DMP/SDS–PAGE/Gel filtration | [37] |
| T. polyzona | Fruit nopal paddle | SSF | T = 28 °C, t = 5 days | Cel, Xyl | Xyl: 0.0036 U/mg | DNS (UV–Vis) | [15] |
| T. polyzona MPS1-3 | Palm oil mill effluent | NR | pH = 4, T = 37 °C, t = 10 days | Lac | Lac: 156.3 U/mL | SDS-PAGE | [40] |
| T. polyzona MUCL 38443 | ABTS | SSF | pH = 6, T = 50 °C, t = 20 days | Lac | Lac: 0.97 U/mL. MM: ~60 kDa | SDS-PAGE; ABTS | [13] |
| T. polyzona | Melanin | NR | pH = 5.3, T = 25 °C | Lac | Lac: 2.42 U/mL | UV–Vis | [41] |
| T. polyzona RYNF13 | Wood meal guaiacol agar | SmF | pH = 6, T = 30 °C, t = 16 days | MnP | MnP: 24 U/mL | Oxidation of 2,6-DMP | [21] |
| C. polyzona CCBAS 740 | NR | NR | T = 28 °C, t = 7 days | Lac, LiP, MnP | MnP = 0.056 U/mL | SDS-PAGE; ABTS | [42] |
| T. polyzona MUCL 38443 | ABTS | NR | pH = 3, T = 70 °C | Lac | Lac: 800 U/L | SDS-PAGE; ABTS | [43] |
| C. polyzona MUCL38443 | Olive Oil Mill Wastewater | SmF | pH = 5, T = 30 °C, t = 21 days | Lac, LiP, MnP | Lac = 0.038 U/mL | UV–Vis | [44] |
| T. polyzona | Effuent with Amaranth dye | SmF | t = 10 days | Lac, LiP, MnP | LiP: 0.038 U/mL | ABTS; Veratryl alcohol; Phenol red | [25] |
| co-culture of T. polyzona, A. niger, T. longibrachiatum, M. circinelloides and R. microsporus | Pharmaceuticals | SBR | pH = 3–4.6, t = 6 days | Lac, LiP, MnP | MnP: 0.253 U/mL | ABTS; 2,6-DMP | [28] |
3.2.4. Molecular Mechanisms and Critical Comparison Between Studies
3.2.5. Biodegradation Potential of T. polyzona
3.3. Applications of T. polyzona
3.4. Process Limitations, Scalability, and Enzymatic Stability
3.5. Emerging and Cross-Sectoral Applications
3.6. Critical Appraisal of the Evidence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
| AM | Amaranth dye |
| Amy | Amylase |
| AS | Acetosyringone |
| BC | Breast Cancer |
| β-Glu | Beta-Glucosidase |
| Cel | Cellulase |
| CLEAs | Cross-linked enzyme aggregates |
| CMC | Carboxymethyl cellulase |
| COD | Chemical Oxygen Demand |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| EDCs | Endocrine Disrupting Chemicals |
| EG | Endoglucanase |
| Exg | Exoglucanase |
| FAME | Fatty Acid Methyl Esters |
| FPA | Filter Paper Activity |
| GC-MS | Gas Chromatography-Mass Spectrometry |
| GC-ECD | Gas Chromatography-Electron Capture Detection |
| HBT | 1-hydroxybenzotriazole |
| HPLC | High Performance Liquid Chromatography |
| HPLC-MS-ESI | High Performance Liquid Chromatography-Mass Spectrometry with Electrospray Ionization |
| IZ | Inhibition Zone |
| Lac | Laccase |
| LC-MS/MS | Liquid Chromatography-Tandem Mass Spectrometry |
| LiP | Lignin Peroxidase |
| MB | Methylene Blue |
| MC | Moisture content |
| MIC | Minimum Inhibitory Concentration |
| MM | Molecular Mass |
| MnP | Manganese Peroxidase |
| MnIP | Manganese Independent Peroxidase |
| PAHs | Polycyclic Aromatic Hydrocarbons |
| PCBs | Polychlorinated Biphenyls |
| PCDE | Polychlorinated Diphenyl Ethers |
| PS | Particle size |
| RBBR | Remazol Brilliant Blue R |
| SBR | Sequencing Batch Reactor |
| SDS-PAGE | Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis |
| SmF | Submerged Fermentation |
| SPE-UPLC-QToF/MS | Solid-Phase Extraction-Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry |
| SSF | Solid-State Fermentation |
| TBARS | Thiobarbituric Acid Reactive Substances |
| TEAC | Trolox Equivalent Antioxidant Capacity |
| TPC | Total Phenolic Content |
| TS | Total Solids |
| TSS | Total Suspended Solids |
| UFM | UnFermented Material |
| WoS | Web of Science |
| WRF | White Rot Fungi |
| Xyl | Xylanase |
Appendix A
| Database | Search Strings |
|---|---|
| SCOPUS | (TITLE-ABS-KEY (trametes AND polyzona) OR TITLE-ABS-KEY (polystictus AND polyzonus) OR TITLE-ABS-KEY (coriolus AND polyzonus) OR TITLE-ABS-KEY (polystictus AND septosporus) OR TITLE-ABS-KEY (coriolopsis AND polyzona)) AND (EXCLUDE (DOCTYPE, “er”)) AND (EXCLUDE (PUBSTAGE, “aip”)) AND (LIMIT-TO (LANGUAGE, “English”)) |
| Web of Science (WoS) | (TS = (ALL= (Trametes polyzona)) OR ALL = (coriolopsis polyzona)) AND (LIMIT-TO (LANGUAGE, “English, Spanish”)) |
