Next Article in Journal
Larvicidal and Immunomodulatory Effects of Conidia and Blastospores of Beauveria bassiana and Beauveria brongniartii in Aedes aegypti
Previous Article in Journal
Splitting Haploid Chromosomes into Different Nuclei: New Mechanisms of Adaptation in Fungi?
Previous Article in Special Issue
Dynamics of Nutrient Components and Microbial Communities in Substrates During the Development of the Fruiting Bodies of Volvariella volvacea
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Species Diversity and Resource Status of Macrofungi in Beijing: Insights from Natural and Urban Habitats

1
Institue of Ecology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
2
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
3
Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
4
College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
5
School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
6
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
7
Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
J. Fungi 2025, 11(8), 607; https://doi.org/10.3390/jof11080607
Submission received: 21 July 2025 / Revised: 18 August 2025 / Accepted: 19 August 2025 / Published: 21 August 2025
(This article belongs to the Special Issue Edible and Medicinal Macrofungi, 4th Edition)

Abstract

This study systematically documented macrofungal diversity in Beijing, China (field surveys conducted from 2020 to 2024) using line-transect and random sampling. A total of 1056 species were identified, spanning 2 phyla, 7 classes, 25 orders, 109 families, and 286 genera. The inventory includes 12 new species, 456 new records for Beijing, 79 new records for China, and comprises 116 edible, 56 edible–medicinal, 123 medicinal, and 58 poisonous species. Among these, 542 species were assessed against China’s Macrofungi Redlist, revealing eight species needing conservation attention (seven Near Threatened, one Vulnerable). Analysis revealed stark differences in dominant taxa between natural ecosystems (protected areas) and urban green spaces/parks. In natural areas, macrofungi are dominated by 31 families (e.g., Russulaceae, Cortinariaceae) and 47 genera (e.g., Russula, Cortinarius). Ectomycorrhizal lineages prevailed, highlighting their critical role in forest nutrient cycling, plant symbiosis, and ecosystem integrity. In urban areas, 10 families (e.g., Agaricaceae, Psathyrellaceae) and 17 genera (e.g., Leucocoprinus, Coprinellus) were dominant. Saprotrophic genera dominated, indicating their adaptation to decomposing organic matter in human-modified habitats and the provision of ecosystem services. The study demonstrates relatively high macrofungal diversity in Beijing. The distinct functional guild composition—ectomycorrhizal dominance in natural areas versus saprotrophic prevalence in urban zones—reveals complementary ecosystem functions and underscores the conservation value of protected habitats for maintaining vital mycorrhizal networks. These findings provide fundamental data and scientific support for regional biodiversity conservation and sustainable macrofungal resource development.

