Population, Physiological, and Genetic Insights into Carbendazim Resistance in Populations of the Phytopathogenic Fungus Microdochium nivale
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains Used in This Study
2.2. Evaluation of Fungicide Resistance of the Strains
2.3. Assessment of Physiological and Genetic Traits of the Strains
2.4. Metabarcoding
2.5. Molecular Docking
2.6. Statistics
3. Results
3.1. Resistance and Sensitivity of Microdochium nivale Strains to Carbendazim
3.2. Analysis of Potential Relationships Between Carbendazim Resistance and Various Phenotypic Traits of M. nivale Strains
3.3. Analysis of Potential Relationships Between Carbendazim Resistance and Genetic Traits of M. nivale Strains
3.4. Relative Abundance of Different M. nivale β-Tubulin Gene Sequences in Environmental Plant Samples
3.5. Effect of Identified Single-Nucleotide Polymorphisms (SNPs) in the M. nivale β-Tubulin Gene on the Affinity of β-Tubulin Protein for Carbendazim
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, Y.; Miao, J.; Shao, W.; Liu, X.; Zhao, Y.; Ma, Z. Fungicide resistance: Progress in understanding mechanism, monitoring, and management. Phytopathology 2023, 113, 707–718. [Google Scholar] [CrossRef]
- Islam, T.; Danishuddin; Tamanna, N.T.; Matin, M.N.; Barai, H.R.; Haque, M.A. Resistance mechanisms of plant pathogenic fungi to fungicide, environmental impacts of fungicides, and sustainable solutions. Plants 2024, 13, 2737. [Google Scholar] [CrossRef]
- Hawkins, N.J.; Fraaije, B.A. Fitness penalties in the evolution of fungicide resistance. Annu. Rev. Phytopathol. 2018, 56, 339–360. [Google Scholar] [CrossRef]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The evolution of fungicide resistance. Adv. Appl. Microbiol. 2015, 90, 29–92. [Google Scholar] [CrossRef]
- Shcherbakova, L.A. Development of resistance to fungicides in phytopathogenic fungi and their chemosensitization as a way to increase the protective effectiveness of triazoles and strobilurins. Agric. Biol. 2019, 54, 875–891. [Google Scholar] [CrossRef]
- Fang, A.; Zhang, R.; Qiao, W.; Peng, T.; Qin, Y.; Wang, J.; Tian, B.; Yu, Y.; Sun, W.; Yang, Y.; et al. Sensitivity baselines, resistance monitoring, and molecular mechanisms of the rice false smut pathogen Ustilaginoidea virens to prochloraz and azoxystrobin in four regions of southern China. J. Fungi 2023, 9, 832. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, Z.; Wang, Y.; Zhang, S.; Lei, T.; Liang, Y.; Dai, Q.; Huo, Z.; Xu, K.; Chen, S. Prevalence of carbendazin resistance in field populations of the rice false smut pathogen Ustilaginoidea virens from Jiangsu, China, molecular mechanisms, and fitness stability. J. Fungi 2022, 8, 1311. [Google Scholar] [CrossRef]
- Kiiker, R.; Juurik, M.; Heick, T.M.; Mäe, A. Changes in DMI, SDHI, and QoI fungicide sensitivity in the estonian Zymoseptoria tritici population between 2019 and 2020. Microorganisms 2021, 9, 814. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, L.N.; Matzen, N.; Heick, T.M.; Havis, N.; Holdgate, S.; Clark, B.; Blake, J.; Glazek, M.; Korbas, M.; Danielewicz, J.; et al. Decreasing azole sensitivity of Z. tritici in Europe contributes to reduced and varying field efficacy. J. Plant Dis. Prot. 2021, 128, 287–301. [Google Scholar] [CrossRef]
- Baraldi, E.; Mari, M.; Chierici, E.; Pondrelli, M.; Bertolini, P.; Pratella, G.C. Studies on thiabendazole resistance of Penicillium expansum of pears: Pathogenic fitness and genetic characterization. Plant Pathol. 2003, 52, 362–370. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, Y.P.; Chen, C.J.; Zhou, M.G. Detection of resistance in Sclerotinia sclerotiorum to carbendazim and dimethachlon in Jiangsu province of China. Australas. Plant Pathol. 2014, 43, 307–312. [Google Scholar] [CrossRef]