References
- Grossart, H.-P.; Wyngaert, S.V.d.; Kagami, M.; Wurzbacher, C.; Cunliffe, M.; Rojas-Jimenez, K. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 2019, 17, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.D. Mycorrhizal Fungi as Mediators of Soil Organic Matter Dynamics. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 237–259. [Google Scholar] [CrossRef]
- Dighton, J. Fungi in Ecosystem Processes; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Corbu, V.M.; Gheorghe-Barbu, I.; Dumbravă, A.Ș.; Vrâncianu, C.O.; Șesan, T.E. Current Insights in Fungal Importance—A Comprehensive Review. Microorganisms 2023, 11, 1384. [Google Scholar] [CrossRef] [PubMed]
- Manavalan, T.; Manavalan, A.; Heese, K. Characterization of Lignocellulolytic Enzymes from White-Rot Fungi. Curr. Microbiol. 2015, 70, 485–498. [Google Scholar] [CrossRef]
- Latif, W.; Ciniglia, C.; Iovinella, M.; Shafiq, M.; Papa, S. Role of White Rot Fungi in Industrial Wastewater Treatment: A Review. Appl. Sci. 2023, 13, 8318. [Google Scholar] [CrossRef]
- Lueangjaroenkit, P.; Teerapatsakul, C.; Chitradon, L. Morphological characteristic regulation of ligninolytic enzyme produced by Trametes polyzona. Mycobiology 2018, 46, 396–406. [Google Scholar] [CrossRef]
- Uribe-Arizmendi, I.; Anducho-Reyes, M.A.; Ramírez-Vargas, M.R.; Cadena-Ramírez, A.; Muro-Urista, C.R.; Téllez-Jurado, A. Biological Decolorization of Amaranth, Denim Blue, and Orange G with Trametes polyzona. Water, Air, and Soil Pollution 2020, 231, 307. [Google Scholar] [CrossRef]
- Oyetayo, V.O.; Akingbesote, E.T. Assessment of the antistaphylococcal properties and bioactive compounds of raw and fermented Trametes polyzona (Pers.) Justo extracts. Microb. Biosyst. 2022, 7, 1–7. [Google Scholar] [CrossRef]
- Oyetayo, V.O.; Nieto-Camacho, A.; Rodriguez, B.E.; Jimenez, M. Assessment of anti-inflammatory, lipid peroxidation and acute toxicity of extracts obtained from wild higher basidiomycetes mushrooms collected from Akure (Southwest Nigeria). Int. J. Med. Mushrooms 2012, 14, 575–580. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Gupta, R.K.; Karuppanan, K.K.; Padhi, D.K.; Ranganathan, S.; Paramanantham, P.; Lee, J.-K. Trametes versicolor Laccase-Based Magnetic Inorganic-Protein Hybrid Nanobiocatalyst for Efficient Decolorization of Dyes in the Presence of Inhibitors. Materials 2024, 17, 1790. [Google Scholar] [CrossRef]
- Kasonga, T.K.; Coetzee, M.A.A.; Kamika, I.; Momba, M.N.B. Assessing the Fungal Simultaneous Removal Efficiency of Carbamazepine, Diclofenac and Ibuprofen in Aquatic Environment. Front. Microbiol. 2021, 12, 755972. [Google Scholar] [CrossRef] [PubMed]
- Bucchieri, D.; Mangiagalli, M.; Martani, F.; Butti, P.; Lotti, M.; Serra, I.; Branduardi, P. A novel laccase from Trametes polyzona with high performance in the decolorization of textile dyes. AMB Express 2024, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Adongbede, E.M.; Jaiswal, Y.S.; Davis, S.S.; Randolph, P.D.; Huo, L.N.; Williams, L.L. Antioxidant and antibacterial activity of Trametes polyzona (Pers.) Justo. Food Sci. Biotechnol. 2020, 29, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, B.; Bankeeree, W.; Yanatatsaneejit, P.; Prasongsuk, S. Antiproliferative activity and apoptosis-inducing effects of Trametes polyzona polysaccharides against human breast cancer cells. Biomed. Rep. 2023, 19, 83. [Google Scholar] [CrossRef]
- Chairin, T.; Nitheranont, T.; Watanabe, A.; Asada, Y.; Khanongnuch, C.; Lumyong, S. Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Appl. Biochem. Biotechnol. 2013, 169, 539–545. [Google Scholar] [CrossRef]
- Lueangjaroenkit, P.; Teerapatsakul, C.; Sakka, K.; Sakka, M.; Kimura, T.; Kunitake, E.; Chitradon, L. Two Manganese Peroxidases and a Laccase of Trametes polyzona KU-RNW027 with Novel Properties for Dye and Pharmaceutical Product Degradation in Redox Mediator-Free System. Mycobiology 2019, 47, 217–229. [Google Scholar] [CrossRef]