1. Introduction

Fungi are the basis of almost all life on Earth and are widely distributed worldwide. They are essential components of ecosystems and play vital roles in the maintenance of diversity and communities, as well as human development [1,2]. According to the World Fungi Report published by the Royal Botanic Gardens Kew in 2023, it is estimated that the number of fungal species is globally estimated to be between 2 and 3 million, and so far, only 5% to 8% of species have been described or recorded; thus, a large number of fungi are still unknown. Among them, fungi capable of forming large fruiting bodies or sclerotium-like structures with fleshy, membranous, gelatinous, leathery, or woody textures are referred to as macrofungi, which are commonly known as mushrooms [3].
Macrofungi are among the most important lignocellulose-degrading organisms in ecosystems. They not only facilitate nutrient cycling within forest ecosystems but also enhance the uptake of nitrogen, phosphorus, and other essential nutrients by host plants, thereby playing a crucial role in the global carbon cycle [4,5]. Macrofungi can also establish diverse symbiotic relationships with other organisms (such as plants, insects, and algae) and play an indispensable role in maintaining ecological diversity and shaping biological communities [6]. Additionally, macrofungi exhibit medicinal properties, such as antioxidant, antibacterial, and antidiabetic activities [7]. Macrofungi have been one of the most important food sources for human beings since ancient times. Entering a new era, the important concept of the all-encompassing approach to food has been proposed, which involves using plants, animals, and microorganisms for calories and proteins, and developing food resources in an all-around and multi-channel way (https://english.www.gov.cn/, accessed on 17 March 2025). The edible fungus industry has achieved remarkable results from scratch in guaranteeing food security, promoting the development of the modern agricultural industry, and constructing a diversified food supply system. At the same time, with the continuous progress of modern science and technology, the development and utilization of macrofungi in food, medicine, and other aspects have also shown new vitality and have a broad space for development [8,9,10], which put forward higher requirements and challenges for the protection and sustainable utilization of biodiversity in the country and region.
Beijing is located between 115°20′ E–117°32′ E and 39°23′ N–41°05′ N, has an area of approximately 16,410 km2, and is characterized by unique natural and geographical conditions [11]. Situated at the northernmost edge of the North China Plain, the city lies at the junction of the Taihang and Yanshan Mountains, forming a semi-enclosed terrain with mountains to the west and north, and open lowlands facing the sea to the east and south [12]. As an ancient city with over 3000 years of urban history and more than 870 years as a capital, Beijing borders Tianjin to the east and is otherwise surrounded by Hebei Province [13,14]. With a permanent population of approximately 21 million, it is a highly internationalized metropolis and one of the most biodiverse major cities in the world [15]. Beijing experiences a warm temperate, semi-humid continental monsoon climate with pronounced seasonal contrasts [16,17]. Summers (June–August) are hot and humid, with mean monthly temperatures often exceeding 26 °C and daily maxima surpassing 35 °C during heat waves [18]. Winters (December–February) are cold and dry, with mean monthly temperatures frequently below 0 °C and extreme lows reaching −15 °C or lower [18,19]. Annual precipitation averages 400–800 mm, over 70% of which occurs during the summer monsoon, resulting in marked seasonal moisture variability [20,21,22,23]. Solar radiation totals approximately 5020–5740 MJ m−2 per year, peaking in late spring and early summer but showing a long-term declining trend [18]. Heat resources, measured as accumulated temperature above 0 °C, have increased in recent decades, particularly in the southeastern plains and during spring. Such pronounced seasonal and spatial variations in temperature, precipitation, and radiation strongly shape the ecological suitability of macrofungi across different habitats [18,24,25]. The annual sunshine duration is around 2600 h, with abundant radiation in spring and autumn, frequent cloud cover in summer, and short daylight accompanied by low solar altitude in winter [26]. The soils are diverse, comprising cinnamon soils, fluvo-aquic soils, sandy soils, and anthropogenic fill, and exhibit marked spatial heterogeneity resulting from topography, land use, and human disturbance [11]. They are generally weakly alkaline, with a pH of approximately 8.0 [11]. Urban core areas and roadside greenbelts tend to exhibit higher levels of soil organic carbon (SOC), available phosphorus (AP), and available potassium (AK), whereas some sites affected by traffic and industrial activities show accumulation of lead (Pb) and copper (Cu) [27,28]. Mountain forest soils are rich in organic matter, while soils in shrublands and farmland contain lower but relatively stable nutrient levels [29,30]. Topography strongly influences vegetation patterns, leading to pronounced horizontal and vertical zonation [31]. Mountainous areas are dominated by warm–temperate deciduous broad-leaved forests and coniferous forests, whereas plains and urban zones are primarily covered by artificial green spaces, farmland, and ornamental plantings [32,33,34,35,36]. Dominant species include Acer truncatum, Ginkgo biloba, Koelreuteria paniculata, Pinus tabuliformis, and Robinia pseudoacacia [37]. The complex topography and diverse river systems have contributed to the rich and unique macrofungal diversity observed in Beijing.
Despite Beijing’s unique natural environment and abundant macrofungal resources, research on macrofungal diversity and resource assessments remains fragmented and largely site-specific or short-term surveys. For example, Liu et al. identified a total of 162 macrofungal species in the Labagoumen nature reserve [38], Zhang et al. conducted a preliminary survey and analysis of macrofungal resources in Badaling Forest Park, Beijing, identifying a total of 127 species [39], and Jin et al. conducted a study on the macrofungi of Xiaoxishan in Beijing by combining field surveys and a literature review, identifying 148 species belonging to 2 phyla, 5 classes, 10 orders, 33 families, and 65 genera [40]. Xu et al. identified 619 species of macrofungi in Beijing [41]. In recent years, many new species and new records of macrofungi have been discovered and reported in Beijing [42,43,44,45,46]. However, wild macrofungal resources have faced an increasing risk of decline due to climate change and human activities. Meanwhile, half of the species have yet to undergo threat status assessments. As an important component of ecosystems, macrofungi play an irreplaceable ecological role in maintaining ecological balance, facilitating nutrient cycling, and indicating environmental health. Biodiversity is closely linked to human well-being; it serves as a vital foundation for human survival and development and represents the lifeblood and cornerstone of Earth’s community of life. Upholding the principle of harmonious coexistence between humans and nature, the Ministry of Ecology and Environment initiated a baseline biodiversity survey in Beijing.
This study, grounded in the natural geographical characteristics of Beijing, was conducted through field investigations from 2020 to 2024. Comprehensive surveys and collections of macrofungi were carried out, and the specimens obtained were identified using DNA barcoding in combination with multi-gene phylogenetic analysis. The objectives of the study were to (1) compile an accurate and comprehensive checklist of macrofungi in Beijing; (2) clarify the species composition of macrofungi in the region; and (3) compare diversity differences between natural ecological environments (protected areas) and urban green spaces and parks. The results provide fundamental data and scientific support for biodiversity conservation, as well as for the sustainable development and utilization of macrofungal resources in Beijing.

2. Materials and Methods

2.1. Survey Methods

From 2020 to 2024, macrofungal surveys (such as saprotrophic, mycorrhizal, and parasitic species) were conducted across all 16 districts of Beijing using line-transect and random sampling methods (Figure 1), with green sampling points indicating uninhabited natural environments and orange points representing urban green parks within built-up areas. Survey sites included nature reserves, forest parks, scenic areas, urban green spaces, and city parks. For each specimen collected, metadata such as elevation, geographic coordinates, topography, and ecosystem type were recorded. On the day of collection, specimens were dehydrated in a 50 °C oven for 12 h. After drying, specimens and their corresponding collection numbers were sealed in appropriately sized resealable bags and organized chronologically by collection date. All specimens were deposited in the Herbarium Mycologicum Academiae Sinicae (HMAS) at the Institute of Microbiology, Chinese Academy of Sciences.

2.2. Morphological Study

Basidiomata were collected in the field and photographed fresh in their natural habitat. Odor, color changes, macro-morphological features, and chemical reactions of fresh specimens were recorded on site. Microscopic features, including basidiospores, basidia, cheilocystidia, pleurocystidia, and elements of the pileipellis, were examined from dried material of fully mature fruiting bodies. Observations of anatomical and cytological features were conducted using 95% ethanol, 5% KOH, 1% Congo Red, and Melzer’s reagent. Specimens were rehydrated in 5% KOH solution. Spore morphology was observed in Melzer’s reagent. Hymenial cystidia and pileocystidia were stained with 1% aqueous Congo Red [42].