- Albertini, C.; Gredt, M.; Leroux, P. Mutations of the beta-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pestic. Biochem. Physiol. 1999, 64, 17–31. [Google Scholar] [CrossRef]
- Fan, F.; Li, X.B.; Yang, Y.Y.; Zhang, J.Y.; Zhu, Y.X.; Yin, W.X.; Li, G.Q.; Luo, C.X. Benzimidazole-resistant isolates with E198A/V/K mutations in the β-tubulin gene possess different fitness and competitive ability in Botrytis cinerea. Phytopathology 2022, 112, 2321–2328. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Zhou, F.; Li, J.L.; Zhu, F.X.; Ma, H.J. Carbendazim resistance in field isolates of Sclerotinia sclerotiorum in China and its management. Crop Prot. 2016, 81, 115–121. [Google Scholar] [CrossRef]
- He, L.; Cui, K.; Li, T.; Song, Y.; Liu, N.; Mu, W.; Liu, F. Evolution of the resistance of Botrytis cinerea to carbendazim and the current efficacy of carbendazim against gray mold after long-term discontinuation. Plant Dis. 2020, 104, 1647–1653. [Google Scholar] [CrossRef]
- Ma, Z.; Yoshimura, M.A.; Michailides, T.J. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California. Appl. Environ. Microbiol. 2003, 69, 7145–7152. [Google Scholar] [CrossRef]
- Zhang, H.; Brankovics, B.; van der Lee, T.A.J.; Waalwijk, C.; van Diepeningen, A.A.D.; Xu, J.; Xu, J.; Chen, W.; Feng, J. A single-nucleotide-polymorphism-based genotyping assay for simultaneous detection of different carbendazim-resistant genotypes in the Fusarium graminearum species complex. Peer J. 2016, 4, e2609. [Google Scholar] [CrossRef]
- Beckerman, J.; Palmer, C.; Tedford, E.; Ypema, H. Fifty Years of fungicide development, deployment, and future use. Phytopathology 2023, 113, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, M.J.; Bartholomew, H.P.; Hendricks, D.; Maust, A.; Jurick, W.M., 2nd. An analysis of postharvest fungal pathogens reveals temporal-spatial and host-pathogen associations with fungicide resistance-related mutations. Phytopathology 2021, 111, 1942–1951. [Google Scholar] [CrossRef] [PubMed]
- Davidse, L.C. Benzimidazole fungicides: Mechanism of action and biological impact. Annu. Rev. Phytopathol. 1986, 24, 43–65. [Google Scholar] [CrossRef]
- Davidse, L.; Ishii, T. Biochemical and molecular aspects of benzimidazoles, N-phenylcarbamates and N-phenilformamidoxines and the mechanisms of resistance to these compounds in fungi. In Modern Selective Fungicides: Properties, Applications, Mechanisms of Action, 2nd ed.; Lyr, H., Ed.; Gustav Fischer: New York, NY, USA, 1995; pp. 305–322. [Google Scholar]
- Martini, C.; Guidarelli, M.; Di Francesco, A.; Ceredi, G.; Mari, M. Characterization of thiophanate methyl resistance in Italian Monilinia fructicola isolates. J. Plant Pathol. 2016, 98, 453–462. [Google Scholar]
- Cabañas, R.; Castellá, G.; Abarca, M.L.; Bragulat, M.R.; Cabañes, F.J. Thiabendazole resistance and mutations in the β-tubulin gene of Penicillium expansum strains isolated from apples and pears with blue mold decay. FEMS Microbiol. Lett. 2009, 297, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Y.; Jiang, J.; Che, Z.; Tian, Y.; Chen, G. Carbendazim resistance and dimethachlone sensitivity of field isolates of Sclerotinia sclerotiorum from oilseed rape in Henan Province, China. J. Phytopathol. 2018, 166, 701–708. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Gu, C.Y.; Zhang, A.F.; Gao, T.C.; Zhou, M.G. Genotypes and phenotypic characterization of field Fusarium asiaticum isolates resistant to carbendazim in Anhui Province of China. Plant Dis. 2015, 99, 342–346. [Google Scholar] [CrossRef]