- Mondragón-Rojas, A.G.; Arana-Cuenca, A.; Ortíz-Moreno, A.; Torres-Maravilla, E.; Blancas-Nápoles, J.; Jiménez-García, E.; Sánchez-Pardo, M.E. Production of cellulolytic and xylanolytic enzymes by fungi grown on cactus (nopal) in solid-state fermentation. Agrochimica 2015, 59, 236–246. [Google Scholar] [CrossRef]
- García-Esquivel, Y.; Mercado-Flores, Y.; Anducho-Reyes, M.; Téllez-Jurado, A. Effect of particle size, aeration, and substrate height on the production of lignocellulolytic enzymes produced by Trametes polyzona HHM001 grown in corn leaf residues. Mex. J. Biotechnol. 2023, 8, 66–85. [Google Scholar] [CrossRef]
- Acheampong, N.A.; Akanwariwiak, W.G.; Mensah, M.; Fei-Baffoe, B.; Offei, F.; Bentil, J.A.; Imoro, A.Z.; Borquaye, L.S. Conversion of cassava peels into bioethanol using the OSTEP approach. Biomass Convers. Biorefinery 2025, 15, 1925–1938. [Google Scholar] [CrossRef]
- Teerapatsakul, C.; Pothiratana, C.; Chitradon, L.; Thachepan, S. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13. J. Gen. Appl. Microbiol. 2016, 62, 303–312. [Google Scholar] [CrossRef]
- Vyas, B.R.M.; Bakowski, S.; Šašek, V.; Matucha, M. Degradation of anthracene by selected white rot fungi. FEMS Microbiol. Ecol. 1994, 14, 65–70. [Google Scholar] [CrossRef]
- Wulandari, R.; Lotrakul, P.; Punnapayak, H.; Amirta, R.; Kim, S.W.; Prasongsuk, S. Toxicity evaluation and biodegradation of phenanthrene by laccase from Trametes polyzona PBURU 12. 3 Biotech 2021, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Cerrón, L.M.; Romero-Suárez, D.; Vera, N.; Ludeña, Y.; Villena, G.K.; Gutiérrez-Correa, M. Decolorization of Textile Reactive Dyes and Effluents by Biofilms of Trametes polyzona LMB-TM5 and Ceriporia sp. LMB-TM1 Isolated from the Peruvian Rainforest. Water Air Soil Pollut. 2015, 226, 235. [Google Scholar] [CrossRef]
- Pérez-Cadena, R.; García-Esquivel, Y.; Castañeda-Cisneros, Y.E.; Serna-Díaz, M.G.; Ramírez-Vargas, M.R.; Muro-Urista, C.R.; Téllez-Jurado, A. Biological decolorization of Amaranth dye with Trametes polyzona in an airlift reactor under three airflow regimes. Heliyon 2020, 6, e05857. [Google Scholar] [CrossRef] [PubMed]
- Jaouani, A.; Vanthournhout, M.; Penninckx, M.J. Olive Oil Mill Wastewater purification by combination of coagulation-flocculation and biological treatments. Environ. Technol. 2005, 26, 633–642. [Google Scholar] [CrossRef]
- Jaouani, A.; Sayadi, S.; Vanthournhout, M.; Pennînckx, M.J. Potent fungi for decolourisation of olive oil mill wastewaters. Enzym. Microb. Technol. 2003, 33, 802–809. [Google Scholar] [CrossRef]
- Kasonga, T.K.; Coetzee, M.A.A.; Kamika, I.; Momba, M.N.B. Assessing a co-culture fungal granule ability to remove pharmaceuticals in a sequencing batch reactor. Environ. Technol. 2022, 43, 1684–1699. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Justo, A.; Hibbett, D.S. Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five–marker dataset. Taxon 2011, 60, 1567–1583. [Google Scholar] [CrossRef]
- Rattanarat, S.; Pongstabodee, N.; Lotrakul, P.; Punnapayak, H.; Prasongsuk, S. Decolorization of pulp mill black liquor by a laccase-producing white rot fungus, Trametes polyzona, combined with coagulation. Proceedings for 11th Conference on Science and Technology for Youth, Bangkok, Thailand, 1 August 2016; The Institute for the Promotion of Teaching Science and Technology (IPST): Bangkok, Thailand, 2016; pp. 35–46. [Google Scholar]
- Zmitrovich, I.V.; Ezhov, O.N.; Wasser, S.P. A Survey of Species of Genus Trametes Fr. (Higher Basidiomycetes) with Estimation of Their Medicinal Source Potential. Int. J. Med. Mushrooms 2012, 14, 307–319. [Google Scholar] [CrossRef]
- Alaoui, S.M.; Merzouki, M.; Pennînckx, M.J.; Benlemlih, M. Relationship between cultivation mode of white rot fungi and their efficiency for olive oil mill wastewaters treatment. Electron. J. Biotechnol. 2008, 11, 13–14. [Google Scholar] [CrossRef]
- Al-Fatimi, M.; Schröder, G.; Kreisel, H.; Lindequist, U. Biological activities of selected basidiomycetes from Yemen. Pharmazie 2013, 68, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Ezike, T.C.; Ezugwu, A.L.; Udeh, J.O.; Eze, S.O.O.; Chilaka, F.C. Purification and characterisation of new laccase from Trametes polyzona WRF03. Biotechnol. Rep. 2020, 28, e00566. [Google Scholar] [CrossRef] [PubMed]