2.3. Molecular Phylogenetic Methods

Genomic DNA was extracted from 5 to 20 mg of dried specimen tissue using the Broad-spectrum Plant Rapid Genomic DNA Kit (Biomed, Beijing, China), following the manufacturer’s instructions. Specific primers and target regions were selected based on the characteristics of each specimen for PCR amplification. The amplified products were sequenced by BGI Genomics Co., Ltd. (Beijing, China). The resulting sequences were subjected to BLAST searches on NCBI to obtain preliminary identification results (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 10 March 2025). For certain taxa, phylogenetic analyses were conducted using reference sequences retrieved from the literature based on the BLAST results, and phylogenetic trees were subsequently constructed [47].

2.4. Specimen Identification

Species identification was performed using DNA barcoding in combination with multi-gene phylogenetic analysis. Species names followed Index Fungorum (http://www.indexfungorum.org/, accessed on 11 April 2025), and taxonomic placement was based on the current classification systems of Basidiomycota and Ascomycota [48,49,50].

2.5. Species Composition and Resource Evaluation

Based on the species identification results, a statistical analysis of the families and genera of macrofungi in Beijing was conducted. Families containing ten or more species were designated as dominant families, while genera with five or more species were defined as dominant genera [51,52,53]. In combination with a literature review, the economic value and endemism of the recorded macrofungi were also evaluated [54,55]. Visualization of the data was performed using R version 4.4.1. and a Venn diagram showing the overlap of macrofungal species among ecological types [56].