- Ma, Z.; Michailides, T.J. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot. 2005, 24, 853–863. [Google Scholar] [CrossRef]
- Shao, W.; Zhao, Y.; Ma, Z. Advances in understanding fungicide resistance in Botrytis cinerea in China. Phytopathology 2021, 111, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Yu, J.J.; Zhang, Y.N.; Zhang, X.; Cheng, C.J.; Wang, J.X.; Hollomon, D.W.; Fan, P.S.; Zhou, M.G. Effect of carbendazim resistance on trichothecene production and aggressiveness of Fusarium graminearum. Mol. Plant Microbe Interact. 2009, 22, 1143–1150. [Google Scholar] [CrossRef]
- Ponomareva, M.L.; Gorshkov, V.Y.; Ponomarev, S.N.; Korzun, V.; Miedaner, T. Snow mold of winter cereals: A complex disease and a challenge for resistance breeding. Theor. Appl. Genet. 2021, 134, 419–433. [Google Scholar] [CrossRef]
- Ponomareva, M.; Gorshkov, V.; Ponomarev, S.; Mannapova, G.; Askhadullin, D.; Askhadullin, D.; Gogoleva, O.; Meshcherov, A.; Korzun, V. Resistance to snow mold as a target trait for rye breeding. Plants 2022, 11, 2516. [Google Scholar] [CrossRef]
- Tkachenko, O.B. Snow Mold (History of The Study, Agents, Biological Characteristics); RAS: Moscow, Russia, 2017; p. 72. [Google Scholar]
- Matsumoto, N.; Hsiang, T. Snow Mold: The battle Under Snow Between Fungal Pathogens and Their Plant Hosts, 1st ed.; Springer: Singapore, 2016; p. 136. [Google Scholar]
- Matsumoto, N.; Hoshino, T. Fungi in snow environments: Psychrophilic molds—A group of pathogens affecting plants under snow. In Fungi from Different Environments, 1st ed.; Misra, J.K., Ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 169–188. [Google Scholar]
- Chastagner, G.; Vassey, W. Occurence of iprodione-tolerant Fusarium nivale under field conditions. Plant Dis. 1982, 66, 112–114. [Google Scholar] [CrossRef]
- Pennucci, A.; Beever, R.; Laracy, E. Dicarboximide-resistant strains of Microdochium nivale in New Zealand. Australas. Plant Pathol. 1990, 19, 38–41. [Google Scholar] [CrossRef]
- Locke, T.; Moon, L.M.; Evans, J. Survey of benomyl resistance in Fusarium species on winter wheat in England and Wales in 1986. Plant Pathol. 1987, 36, 589–593. [Google Scholar] [CrossRef]
- Parry, D.W.; Rezanoor, H.N.; Pettitt, T.R.; Hare, M.C.; Nicholson, P. Analysis of Microdochium nivale isolates from wheat in the UK during 1993. Ann. Appl. Biol. 1995, 126, 449–455. [Google Scholar] [CrossRef]
- Gavrilova, O.P.; Orina, A.S.; Gagkaeva, T.Y.; Usoltseva, M.Y. Effectiveness of fungicide inhibition of growth of fungi Microdochium sp. -the causal agents of snow mould of cereals. Plant Prot. Quar. 2021, 4, 17–20. [Google Scholar] [CrossRef]
- Orina, A.S.; Gagkaeva, T.Y.; Gavrilova, O.P.; Usoltseva, M. Effect of fungicides on the growth of fungi causing snow mold of cereals. Agrochemistry 2021, 5, 52–61. [Google Scholar] [CrossRef]
- Walker, A.S.; Auclair, C.; Gredt, M.; Leroux, P. First occurrence of resistance to strobilurin fungicides in Microdochium nivale and Microdochium majus from French naturally infected wheat grains. Pest Manag. Sci. 2009, 65, 906–915. [Google Scholar] [CrossRef]
- Matušinsky, P.; Svobodová, L.L.; Svačinová, I.; Havis, N.; Hess, M.; Tvarůžek, L. Population genetic structure of Microdochium majus and Microdochium nivale associated with foot rot of cereals in the Czech Republic and adaptation to penthiopyrad. Eur. J. Plant Pathol. 2019, 155, 1–12. [Google Scholar] [CrossRef]