- Elisashvili, V.; Kachlishvili, E.; Penninckx, M. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. J. Ind. Microbiol. Biotechnol. 2008, 35, 1531–1538. [Google Scholar] [CrossRef]
- Acheampong, N.A.; Akanwariwiak, W.G.; Mensah, M.; Fei-Baffoe, B.; Offei, F.; Bentil, J.A.; Borquaye, L.S. Optimization of hydrolases production from cassava peels by Trametes polyzona BKW001. Scientific African 2021, 12, e00835. [Google Scholar] [CrossRef]
- Vyas, B.R.M.; Volc, J.; Šašek, V. Ligninolytic enzymes of selected white rot fungi cultivated on wheat straw. Folia Microbiol. 1994, 39, 235–240. [Google Scholar] [CrossRef]
- Ezike, T.C.; Udeh, J.O.; Joshua, P.E.; Ezugwu, A.L.; Isiwu, C.V.; Eze, S.O.O.; Chilaka, F.C. Substrate specificity of a new laccase from Trametes polyzona WRF03. Heliyon 2021, 7, e06080. [Google Scholar] [CrossRef]
- Aka, B.Z.E.; Djeni, T.N.; Konan, H.K.; Semeniuc, C.A.; Rotar, A.M.; Suharoschi, R.; Djè, M.K. Characterization of a Potential Isozyme Laccase from Trametes polyzona MPS1-3 and its Contribution to Palm Oil Mill Effluent Treatment. Curr. Microbiol. 2021, 78, 3246–3257. [Google Scholar] [CrossRef]
- Andriani, A.; Agustriana, E.; Perwitasari, U.; Wahyuwati, F.A.; Hastuty, A.; Ferdian, P.R. High melanin degradation by laccase from a novel isolated white rot fungi Trametes polyzona 023 in the presence of phenolic compounds. Bioresour. Technol. Rep. 2024, 27, 101923. [Google Scholar] [CrossRef]
- Novotný, Č.; Vyas, B.R.M.; Erbanová, P.; Kubátová, A.; Šašek, V. Removal of PCBs by Various White Rot Fungi in Liquid Cultures. Folia Microbiol. 1997, 42, 136–140. [Google Scholar] [CrossRef]
- Pinar, O.; Tamerler, C.; Karataş, A.Y. Heterologous expression and characterization of a high redox potential laccase from Coriolopsis polyzona MUCL 38443. Turk. J. Biol. 2017, 41, 278–291. [Google Scholar] [CrossRef]
- Neifar, M.; Jaouani, A.; Martínez, M.J.; Pennînckx, M.J. Comparative study of olive oil mill wastewater treatment using free and immobilized Coriolopsis polyzona and Pycnoporus coccineus. J. Microbiol. 2012, 50, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.T.; Speranza, M.; Ruiz-Dueñas, F.J.; Ferreira, P.; Camarero, S.; Guillén, F.; Martínez, M.J.; Gutiérrez, A.; del Río, J.C. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 2005, 8, 195–204. [Google Scholar]
- Wesenberg, D.; Kyriakides, I.; Agathos, S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 2003, 22, 161–187. [Google Scholar] [CrossRef] [PubMed]
- Morozova, O.V.; Shumakovich, G.P.; Shleev, S.V.; Yaropolov, Y.I. Laccase-mediator systems and their applications: A review. Appl. Biochem. Microbiol. 2007, 43, 523–535. [Google Scholar] [CrossRef]
- Hofrichter, M. Review: Lignin conversion by manganese peroxidase (MnP). Enzym. Microb. Technol. 2002, 30, 454–466. [Google Scholar] [CrossRef]
- Tien, M.; Kirk, T.K. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science 1983, 221, 661–663. [Google Scholar] [CrossRef]
- Lundell, T.K.; Mäkelä, M.R.; Hildén, K. Lignin-modifying enzymes in filamentous basidiomycetes—Ecological, functional and phylogenetic review. J. Basic Microbiol. 2010, 50, 5–20. [Google Scholar] [CrossRef]
- Janusz, G.; Kucharzyk, K.H.; Pawlik, A.; Staszczak, M.; Paszczynski, A.J. Fungal laccase, manganese peroxidase and lignin peroxidase: Gene expression and regulation. Enzym. Microb. Technol. 2013, 52, 1–12. [Google Scholar] [CrossRef]
- Pointing, S. Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biotechnol. 2001, 57, 20–33. [Google Scholar] [CrossRef]
- Ramadhan, K.P.; Anita, S.H.; Oktaviani, M.; Laksana, R.P.B.; Sari, F.P.; Nurhayat, O.D.; Yanto, D.H.Y. Biodecolorization of Anthraquinone and Azo Dyes by Newly Isolated Indonesian White-Rot Fungi. Biosaintifika J. Biol. Biol. Educ. 2021, 13, 16–25. [Google Scholar] [CrossRef]