3. Results

3.1. Species Composition of Macrofungi

Beijing harbors a rich diversity of macrofungal resources. Based on five consecutive years of baseline biodiversity assessments, a comprehensive macrofungal inventory has been established, identifying a total of 1056 species (Table S1), distributed across 2 phyla, 7 classes, 25 orders, 109 families, and 286 genera. Among these, Basidiomycota comprises 3 classes, 18 orders, 95 families, 265 genera, and 1008 species, accounting for 95.45% of the total. Ascomycota includes 4 classes, 7 orders, 14 families, 21 genera, and 48 species, representing 4.55% of the total.
This project has published 12 new species: Candolleomyces luridus, Leucoagaricus bulbosus, Leucoagaricus centrobrunneolus, Leucoagaricus cinereibisporus, Leucoagaricus luteocanus, Leucoagaricus subcandidus, Leucoagaricus subnivalis, Leucoagaricus testaceumbonatus, Leucoagaricus xantholepis, Leucocoprinus beijingensis, Leucocoprinus digitatocystis, and Russula paragraveolens [42,47,57].
A total of 456 species were identified as new records in Beijing, primarily including 36 species of Inocybe, 23 of Entoloma, 20 of Russula, 16 of Cortinarius, 13 of Agaricus, 13 of Amanita, 13 of Marasmius, 11 of Hebeloma, 11 of Leucocoprinus, and 10 of Helvella, among others. The checklist of new records in Beijing is given below. Author abbreviations of scientific names follow the format of the Authors of Fungal Names (https://nmdc.cn/fungalnames/, accessed on 23 June 2025).
  • Agaricus aridicola Geml, Geiser & Royse ex Mateos, J. Morales, J.A. Muñoz, Rey & C. Tovar NE
  • Agaricus deardorffensis Kerrigan NE
  • Agaricus jacobi L.A. Parra, A. Caball. & Callac NE
  • Agaricus latiumbonatus S. Hussain NE
  • Agaricus litoralis (Wakef. & A. Pearson) Pilát LC E
  • Agaricus luteopileus R.L. Zhao & B. Cao NE
  • Agaricus macrocarpus F.H. Møller DD
  • Agaricus malangelus Kerrigan NE
  • Agaricus menieri Bon NE
  • Agaricus microviolaceus M.Q. He & R.L. Zhao NE
  • Agaricus pseudopratensis (Bohus) Wasser DD
  • Agaricus tephrolepidus L.A. Parra, C. Billette, Angelini, G. Mata & Callac NE
  • Agaricus thiersii Kerrigan & Vellinga NE
  • Agrocybe arvalis (Fr.) Singer LC
  • Agrocybe rivulosa Nauta NE
  • Agrocybe vervacti (Fr.) Singer DD
  • Aleuria aurantia (Pers.) Fuckel LC
  • Aleurodiscus dextrinoideocerussatus Manjón, M.N. Blanco & G. Moreno NE
  • Amanita aurora Härkönen & Niemelä NE
  • Amanita caesareoides Lj.N. Vassiljeva LC E
  • Amanita ceciliae (Berk. & Broome) Bas LC
  • Amanita fense M. Mu & L.P. Tang NE
  • Amanita fulvoides Neville & Poumarat NE
  • Amanita incarnatifolia Zhu L. Yang DD P
  • Amanita magniverrucata Thiers & Ammirati NE
  • Amanita manginiana Har. & Pat. LC P
  • Amanita morrisii Peck NE
  • Amanita oberwinkleriana Zhu L. Yang & Yoshim. Doi LC P
  • Amanita ovalispora Boedijn LC
  • Amanita phalloides (Vaill. ex Fr.) Link DD
  • Amanita rubescens Pers. LC
  • Aseroe coccinea Imazeki & Yoshimi ex Kasuya DD
  • Aureoboletus zangii X.F. Shi & P.G. Liu DD
  • Boletus carminiporus Bessette, Both & Dunaway NE
  • Boletus subfraternus Coker & Beers NE
  • Bonomyces arnoldii (Boud.) P.-A. Moreau, Vizzini & P. Alvarado NE
  • Bovista capensis (Fr.) J.C. Coetzee & A.E. van Wyk NE
  • Bovista nigrescens Pers. LC M
  • Butyriboletus peckii (Frost) Kuan Zhao & Zhu L. Yang DD
  • Butyriboletus subregius Yang Wang, Bo Zhang & Yu Li NE
  • Calocybe aurantiaca X.D. Yu & Jia J. Li NE
  • Calocybe convexa X.D. Yu & Jia J. Li NE
  • Calocybe cyanella Singer ex Redhead & Singer NE
  • Calocybe fulvipes J.Z. Xu & Yu Li NE
  • Calocybe hebelomoides (Ew. Gerhardt) Læssøe & J.H. Petersen NE
  • Calocybe indica Purkay. & A. Chandra NE
  • Calocybe obscurissima (A. Pearson) M.M. Moser NE
  • Calocybe ochracea (R. Haller Aar.) Bon DD
  • Calvatia subbooniana R.L. Zhao & J.Xin Li NE
  • Candolleomyces aberdarensis (A. Melzer, Kimani & R. Ullrich) D. Wächt. & A. Melzer NE
  • Candolleomyces cacao (Desjardin & B.A. Perry) D. Wächt. & A. Melzer NE
  • Candolleomyces subcandolleanus C.L. Hou & Hao Zhou NE
  • Candolleomyces sulcatotuberculosus (J. Favre) D. Wächt. & A. Melzer NE
  • Cantharellus appalachiensis R.H. Petersen DD
  • Cantharellus roseocanus (Redhead, Norvell & Danell) Redhead, Norvell & Moncalvo NE
  • Chamaemyces fracidus (Fr.) Donk DD
  • Clavaria flavipes Pers. LC
  • Clavulinopsis laeticolor (Berk. & M.A. Curtis) R.H. Petersen DD
  • Clitocybe lamoureae Armada, Bellanger, Bidaud & P.-A. Moreau NE
  • Clitocybe lohjaensis Harmaja NE
  • Clitopilus cretoalbus A. Izhar, Zaman, M. Asif, H. Bashir, Niazi & Khalid NE