- Glynn, N.C.; Hare, M.C.; Edwards, S.G. Fungicide seed treatment efficacy against Microdochium nivale and M. majus in vitro and in vivo. Pest Manag. Sci. 2008, 64, 793–799. [Google Scholar] [CrossRef]
- Hockemeyer, K.; Koch, P.L. Field evaluations and in vitro sensitivity of Microdochium nivale to succinate dehydrogenase (SDHI) fungicides. ITSRJ 2022, 14, 951–957. [Google Scholar] [CrossRef]
- Gogoleva, O.A.; Ryazanov, E.A.; Murzagulova, G.S.; Ponomarev, S.N.; Chastukhina, I.B.; Sakhabutdinov, I.T.; Osipova, E.V.; Mannapova, G.S.; Korzun, V.N.; Ponomareva, M.L.; et al. Intra- and Interpopulation diversity of the phytopathogenic fungi of the Microdochium nivale species. J. Fungi 2024, 10, 841. [Google Scholar] [CrossRef]
- Gorshkov, V.; Osipova, E.; Ponomareva, M.; Ponomarev, S.; Gogoleva, N.; Petrova, O.; Gogoleva, O.; Meshcherov, A.; Balkin, A.; Vetchinkina, E.; et al. Rye Snow mold-associated Microdochium nivale strains inhabiting a common area: Variability in genetics, morphotype, extracellular enzymatic activities, and virulence. J. Fungi 2020, 6, 335. [Google Scholar] [CrossRef]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef]
- Sakhabutdinov, I.T.; Chastukhina, I.B.; Ryazanov, E.A.; Ponomarev, S.N.; Gogoleva, O.A.; Balkin, A.S.; Korzun, V.N.; Ponomareva, M.L.; Gorshkov, V.Y. Variability of microbiomes in winter rye, wheat, and triticale affected by snow mold: Predicting promising microorganisms for the disease control. Environ. Microbiome 2025, 20, 3. [Google Scholar] [CrossRef]
- Wingett, S.W.; Andrews, S. FastQ screen: A tool for multi-genome mapping and quality control. F1000Research 2018, 7, 1338. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Martin, M. CUTADAPT removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.-Y.; Pieper, U.; Sali, A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinform. 2016, 5, 5–6. [Google Scholar] [CrossRef]
- Modeller. Available online: https://salilab.org/modeller/ (accessed on 24 July 2025).
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- AutoDock4. Available online: https://autodocksuite.scripps.edu/autodock4/ (accessed on 22 July 2025).
- Wang, Y.; Zhang, H.; Gigant, B.; Yu, Y.; Wu, Y.; Chen, X.; Lai, Q.; Yang, Z.; Chen, Q.; Yang, J. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J. 2016, 283, 102–111. [Google Scholar] [CrossRef]
- Yi, L.; Yang, M.; Waalwijk, C.; Xu, J.; Xu, J.; Molnár, O.; Chen, W.; Feng, J.; Zhang, H. Dynamics of carbendazim-resistance frequency of pathogens associated with the epidemic of Fusarium head blight. Plant Dis. 2023, 107, 1690–1696. [Google Scholar] [CrossRef]
- Duan, Y.; Xin, W.; Lu, F.; Li, T.; Li, M.; Wu, J.; Wang, J.; Zhou, M. Benzimidazole-and QoI-resistance in Corynespora cassiicola populations from greenhouse-cultivated cucumber: An emerging problem in China. Pestic. Biochem. Physiol. 2019, 153, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, T.; Zhao, P.; Du, Y.; Zhang, L.; Qi, Z.; Ji, M. Sensitivity to 12 fungicides and resistance mechanism to trifloxystrobin, carbendazim, and succinate dehydrogenase inhibitors in cucumber corynespora leaf spot (Corynespora cassiicola). Plant Dis. 2023, 107, 3783–3791. [Google Scholar] [CrossRef]
- Karim, M.M.; Usman, H.M.; Tan, Q.; Hu, J.J.; Fan, F.; Hussain, R.; Luo, C.X. Fungicide resistance in Colletotrichum fructicola and Colletotrichum siamense causing peach anthracnose in China. Pestic. Biochem. Physiol. 2024, 203, 106006. [Google Scholar] [CrossRef] [PubMed]