- Cabana, H.; Jiwan, J.L.H.; Rozenberg, R.; Elisashvili, V.; Penninckx, M.; Agathos, S.N.; Jones, J.P. Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 2007, 67, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Cabana, H.; Alexandre, C.; Agathos, S.N.; Jones, J.P. Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Bioresour. Technol. 2009, 100, 3447–3458. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, Y.; Hu, D. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. J. Hazard. Mater. 2010, 179, 845–851. [Google Scholar] [CrossRef]
- Dinakarkumar, Y.; Ramakrishnan, G.; Gujjula, K.R.; Vasu, V.; Balamurugan, P.; Murali, G. Fungal bioremediation: An overview of the mechanisms, applications and future perspectives. Environ. Chem. Ecotoxicol. 2024, 6, 293–302. [Google Scholar] [CrossRef]
- Bibbins-Martínez, M.; Juárez-Hernández, J.; López-Domínguez, J.; Nava-Galicia, S.; Martínez-Tozcano, L.; Juárez-Atonaľ, R.; Cortés-Espinosa, D.; Díaz-Godinez, G. Potential application of fungal biosorption and/or bioaccumulation for the bioremediation of wastewater contamination: A review. J. Environ. Biol. 2023, 44, 135–145. [Google Scholar] [CrossRef]
- Arora, D.S.; Sharma, R.K. Ligninolytic Fungal Laccases and Their Biotechnological Applications. Appl. Biochem. Biotechnol. 2010, 160, 1760–1788. [Google Scholar] [CrossRef]
- Mate, D.M.; Alcalde, M. Laccase engineering: From rational design to directed evolution. Biotechnol. Adv. 2015, 33, 25–40. [Google Scholar] [CrossRef]
- Couto, S.R.; Toca-Herrera, J.L. Lacasses in the textile industry. Biotechnol. Mol. Biol. Rev. 2006, 1, 115–120. [Google Scholar]
- Cabana, H.; Jones, J.P.; Agathos, S.N. Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. J. Biotechnol. 2007, 132, 23–31. [Google Scholar] [CrossRef]
- Cristóvão, R.O.; Silvério, S.C.; Tavares, A.P.M.; Brígida, A.I.S.; Loureiro, J.M.; Boaventura, R.A.R.; Macedo, E.A.; Coelho, M.A.Z. Green coconut fiber: A novel carrier for the immobilization of commercial laccase by covalent attachment for textile dyes decolourization. World J. Microbiol. Biotechnol. 2012, 28, 2827–2838. [Google Scholar] [CrossRef]
- Minussi, R.C.; Pastore, G.M.; Durán, N. Laccase induction in fungi and laccase/N–OH mediator systems applied in paper mill effluent. Bioresour. Technol. 2007, 98, 158–164. [Google Scholar] [CrossRef]
- Chen, X.; Nielsen, J.L.; Furgal, K.; Liu, Y.; Lolas, I.B.; Bester, K. Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere 2011, 84, 452–456. [Google Scholar] [CrossRef]
- Chan-Cheng, M.; Cambronero-Heinrichs, J.C.; Masís-Mora, M.; Rodríguez-Rodríguez, C.E. Ecotoxicological test based on inhibition of fungal laccase activity: Application to agrochemicals and the monitoring of pesticide degradation processes. Ecotoxicol. Environ. Saf. 2020, 195, 110419. [Google Scholar] [CrossRef]
- Galliker, P.; Hommes, G.; Schlosser, D.; Corvini, P.F.X.; Shahgaldian, P. Laccase-modified silica nanoparticles efficiently catalyze the transformation of phenolic compounds. J. Colloid Interface Sci. 2010, 349, 98–105. [Google Scholar] [CrossRef]


| No. | Class | Compound Name | Molecular Formula | MW (g/mol) | Area (%) | Biological Activity |
|---|---|---|---|---|---|---|
| Fatty Acid Methyl Esters (FAMEs) * (ethanolic extract) | ||||||
| 1 | Saturated (C8:0) | Caprylic acid methyl ester | C9H18O2 | 158.24 | 0.7430 | Antimicrobial, precursor for flavor compounds |
| 2 | Saturated (C13:0) | Tridecanoic acid methyl ester | C14H28O2 | 228.37 | 2.3991 | Rare in nature |
| 3 | Monounsaturated (C14:1Δ9) | Myristoleic acid methyl ester | C15H28O2 | 240.38 | 1.2098 | Potential anti-inflammatory effects |
| 4 | Monounsaturated (C15:1Δ10) | cis-10-Pentadecanoic acid methyl ester | C16H30O2 | 254.41 | 2.5627 | Found in dairy fats; role in membrane fluidity |
| 5 | Monounsaturated (C16:1Δ9) | Palmitoleic acid methyl ester (9-Hexadecenoic acid) | C17H32O2 | 268.43 | 1.3090 | Omega-7; improves insulin sensitivity, anti-inflammatory |
| 6 | Saturated (C17:0) | Heptadecanoic acid methyl ester | C18H36O2 | 284.48 | 4.0211 | Biomarker for dairy intake; minor metabolic roles |