  • Clitopilus geminus (Paulet) Noordel. & Co-David DD
  • Clitopilus piperatus (G. Stev.) Noordel. & Co-David NE
  • Collybia cirrhata (Schumach.) Quél. DD
  • Collybia cookei (Bres.) J.D. Arnold LC
  • Collybiopsis dichroa (Berk. & M.A. Curtis) R.H. Petersen NE
  • Collybiopsis gibbosa (Corner) R.H. Petersen NE
  • Collybiopsis indocta (Corner) R.H. Petersen NE
  • Collybiopsis nonnulla (Corner) R.H. Petersen NE
  • Coltricia weii Y.C. Dai DD
  • Coniophora hanoiensis Pat. NE
  • Conobolbitina dasypus (Romagn.) T. Bau & H.B. Song NE
  • Conocybe brachypodii (Velen.) Hauskn. & Svrček NE
  • Conocybe deliquescens Hauskn. & Krisai NE
  • Conocybe fuscimarginata (Murrill) Singer NE
  • Conocybe mesospora Kühner ex Watling DD
  • Conocybe microspora (Velen.) Dennis NE
  • Conocybe praticola E.F. Malysheva NE
  • Conocybe semiglobata Kühner & Watling DD
  • Conocybe subcrispa (Murrill) Singer NE
  • Conocybe vestita (Fr.) Kühner NE
  • Coprinellus ovatus M. Kamran & S. Jabeen NE
  • Coprinopsis bellula (Uljé) P. Roux & Eyssart. NE
  • Coprinopsis friesii (Quél.) P. Karst. LC M
  • Coprinopsis fusispora L. Nagy, Vágvölgyi & Papp NE
  • Coprinopsis lagopus (Fr.) Redhead, Vilgalys & Moncalvo LC M
  • Coprinopsis sclerotiorum (Horvers & de Cock) Redhead, Vilgalys & Moncalvo NE
  • Coprinopsis stangliana (Enderle, Bender & Gröger) Redhead, Vilgalys & Moncalvo NE
  • Coprinopsis strossmayeri (Schulzer) Redhead, Vilgalys & Moncalvo NE
  • Coprinopsis udicola Örstadius, A. Melzer & E. Larss. NE
  • Coprinus fissolanatus R.F.O. Kemp NE
  • Cordyceps tenuipes (Peck) Kepler, B. Shrestha & Spatafora NE E
  • Cortinarius acutus (Pers.) Fr. NE
  • Cortinarius alboviolaceus (Pers.) Fr. DD E
  • Cortinarius confirmatus Rob. Henry NE
  • Cortinarius decipiens (Pers.) Fr. DD
  • Cortinarius disjungendus P. Karst. NE
  • Cortinarius epipurrus Chevassut & Rob. Henry NE
  • Cortinarius fulvopaludosus Kytöv., Niskanen & Liimat. NE
  • Cortinarius gallurae D. Antonini, M. Antonini & Consiglio NE
  • Cortinarius melanotus Kalchbr. DD
  • Cortinarius murinascens Kytöv., Niskanen & Liimat. NE
  • Cortinarius persoonianus Bidaud NE
  • Cortinarius subferrugineus (Batsch) Fr. DD
  • Cortinarius trivialis J.E. Lange LC
  • Cortinarius umbrinolutescens Reumaux NE
  • Cortinarius uraceomajalis Dima, Liimat., Niskanen & Bojantchev NE
  • Cortinarius violaceus (L.) Gray LC
  • Crepidotus indicus A.M. Kumar & C.K. Pradeep NE
  • Crustomyces expallens (Bres.) Hjortstam DD
  • Cuphophyllus borealis (Peck) Bon ex Courtec. NE
  • Cyanoboletus pulverulentus (Opat.) Gelardi, Vizzini & Simonini LC
  • Cyathus apiculatus M.M.B. Barbosa & Baseia NE
  • Cyathus bulleri H.J. Brodie NE
  • Cyathus jiayuguanensis J. Yu, T.X. Zhou & L.Z. Zhao DD
  • Cyclocybe erebioides Angelini & Vizzini NE
  • Cystolepiota eriophora (Peck) Knudsen DD
  • Deconica coprophila (Bull.) P. Karst. LC
  • Deconica velifera (J. Favre) Noordel. NE
  • Dendrothele incrustans (P.A. Lemke) P.A. Lemke NE
  • Descolea quercina J. Khan & Naseer NE
  • Echinoderma jacobi (Vellinga & Knudsen) Gminder DD
  • Entocybe nitida (Quél.) T.J. Baroni, Largent & V. Hofst. LC
  • Entoloma aprile (Britzelm.) Sacc. DD
  • Entoloma aurorae-borealis Noordel., Weholt, Eidissen & Lorås NE
  • Entoloma bicolor Murrill NE
  • Entoloma brunneorugulosum Reschke, Noordel. & Lotz-Winter NE
  • Entoloma bryorum Romagn. NE
  • Entoloma caccabus (Kühner) Noordel. DD
  • Entoloma cyaneolilacinum Noordel., J.B. Jordal, Brandrud & Dima NE
  • Entoloma formosum (Fr.) Noordel. DD
  • Entoloma fuscosquamosum Hesler NE
  • Entoloma griseopruinatum Noordel. & Cheype NE
  • Entoloma griseorugulosum Noordel. & Fern. Sas. NE
  • Entoloma incanum (Fr.) Hesler LC P
  • Entoloma incarnatofuscescens (Britzelm.) Noordel. NE
  • Entoloma indutoides (P.D. Orton) Noordel. NE
  • Entoloma mediterraneense Noordel. & Hauskn. DD
  • Entoloma neglectum (Lasch) Arnolds DD
  • Entoloma nigrovelutinum O.V. Morozova & A.V. Alexandrova NE
  • Entoloma omiense (Hongo) E. Horak LC P
  • Entoloma rivulare Kokkonen NE
  • Entoloma rusticoides (Gillet) Noordel. DD
  • Entoloma subaraneosum Xiao L. He & T.H. Li DD
  • Entoloma subradiatum (Kühner & Romagn.) M.M. Moser DD
  • Entoloma undulatosporum Arnolds & Noordel. NE
  • Fasciodontia brasiliensis Yurchenko & Riebesehl NE
  • Fibrodontia gossypina Parmasto NE
  • Floccularia albolanaripes (G.F. Atk.) Redhead LC E
  • Fomitiporia carpinea X.H. Ji, X.M. Tian & Y.C. Dai NE
  • Fomitopsis marianiae (Bres.) Spirin, Vlasák & Cartabia NE
  • Fomitopsis monomitica (Yuan Y. Chen) Spirin & Viner NE
  • Fomitopsis officinalis (Vill.) Bondartsev & Singer DD M