- Heick, T.M.; Matzen, N.; Jørgensen, L.N. Reduced field efficacy and sensitivity of demethylation inhibitors in the Danish and Swedish Zymoseptoria tritici populations. Eur. J. Plant. Pathol. 2020, 157, 625–636. [Google Scholar] [CrossRef]
- Leroux, P.; Gredt, M.; Remuson, F.; Micoud, A.; Walker, A.-S. Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae. Pest Manag. Sci. 2013, 69, 15–26. [Google Scholar] [CrossRef]
- Liu, S.; Fu, L.; Wang, S.; Chen, J.; Jiang, J.; Che, Z.; Tian, Y.; Chen, G. Carbendazim resistance of Fusarium graminearum from Henan Wheat. Plant Dis. 2019, 103, 2536–2540. [Google Scholar] [CrossRef]
- King, K.M.; Bucur, D.E.; Ritchie, F.; Hawkins, N.J.; Kaczmarek, A.M.; Duan, Y.; Kildea, S.; West, J.S.; Fraaije, B.A. Fungicide resistance status and chemical control options for the brassica pathogen Pyrenopeziza brassicae. Plant Pathol. 2021, 70, 2086–2103. [Google Scholar] [CrossRef]
- Maymon, M.; Zveibil, A.; Pivonia, S.; Minz, D.; Freeman, S. Identification and characterization of benomyl-resistant and-sensitive populations of Colletotrichum gloeosporioides from statice (Limonium spp.). Phytopathology 2006, 96, 542–548. [Google Scholar] [CrossRef]
- Cosseboom, S.D.; Ivors, K.L.; Schnabel, G.; Bryson, P.K.; Holmes, G.J. Within-season shift in fungicide resistance profiles of Botrytis cinerea in California strawberry fields. Plant Dis. 2019, 103, 59–64. [Google Scholar] [CrossRef]
- Schnathorst, W.C. Spread and life cycle of the lettuce powdery mildew fungus. Phytopathology 1959, 49, 464–468. [Google Scholar]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W. Fungal barcoding consortium; fungal barcoding consortium author list. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Stielow, J.B.; Lévesque, C.A.; Seifert, K.A.; Meyer, W.; Iriny, L.; Smits, D.; Renfurm, R.; Verkley, G.J.; Groenewald, M.; Chaduli, D.; et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 2015, 35, 242–263. [Google Scholar] [CrossRef]
- Francis, E.K.; Antonopoulos, A.; Westman, M.E.; McKay-Demeler, J.; Laing, R.; Šlapeta, J. A mixed amplicon metabarcoding and sequencing approach for surveillance of drug resistance to levamisole and benzimidazole in Haemonchus spp. Int. J. Parasitol. 2024, 54, 55–64. [Google Scholar] [CrossRef]
- Theologidis, I.; Karamitros, T.; Vichou, A.E.; Kizis, D. Nanopore-sequencing metabarcoding for identification of phytopathogenic and endophytic fungi in olive (Olea europaea) twigs. J. Fungi 2023, 9, 1119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, Y.; Zhu, G. Detection and characterization of benzimidazole resistance of Botrytis cinerea in greenhouse vegetables. Eur. J. Plant Pathol. 2010, 126, 509–515. [Google Scholar] [CrossRef]
- Chen, S.N.; Shang, Y.; Wang, Y.; Schnabel, G.; Lin, Y.; Yin, L.F.; Luo, C.X. Sensitivity of Monilinia fructicola from peach farms in China to four fungicides and characterization of isolates resistant to carbendazim and azoxystrobin. Plant Dis. 2014, 98, 1555–1560. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Yu, J.J.; Bi, C.W.; Zhang, Y.N.; Xu, J.Q.; Wang, J.X.; Zhou, M.G. Mutations in a β-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides. Phytopathology 2009, 99, 1403–1411. [Google Scholar] [CrossRef]
- Cai, M.; Lin, D.; Chen, L.; Bi, Y.; Xiao, L.; Liu, X.L. M233I mutation in the β-tubulin of Botrytis cinerea confers resistance to zoxamide. Sci. Rep. 2015, 5, 16881. [Google Scholar] [CrossRef]
- Tarafder, M.; Datta, B. Deciphering β-tubulin gene of carbendazim resistant Fusarium solani isolate and its comparison with other Fusarium species. Curr. Genet. 2022, 68, 429–447. [Google Scholar] [CrossRef]