| 7 | Saturated (C18:0) | Stearic acid methyl ester | C19H38O2 | 298.50 | 2.6906 | Neutral effect on cholesterol; used in food emulsifiers |
| 8 | Monounsaturated trans (C18:1Δ9t) | Elaidic acid methyl ester | C19H36O2 | 296.49 | 5.6737 | Trans fat; linked to cardiovascular disease |
| 9 | Monounsaturated cis (C18:1Δ9c) | Oleic acid methyl ester | C19H36O2 | 296.49 | 2.7858 | Omega-9; heart-healthy, reduces LDL cholesterol |
| 10 | Polyunsaturated trans (C18:2Δ9t,12t) | Linolelaidic acid methyl ester | C19H34O2 | 294.47 | 12.4574 | Trans fat; adverse metabolic effects |
| 11 | Polyunsaturated (C18:3Δ6,9,12) | γ-Linolenic acid methyl ester | C19H32O2 | 292.46 | 2.7134 | Omega-6; anti-inflammatory, used in eczema treatment |
| 12 | Polyunsaturated (C18:3Δ9,12,15) | α-Linolenic acid methyl ester | C19H32O2 | 292.46 | 1.4846 | Omega-3; essential fatty acid; supports brain health |
| 13 | Saturated (C21:0) | Heneicosanoic acid methyl ester | C22H44O2 | 340.58 | 5.8626 | Rare; used in lipidomics research |
| 14 | Polyunsaturated (C20:2Δ11,14) | cis-11,14-Eicosadienoic acid methyl ester | C22H38O2 | 322.52 | 4.3872 | Precursor for signaling molecules |
| Monosaccharide ** (aqueous extract) | ||||||
| 15 | Hexose (C6) | Glucose | C6H12O6 | 180.16 | 97.34 | Primary energy source; central in metabolism |
| 16 | Pentose (C5) | Arabinose | C5H10O5 | 150.13 | 2.52 | Component of plant cell walls; used in food additives |
| 17 | Hexose (C6) | Mannose | C6H12O6 | 180.16 | 0.15 | Immune modulation; precursor for glycoproteins |
| Biological Activity | Part/Strain | Process a | Solvent Used | Extraction (Time/Temperature) | Assay Measure/Organism-Cell Line b | Refs. |
|---|---|---|---|---|---|---|
| Antioxidant capacity | Fruiting bodies/T. polyzona | Raw | Acidified methanol | T = 23 °C, (magnetic stirrer at 2.5 Hz), t = 1 h | TPC, TEAC, DPPH | [14] |
| Mycelial/T. polyzona CU07 | Fermentation (T = 25 °C, t = 14 days, static) | Water | Reflux refractor (solid-to-liquid ratio of 1:40 (g/mL), T = 90 °C and t = 4 h) | DPPH, ABTS | [15] | |
| Fruiting bodies/C. polyzona | Raw | Methanol | T = 25 °C, t = 8 h | DPPH | [34] | |
| Antibacterial | Fruiting bodies/C. polyzona | Raw | Dichlormethane/Methanol/Water | T= 25 °C, t = 8 h | IZ/Staphylococcus aureus (ATCC 29213), Bacillus subtilis (ATCC 6059), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Micrococcus flavus (SBUG 16) | [34] |
| Antibacterial | Fruiting bodies/T. polyzona | Raw | Acidified methanol | T = 23 °C | IZ/Klebsiella pneumoniae (ATCC 1100975, ATCC 1100975, BAA1705, and ATCC 1100770). E. coli. (ATCC 700972, ATCC 25922, ATCC 25927). Salmonella enterica, S. aureus (ATCC 700698) | [14] |
| Antibacterial | Fruiting bodies/T. polyzona | Raw (UFM) and fermented (SSF, SmF). Fermentation: 4 days | Acetone and methanol | t = 3 days (occasional stirring) | MIC/S. aureus isolated from blood | [9] |
| Anticancer | Mycelial/T. polyzona CU07 | Fermentation (T = 25 °C, t = 14 days, static) | Water | Reflux refractor (solid-to-liquid ratio of 1:40 (g/mL), T = 90 °C, t = 4 h) | Cell line MCF-7 BC (ATCC HTB-22) | [15] |
| Antifungal | Fruiting bodies/C. polyzona | Raw | Dichloromethane, methanol, and water | T = 25 °C, t = 8 h | IZ/Candida maltosa SBUG17, Candida albicans ATCC 90028, Candida krusei ATCC 90878, Aspergillus fumigatus 13550/99, Mucor sp., Microsporum gypseum, Trichophyton mentagrophytes 05/2004 | [34] |
| Anti-inflammatory | Fruiting bodies/C. polyzona | Raw | Ethanol | T = 25 °C, t = 2 days | TPA-induced ear edema in mice | [10] |
| Lipid peroxidation | Fruiting bodies/C. polyzona | Raw | Ethanol | T = 25 °C, t = 2 days | TBARS levels were measured using rat brain homogenates | [10] |
| Toxicity | Fruiting bodies/C. polyzona | Raw | Ethanol | T = 25 °C, t = 2 days | Acute toxicity test/Artemia salina | [10] |
| Fungus/Enzyme a | Contaminant/Colorant/Class b | Initial Concentration | Degradation Conditions c | Degradation Time | Eff. (%) d | Method of Analysis e | Refs. |
|---|---|---|---|---|---|---|---|