  • Geastrum argentinum Speg. NE
  • Geastrum floriforme Vittad. LC
  • Geastrum fuscoglebum (Zeller) Jeppson & E. Larss. NE
  • Geastrum gorgonicum M.P. Martín, M. Dueñas & Telleria NE
  • Geastrum minimum Schwein. LC
  • Geastrum pectinatum Pers. LC
  • Geastrum smardae V.J. Staněk NE
  • Geastrum velutinum Morgan LC M
  • Geopora cervina (Velen.) T. Schumach. NE
  • Gerronema confusum L. Fan & T.Y. Zhao NE
  • Gerronema kuruvense K.P.D. Latha & Manim. NE
  • Gymnopilus flavus (Bres.) Singer DD
  • Gymnopilus sapineus (Fr.) Murrill LC
  • Gymnopus brunneodiscus Antonín, Ryoo & Ka NE
  • Gymnopus cremeostipitatus Antonín, Ryoo & Ka NE
  • Gymnopus foetidus (Sowerby) P.M. Kirk LC
  • Gymnopus montagnei (Berk.) Redhead NE
  • Gymnopus sepiiconicus (Corner) A.W. Wilson, Desjardin & E. Horak NE
  • Gymnopus subsulphureus (Peck) Murrill NE
  • Gyroporus austrobrasiliensis A.C. Magnago & R.M. Silveira NE
  • Gyroporus subglobosus N.K. Zeng, H.J. Xie, L.P. Tang & M. Mu NE
  • Hebeloma affine A.H. Sm., V.S. Evenson & Mitchel NE
  • Hebeloma album Peck DD
  • Hebeloma ammophilum Bohus NE
  • Hebeloma asperosporum Beker & U. Eberh. NE
  • Hebeloma eburneum Malençon NE
  • Hebeloma flaccidum A.H. Sm., V.S. Evenson & Mitchel NE
  • Hebeloma hiemale Bres. LC
  • Hebeloma neurophyllum G.F. Atk. NE
  • Hebeloma pseudofragilipes Beker, Vesterh. & U. Eberh. NE
  • Hebeloma sordescens Vesterh. NE
  • Hebeloma testaceum Batsch ex Quél. DD
  • Helvella alborava L. Fan, N. Mao & H. Zhou NE
  • Helvella bicolor Raddi NE
  • Helvella calycina Skrede, T.A. Carlsen & T. Schumach. NE
  • Helvella compressa (Snyder) N.S. Weber NE
  • Helvella danica Skrede, T.A. Carlsen & T. Schumach. NE
  • Helvella fibrosa (Wallr.) Korf NE
  • Helvella floriforma Q. Zhao & K.D. Hyde NE
  • Helvella liui X.C. Wang & W.Y. Zhuang NE
  • Helvella pseudopezizoides L. Fan, N. Mao & Y.Y. Xu NE
  • Helvella sublicia Holmsk. NE
  • Hemimycena cucullata (Pers.) Singer DD
  • Hemimycena mairei (E.-J. Gilbert) Singer NE
  • Hohenbuehelia atrocoerulea (Fr.) Singer DD
  • Hortiboletus amygdalinus Xue T. Zhu & Zhu L. Yang NE
  • Hortiboletus rufosquamosus L. Fan, N. Mao & T.Y. Zhao NE
  • Hydnum vesterholtii Olariaga, Grebenc, Salcedo & M.P. Martín NE
  • Hygrocybe acutoconica (Clem.) Singer LC
  • Hygrocybe coccineocrenata (P.D. Orton) M.M. Moser DD
  • Hygrocybe singeri (A.H. Sm. & Hesler) Singer NE
  • Hymenogaster arenarius Tul. & C. Tul. DD
  • Hymenopellis biyangensis Y.J. Liu, B. Zhang & Xiao Li NE
  • Hymenopellis rubrobrunnescens (Redhead, Ginns & Shoemaker) R.H. Petersen NE
  • Hymenopellis utriformis Niego & Raspé NE
  • Hyphodontia tropica Sheng H. Wu NE
  • Hypholoma acutum (Sacc.) E. Horak DD
  • Hypholoma fasciculare (Huds.) P. Kumm. LC M, P
  • Hypomyces armeniacus Tul. NE
  • Hypomyces chlorinus Tul. NE
  • Hypoxylon guilanense Pourmogh. & C. Lamb. NE
  • Hypoxylon rubiginosum (Pers.) Fr. LC
  • Infundibulicybe trachyspora J.Z. Xu, J.C. Qin & Yu Li NE
  • Inocybe aeruginascens Babos NE
  • Inocybe amblyospora Kühner NE
  • Inocybe amelandica Bandini & B. Oertel NE
  • Inocybe amethystina Kuyper DD
  • Inocybe armeniaca Huijsman NE
  • Inocybe assimilata Britzelm. LC
  • Inocybe bellidiana Bandini, B. Oertel & U. Eberh. NE
  • Inocybe bombina Bandini & B. Oertel NE
  • Inocybe brunnea Quél. DD P
  • Inocybe calospora Quél. LC
  • Inocybe caroticolor T. Bau & Y.G. Fan DD
  • Inocybe castanea Peck NE
  • Inocybe castaneicolor A. La Rosa, Bizio, Saitta & Tedersoo NE
  • Inocybe curvipes P. Karst. LC
  • Inocybe decemgibbosa (Kühner) Vauras NE
  • Inocybe dryadiana Bandini & B. Oertel NE
  • Inocybe fibrosoides Kühner NE
  • Inocybe grusiana Bandini & B. Oertel NE
  • Inocybe lampetiana Bandini & B. Oertel NE
  • Inocybe latibulosa E. Horak, Matheny & Desjardin NE
  • Inocybe leptocystis G.F. Atk. LC
  • Inocybe minutissima Carteret & Reumaux NE
  • Inocybe morganae Bandini, B. Oertel & U. Eberh. NE
  • Inocybe oblectabilis (Britzelm.) Sacc. NE
  • Inocybe obscurobadia (J. Favre) Grund & D.E. Stuntz DD
  • Inocybe perlucida Bandini & E. Ferrari NE
  • Inocybe plocamophora Singer, I.J.A. Aguiar & Ivory NE
  • Inocybe pruinosa R. Heim DD
  • Inocybe pseudoreducta Stangl & Glowinski NE
  • Inocybe putilla Bres. DD
  • Inocybe sambucella G.F. Atk. NE
  • Inocybe serotina Peck NE
  • Inocybe sindonia (Fr.) P. Karst. DD
  • Inocybe stellata E. Horak, Matheny & Desjardin NE
  • Inocybe suryana Bandini & B. Oertel NE
  • Inocybe terrifera Kühner NE
  • Laccaria fulvogrisea Popa, Rexer & G. Kost DD E
  • Laccaria ochropurpurea (Berk.) Peck DD
  • Lacrymaria glareosa (J. Favre) Watling NE