- Kushveer, J.S.; Sharma, R.; Samantaray, M.; Amutha, R.; Sarma, V.V. Purification and evaluation of 2, 4-di-tert butylphenol (DTBP) as a biocontrol agent against phyto-pathogenic fungi. Fungal Biol. 2023, 127, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Vela-Corcía, D.; Romero, D.; de Vicente, A.; Pérez-García, A. Analysis of β-tubulin-carbendazim interaction reveals that binding site for MBC fungicides does not include residues involved in fungicide resistance. Sci. Rep. 2018, 8, 7161. [Google Scholar] [CrossRef]
- Obydennov, K.L.; Kalinina, T.A.; Galieva, N.A.; Beryozkina, T.V.; Zhang, Y.; Fan, Z.; Glukhareva, T.V.; Bakulev, V.A. Fungicidal activity, and molecular docking of 2-acylamino and 2-thioacylamino derivatives of 1h-benzo[d]imidazoles as anti-tubulin agents. J. Agric. Food Chem. 2021, 69, 12048–12062. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Y.; Li, Y.; Duan, Y.; Zhang, R.; Zhou, M. β1 tubulin rather than β2 tubulin is the preferred binding target for carbendazim in Fusarium graminearum. Phytopathology 2016, 106, 978–985. [Google Scholar] [CrossRef]
- Qiu, J.; Xu, J.; Yu, J.; Bi, C.; Chen, C.; Zhou, M. Localisation of the benzimidazole fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis. Pest Manag. Sci. 2011, 67, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Katiyar, S.K.; Edlind, T.D. Site-directed mutagenesis of Saccharomyces cerevisiae β-tubulin: Interaction between residue 167 and benzimidazole compounds. FEBS Lett. 1996, 385, 7–10. [Google Scholar] [CrossRef]
- Bai, Y.; Hou, Y.; Wang, Q.; Lu, C.; Ma, X.; Wang, Z.; Xu, H. Analysis of the binding modes and resistance mechanism of four methyl benzimidazole carbamates inhibitors fungicides with Monilinia fructicola β2-tubulin protein. J. Mol. Struct. 2023, 1291, 136057. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murzagulova, G.S.; Gogoleva, O.A.; Ryazanov, E.A.; Shatravina, K.A.; Tendiuk, N.V.; Sakhabutdinov, I.T.; Ponomarev, S.N.; Chastukhina, I.B.; Makshakova, O.N.; Ponomareva, M.L.; et al. Population, Physiological, and Genetic Insights into Carbendazim Resistance in Populations of the Phytopathogenic Fungus Microdochium nivale. J. Fungi 2025, 11, 639. https://doi.org/10.3390/jof11090639
Murzagulova GS, Gogoleva OA, Ryazanov EA, Shatravina KA, Tendiuk NV, Sakhabutdinov IT, Ponomarev SN, Chastukhina IB, Makshakova ON, Ponomareva ML, et al. Population, Physiological, and Genetic Insights into Carbendazim Resistance in Populations of the Phytopathogenic Fungus Microdochium nivale. Journal of Fungi. 2025; 11(9):639. https://doi.org/10.3390/jof11090639
Chicago/Turabian StyleMurzagulova, Guzalia Sh., Olga A. Gogoleva, Egor A. Ryazanov, Karina A. Shatravina, Natalia V. Tendiuk, Ildar T. Sakhabutdinov, Sergey N. Ponomarev, Inna B. Chastukhina, Olga N. Makshakova, Mira L. Ponomareva, and et al. 2025. "Population, Physiological, and Genetic Insights into Carbendazim Resistance in Populations of the Phytopathogenic Fungus Microdochium nivale" Journal of Fungi 11, no. 9: 639. https://doi.org/10.3390/jof11090639
APA StyleMurzagulova, G. S., Gogoleva, O. A., Ryazanov, E. A., Shatravina, K. A., Tendiuk, N. V., Sakhabutdinov, I. T., Ponomarev, S. N., Chastukhina, I. B., Makshakova, O. N., Ponomareva, M. L., & Gorshkov, V. Y. (2025). Population, Physiological, and Genetic Insights into Carbendazim Resistance in Populations of the Phytopathogenic Fungus Microdochium nivale. Journal of Fungi, 11(9), 639. https://doi.org/10.3390/jof11090639