| T. polyzona KU-RNW027/MnP-Lac | Remazol Brilliant Blue R (RBBR)/Anthraquinone | 25 mg/L | pH = 5, T = 30 °C, Agitation = 100 rpm. Enzyme = 1 U/mL | 30 min | 100 | Spectrophotometry UV-Vis | [17] |
| Reactive Blue 120 (RNB)/Azo dye | 7 days | 83–100 | |||||
| Reactive Yellow 160 (RBY)/Azo dye | 69–73 | ||||||
| Reactive Orange 107 (RGY)/Azo dye | 33–46 | ||||||
| Reactive Red 198 (RR)/Azo dye | 42–75 | ||||||
| Reactive Red 180 (RBR)/Azo dye | 33–46 | ||||||
| T. polyzona WRF03/Lac | Coomassie Brilliant Blue (CBB)/Triphenylmethane | 200 mg/mL | pH = 4.5, T = 25 °C. 0.5 mL of purified enzyme solution | 6 h | 72.35 | Spectrophotometry UV-Vis | [35] |
| Malachite Green/Triarylmethane | 57.84 | ||||||
| Methyl Orange (MO)/Azo dye | 47.55 | ||||||
| Erichrome Black (EB)/Azo dye | 40.20 | ||||||
| Congo Red (CR)/Diazo dye | 18.11 | ||||||
| Azure B (AB)/Thiazin | 1.78 | ||||||
| Methylene Blue (MB)/Heterocyclic | 0.38 | ||||||
| T. polyzona KU-RNW027/MnP-Lac | Tetracycline/Tetracyclines | 25 mg/L | pH = 4.5, T = 30 °C. Enzyme = 1 U/mL | 1–3 days | 100 | LC-MS/MS | [17] |
| Doxycycline/Tetracyclines | 1–3 days | 100 | |||||
| Amoxicillin/β-lactams | 5 days | 25–100 | |||||
| Ciprofloxacin/Quinolones | 7 days | 6.7–73 | |||||
| T. polyzona WR710-1/Lac | Bisphenol A (BPA)/Benzene and substituted derivatives | 0.01% | pH = 4, T = 28 °C, dark conditions. Enzyme = 0.64 U/mL | 3 h | 100 | GC-MS + HPLC | [16] |
| Bromophenol Blue (BRB)/Triphenlymethane | pH = 4, T = 28 °C, dark conditions. Enzyme = 0.45 U/mL + Redox mediator (HBT = 2 mM) | 1 day | 100 | Spectrophotometry UV-Vis | |||
| Remazol Brilliant Blue R (RBBR)/Antraquinone | ~96–98 | ||||||
| Methyl Orange (MO)/Azo dye | pH = 4, T = 28 °C, dark conditions. | ~88–95 | |||||
| Relative Black 5 (RB5)/Diazo dye | pH = 4, T = 28 °C, dark conditions. Enzyme = 0.45 U/mL + Redox mediator (HBT = 2 mM) | ~50–90 | |||||
| Congo Red (CR)/Diazo dye | ~70–85 | ||||||
| Acridine Orange (AO)/Heterocyclic | ~30–55 | ||||||
| T. polyzona MPS1-3 r | Palm Oil Mill Eluent/COD | 61,100 mg/L | pH = 4.03, T = 28 °C, Agitation = 120 rpm | 5 days | 16.03 | Spectrophotometry UV-Vis | [40] |
| Palm Oil Mill Eluent/TSS | 27,550 mg/L | 70.15 | Gravimetry | ||||
| Palm Oil Mill Eluent/TS | 45, 300 mg/L | 38.9 | |||||
| Palm Oil Mill Eluent/Total phenolics compound | 129.80 mg/L | 50.84 | Spectrophotometry UV-Vis + HPLC | ||||
| T. polyzona MUCL 38443/Lac | Amido Black (AB) 10B/Azo dye | 50 mg/L | T = 50 °C, Agitation = 160 rpm. Enzyme = 0.11 U/mL + mediator (AS = 0.05 mM) | 1 day | 94.6 | Spectrophotometry UV-Vis | [13] |
| Bromocresol Purple Sodium Salt/Triphenlymethane | 5 h | 72.2 | |||||
| Orange G (OG)/Azo dye | 79.3 | ||||||
| Malachite Green Oxalate/Triarylmethane | 94.6 | ||||||
| T. polyzona RYNF13/MnP, Lac, LiP | Phenanthrene/PAH | 100 mg/L | pH = 6, T = 30 °C | 11 days | 100 | Spectrophotometry UV Vis | [21] |
| Fluorene/PAH | 100 | ||||||
| Pyrene/PAH | 86 | ||||||
| T. polyzona LMB-TM5 | Levafix Yellow E-3RL (LY-3RL)/Azo dye | 400 mg/L | pH = 6, T = 28 °C | 2 days | <20 | Spectrophotometry UV Vis | [24] |
| Remazol Brilliant Red 3BS (RBR-3BS)/Azo dye | <20 | ||||||
| Remazol Brilliant Blue R (RBBR)/Anthraquinone | 97 | ||||||
| Cibacron Deep Red S-B (CDR-SB)/Azo dye | 3 days | 33.7 | |||||
| Synozol Yellow HF-4GL (SY-HF4GL)/Azo dye | 1 day | <20 | |||||
| Synozol Turquoise Blue HF-G (STB-HFG)/Phthalocyanine | 80 | ||||||
| Real textile effluent | 2 days | 93 | HPLC | ||||
| T. polyzona PBURU 12/Lac | Phenanthrene/PAH | 100 ppm | T = 25 °C, dark conditions, Agitation = 150 rpm, Crude enzyme = 10 U/mL. | 1 day | 98 | Spectrophotometry UV Vis/GC-MS | [23] |
| T = 25 °C, dark conditions, Agitation = 150 rpm. Live culture (Submerged). | 11 days | 88 | |||||
| T. polyzona/Lac, LiP, MnP | Amaranth dye (AM)/Azo dye | 100–200 mg/L | Submerged 3 L reactor, T = 28 °C, Agitation = 150 rpm | 21–27 days | 100 | Spectrophotometry UV Vis | [8] |
| Orange G (OG)/Azo dye | 27 days | 92–93.5 | |||||
| Denim blue (commercial dye) | 16–17 days | 99 | |||||