  • Lacrymaria hypertropicalis (Guzmán, Bandala & Montoya) Cortez NE
  • Lacrymaria pyrotricha (Holmsk.) Konrad & Maubl. DD
  • Lactarius aspideus (Fr.) Fr. DD
  • Lactarius evosmus Kühner & Romagn. NE
  • Lactarius hatsudake Nobuj. Tanaka LC E, M
  • Lactarius mediterraneensis Llistos. & Bellù NE
  • Lactarius microbuccinatus H. Lee, Wisitr. & Y.W. Lim NE
  • Lactarius mitratus H. Lee, Wisitr. & Y.W. Lim NE
  • Lactarius quietus (Fr.) Fr. LC E, M
  • Lactarius rubidus (Hesler & A.H. Sm.) Methven NE
  • Lactarius scrobiculatus (Scop.) Fr. LC P
  • Lepiota andegavensis Mornand NE
  • Lepiota atrobrunneodisca L. Fan, L. Xia & N. Mao NE
  • Lepiota atrodisca Zeller DD
  • Lepiota castaneidisca Murrill NE
  • Lepiota forquignonii Quél. NE
  • Lepiota oreadiformis Velen. DD
  • Lepiota pallidiochracea J.F. Liang & Zhu L. Yang DD
  • Lepiota psalion Huijser & Vellinga NE
  • Lepiota xanthophylla P.D. Orton DD
  • Lepista panaeola (Fr.) P. Karst. NE
  • Lepista panaeolus (Fr.) P. Karst. DD
  • Lepista ricekii Bon DD
  • Leucoagaricus japonicus (Kawam. ex Hongo) Hongo NE
  • Leucoagaricus purpurascens T. Guo & Z.W. Ge NE
  • Leucoagaricus roseilividus (Murrill) E. Ludw. NE
  • Leucocoprinus albosquamosus (Y.R. Ma, Z.W. Ge & T.Z. Liu) M. Asif, Saba & Vellinga NE
  • Leucocoprinus amanitoides (R.M. Davis & Vellinga) Kun L. Yang, Jia Ying Lin & Zhu L. Yang NE
  • Leucocoprinus atroazureus (J.F. Liang, Zhu L. Yang & J. Xu) M. Asif, Saba & Vellinga NE
  • Leucocoprinus barssii (Zeller) Migl. & Donato NE
  • Leucocoprinus caeruleovertens (Justo, Bizzi & Angelini) M. Asif, Saba & Vellinga NE
  • Leucocoprinus cretaceus (Bull.) Locq. DD
  • Leucocoprinus lahorensiformis (S. Hussain, H. Ahmad, Afshan & Khalid) M. Asif, Saba & Vellinga NE
  • Leucocoprinus pakistaniensis (S. Jabeen & A.N. Khalid) M. Asif & Saba NE
  • Leucocoprinus rubrobrunneus (E.F. Malysheva, Svetash. & Bulakh) M. Asif, Saba & Vellinga NE
  • Leucocoprinus subvolvatus (Malençon & Bertault) M. Asif, Saba & Vellinga NE
  • Leucocoprinus viriditinctus (Berk. & Broome) M. Asif, Saba & Vellinga NE
  • Litschauerella gladiola (G. Cunn.) Stalpers & P.K. Buchanan DD
  • Lycoperdon curtisii Berk. NE
  • Lycoperdon glabrescens Berk. DD E
  • Lycoperdon subincarnatum Peck DD E
  • Macrocybe gigantea (Massee) Pegler & Lodge NT E, M
  • Macrolepiota orientiexcoriata Z.W. Ge, Zhu L. Yang & Vellinga DD
  • Macropsalliota americana (Peck) Kun L. Yang, Jia Ying Lin & Zhu L. Yang NE
  • Mallocybe fulvoumbonata (Murrill) Matheny & Esteve-Rav. NE
  • Mallocybe leucoblema (Kühner) Matheny & Esteve-Rav. NE
  • Mallocybe leucoloma (Kühner) Matheny & Esteve-Rav. NE
  • Mallocybe leucothrix Matheny & M.E. Sm. NE
  • Mallocybe myriadophylla (Vauras & E. Larss.) Matheny & Esteve-Rav. NE
  • Mallocybe siciliana (Brugaletta, Consiglio & M. Marchetti) Brugaletta, Consiglio & M. Marchetti NE
  • Mallocybe subtomentosa (Peck) Matheny & Kudzma NE
  • Mallocybe unicolor (Peck) Matheny & Esteve-Rav. NE
  • Marasmiellus brunneigracilis (Corner) J.S. Oliveira NE
  • Marasmiellus rhizomorphogenus Antonín, Ryoo & H.D. Shin NE
  • Marasmius albopurpureus T.H. Li & C.Q. Wang LC
  • Marasmius brunneospermus Har. Takah. NE
  • Marasmius collinus (Scop.) Singer DD
  • Marasmius crinipes Antonín, Ryoo & H.D. Shin NE
  • Marasmius delectans Morgan NE
  • Marasmius fulvoferrugineus Gilliam NE
  • Marasmius laticlavatus Wannathes, Desjardin & Lumyong NE
  • Marasmius occultatiformis Antonín, Ryoo & H.D. Shin DD
  • Marasmius occultatus Har. Takah. NE
  • Marasmius ochroleucus Desjardin & E. Horak DD
  • Marasmius pallescens Murrill NE
  • Marasmius strobiluriformis Antonín, Ryoo & H.D. Shin NE
  • Marasmius tangerinus Wannathes, Suwannar., Kumla & Lumyong NE
  • Melanoleuca griseobrunnea Antonín, Ďuriška & Tomšovský NE
  • Melanoleuca juliannae Rimóczi, Antonín, L. Nagy & Tomšovský NE
  • Melanoleuca microcephala (P. Karst.) Singer NE
  • Melanophyllum haematospermum (Bull.) Kreisel DD
  • Mycena cicognanii Robich NE
  • Mycena megaspora Kauffman NE
  • Mycena niveipes (Murrill) Murrill DD
  • Mycena pearsoniana Dennis ex Singer NE
  • Mycena plumbea P. Karst. NE
  • Mycena xantholeuca Kühner NE
  • Mycenella bryophila (Voglino) Singer DD
  • Mycetinis scorodonius (Fr.) A.W. Wilson & Desjardin LC E, M
  • Neoboletus erythropus (Pers.) C. Hahn NE
  • Panaeolus acuminatus (P. Kumm.) Quél. LC P
  • Panaeolus olivaceus F.H. Møller NE
  • Panus purpuratus G. Stev. NE
  • Paragalactinia succosa (Berk.) Van Vooren NE
  • Paralepista gilva (Pers.) Raithelh. DD
  • Paramarasmius palmivorus (Sharples) Antonín & Kolařík NE