| T. polyzona isolated H18 | Remazol Brilliant Blue R (RBBR)/Anthraquinone | 100 mg/L | pH = 4,5, T = 25–30 °C | 4 days | 95.4 | Oxidation of ABTS/Spectrophotometry UV Vis | [53] |
| Acid Blue 129 (AB129)/Anthraquinone | 89 | ||||||
| Acid Orange 7 (AO7)/Monoazo dye | 77.7 | ||||||
| Reactive Black 5 (RB5)/Diazo dye | 94.8 | ||||||
| C. polyzona MUCL 38443/Lac | Nonylphenol/EDC | 5 mg/L | pH = 5, T = 50 °C. Enzyme = 1 U/L | 8 h | 100 | HPLC-MS-ESI | [54] |
| Bisphenol A/EDC | 100 | ||||||
| Triclosan/PCDE | 65 | ||||||
| C. polyzona CCBAS 740/LiP, MnP, MnIP, Lac | Delor 106/PCB commercial mixture | 0.9 ppm | T = 28 °C | 21 days | 41 | GC-ECD | [42] |
| Poly R-478/Triarylmethane | 200 mg/L | 3 days | 100 | Spectrophotometry UV Vis | |||
| Remazol Brilliant Blue R (RBBR)/Anthraquinone | 10 days | ||||||
| C. polyzona MUCL38443/LiP, MnP, Lac | Olive Oil Mill Wastewater/COD | 25,000–100,000 mg/L | pH = 5, T = 30 °C, Static cultures/Agitation = 150 rpm. | 21 days | 31.3–59.1/50.1 | Spectrophotometry UV Vis | [44] |
| Olive Oil Mill Wastewater/Color | 15 days | 57.3–75.2/39.4 | |||||
| C. polyzona MUCL 38443 | Olive Oil Mill Wastewater/COD | 102 g/L | pH 5.2, T = 25 °C | 24 days | 77 | Spectrophotometry UV-Vis + HPLC | [26] |
| Olive Oil Mill Wastewater/Phenols | 3500 mg/L | 91 | |||||
| Olive Oil Mill Wastewater/Color | - | 63 | |||||
| T. polyzona. | Amaranth dye (AM) (100 mg/L)/COD | 1600 mg/L | Reactor Airlift, T = 37 °C | 30 days | 95.5 | Spectrophotometry UV Vis | [25] |
| Amaranth dye (AM)/Azo dye | 100 mg/L | 25 days | 95 | ||||
| C. polyzona MUCL 38443/Lac | Nonylphenol/EDC | 5 mg/L | pH = 5, T = 20 °C. Reactor packed with Lac = 0.37 U/g | 100 min | 100 | GC-MS | [55] |
| Bisphenol A/EDC | pH = 5, T = 20 °C. Reactor packed with Lac = 0.75 U/g | 200 min | |||||
| Triclosan/PCDE | 120 min | ||||||
| co-culture of T. polyzona, A. niger, T. longibrachiatum, M. circinelloides and R. microsporus/Lac, LiP, MnP | Carbamazepine/Pharmaceutical compounds | 1 mg/L | pH = 6.22, T = 25 °C. SBR at steady state, Agitation = 120 rpm | 2 days | 97.41 | SPE-UPLC-QToF/MS | [28] |
| Diclofenac/Pharmaceutical compounds | 99.83 | ||||||
| Ibuprofen/Pharmaceutical compounds | 99.91 | ||||||
| T. polyzona/Lac, LiP, MnP | Carbamazepine/Pharmaceutical compounds | 1 mg/L | pH = 4.3, T = 37 ± 1.5 °C | 3 days | 22 | SPE-UPLC/MS | [12] |
| Diclofenac/Pharmaceutical compounds | 1 day | 92 | |||||
| Ibuprofen/Pharmaceutical compounds | 5 days | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ochoa-Ocampo, M.A.; Macas-Granizo, M.B.; Espinosa de los Monteros-Silva, N.; Garzón, T.; Balcazar-Sinailin, A.J.; Niño-Ruiz, Z.; Torres-Gutiérrez, R.; Almeida, J.R.; Mogollón, N.G.S.; Diéguez-Santana, K. Trametes polyzona as a Source for Bioremediation and Industrial Applications: A Systematic Review. J. Fungi 2026, 12, 19. https://doi.org/10.3390/jof12010019
Ochoa-Ocampo MA, Macas-Granizo MB, Espinosa de los Monteros-Silva N, Garzón T, Balcazar-Sinailin AJ, Niño-Ruiz Z, Torres-Gutiérrez R, Almeida JR, Mogollón NGS, Diéguez-Santana K. Trametes polyzona as a Source for Bioremediation and Industrial Applications: A Systematic Review. Journal of Fungi. 2026; 12(1):19. https://doi.org/10.3390/jof12010019
Chicago/Turabian StyleOchoa-Ocampo, Melanie Ashley, Maria Belén Macas-Granizo, Nina Espinosa de los Monteros-Silva, Thomas Garzón, Anthony Jose Balcazar-Sinailin, Zulay Niño-Ruiz, Roldán Torres-Gutiérrez, José R. Almeida, Noroska G. S. Mogollón, and Karel Diéguez-Santana. 2026. "Trametes polyzona as a Source for Bioremediation and Industrial Applications: A Systematic Review" Journal of Fungi 12, no. 1: 19. https://doi.org/10.3390/jof12010019
APA StyleOchoa-Ocampo, M. A., Macas-Granizo, M. B., Espinosa de los Monteros-Silva, N., Garzón, T., Balcazar-Sinailin, A. J., Niño-Ruiz, Z., Torres-Gutiérrez, R., Almeida, J. R., Mogollón, N. G. S., & Diéguez-Santana, K. (2026). Trametes polyzona as a Source for Bioremediation and Industrial Applications: A Systematic Review. Journal of Fungi, 12(1), 19. https://doi.org/10.3390/jof12010019