  • Parasola auricoma (Pat.) Redhead, Vilgalys & Hopple DD
  • Parasola conopilea (Fr.) Örstadius & E. Larss. NE
  • Parasola conopilus (Fr.) Örstadius & E. Larss. DD
  • Parasola kuehneri (Uljé & Bas) Redhead, Vilgalys & Hopple NE
  • Parasola lactea (A.H. Sm.) Redhead, Vilgalys & Hopple NE
  • Parasola lilatincta (Bender & Uljé) Redhead, Vilgalys & Hopple NE
  • Parasola malakandensis S. Hussain, Afshan & H. Ahmad NE
  • Parasola psathyrelloides K.G.G. Ganga & Manim. NE
  • Parasola setulosa (Berk. & Broome) Redhead, Vilgalys & Hopple NE
  • Paxillus vernalis Watling NE
  • Peniophora bicornis Hjortstam & Ryvarden DD
  • Peniophora incarnata (Pers.) P. Karst. LC
  • Peniophora lassa (Spirin & Kout) Y.Lin Xu & S.H. He NE
  • Perenniporia corticola (Corner) Decock NE
  • Perenniporia formosana T.T. Chang DD
  • Peziza depressa Pers. DD
  • Peziza irina Quél. NE
  • Phaeoclavulina decurrens (Pers.) J.H. Petersen NE
  • Phallus hadriani Vent. DD
  • Phallus ultraduplicatus X.D. Yu, W. Lv, S.X. Lv, Xu H. Chen & Qin Wang NE
  • Phanerochaete sanguineocarnosa Floudas & Hibbett NE
  • Phellinus erectus A. David, Dequatre & Fiasson DD
  • Phloeomana minutula (Sacc.) Redhead LC
  • Pholiota limonella (Peck) Sacc. DD
  • Pholiotina calongei Siquier, E. Suárez, Salom & Planas NE
  • Pluteus castroae Justo & E.F. Malysheva NE
  • Pluteus decoloratus E. Horak NE
  • Pluteus fibrillosus Murrill NE
  • Pluteus inflatus Velen. NE
  • Pluteus multiformis Justo, A. Caball. & G. Muñoz NE
  • Pluteus pantherinus Courtec. & M. Uchida DD
  • Pluteus romellii (Britzelm.) Sacc. DD
  • Pluteus siccus E.F. Malysheva NE
  • Polyporus gracilisporus (H. Lee, N.K. Kim & Y.W. Lim) Bernicchia & Gorjón NE
  • Polyporus mori (Pollini) Fr. NE M
  • Protoglossum niveum (Vittad.) T.W. May DD
  • Psathyrella atricastanea (Murrill) A.H. Sm. NE
  • Psathyrella pygmaea (Bull.) Singer DD
  • Psathyrella thiersii A.H. Sm. DD
  • Psathyrella uliginicola McKnight & A.H. Sm. NE
  • Psathyrella vestita (Peck) A.H. Sm. NE
  • Pseudosperma amabile Bandini, B. Oertel & Wehr NE
  • Pseudosperma citrinostipes Y.G. Fan & W.J. Yu NE
  • Pseudosperma melliolens (Kühner) Matheny & Esteve-Rav. NE
  • Pseudosperma perlatum (Cooke) Matheny & Esteve-Rav. NE
  • Pseudosperma solare Bandini, B. Oertel & U. Eberh. NE
  • Pseudosperma sororium (Kauffman) Matheny & Esteve-Rav. NE
  • Ptychogaster rubescens Boud. NE
  • Ramaria paraconcolor Franchi & M. Marchetti NE
  • Ramaria pseudogracilis R.H. Petersen NE
  • Ramaria stricta (Pers.) Quél. NT E
  • Rhodocollybia maculata (Alb. & Schwein.) Singer LC E
  • Rhodocybe asyae Seslı & Vizzini NE
  • Rhodocybe formosa Vila, Contu, F. Caball. & A. Ortega NE
  • Rhodocybe griseonigrella (Vila, Contu, F. Caball. & Ribes) Vizzini, Vila, Picillo & Contu NE
  • Russula albonigra (Krombh.) Fr. LC E, M
  • Russula chloroides (Krombh.) Bres. LC E
  • Russula cremicolor G.J. Li & C.Y. Deng NE
  • Russula emeticicolor Jul. Schäff. DD
  • Russula faustiana Sarnari NE
  • Russula fluvialis Taipale, Ruots. & Kälviäinen NE
  • Russula foetentula Peck NE
  • Russula laricina Velen. DD
  • Russula livescens (Batsch) Bataille LC E
  • Russula mustelina Fr. LC E
  • Russula nitida (Pers.) Fr. LC E
  • Russula pelargonia Niolle DD
  • Russula postiana Romell NE
  • Russula pseudoamoenicolor A. Ghosh, Buyck, K. Das, Baghela & R.P. Bhatt NE
  • Russula puellaris Fr. LC E
  • Russula quercicola Razzaq, Shahid, Naseer & Khalid NE
  • Russula solaris Ferd. & Winge LC
  • Russula variicolor Murrill NE
  • Russula vesca Fr. LC E, M
  • Russula violacea Quél. LC E
  • Sarcoscypha javensis Höhn. DD
  • Scleroderma meridionale Demoulin & Malençon NE
  • Scleroderma nastii Raut NE
  • Scleroderma septentrionale Jeppson NE
  • Scutellinia scutellata (L.) Lambotte LC
  • Scytinostroma portentosum (Berk. & M.A. Curtis) Donk DD
  • Singerocybe adirondackensis (Peck) Zhu L. Yang & J. Qin NE
  • Sinoperdon caudatum (J. Schröt.) R.L. Zhao & J.Xin Li NE
  • Sistotrema confluens Pers. DD
  • Skeletocutis ochroalba Niemelä DD
  • Spodocybe trulliformis (Fr.) Vizzini, P. Alvarado & Dima NE
  • Spongipellis variispora Spirin, Miettinen & Vlasák NE
  • Steccherinum hirsutum Y.X. Wu & C.L. Zhao NE
  • Stereum complicatum (Fr.) Fr. NE
  • Stropharia hardii G.F. Atk. DD
  • Suillus collinitus (Fr.) Kuntze DD E, M
  • Tarzetta sepultarioides Van Vooren NE
  • Tatraea macrospora (Peck) Baral NE
  • Tricholoma equestre (L.) P. Kumm. LC
  • Tricholoma frondosae Kalamees & Shchukin NE
  • Tricholosporum haitangshanum Yu Li & J.Z. Xu NE
  • Tubaria romagnesiana Arnolds NE
  • Tulosesus hiascens (Fr.) D. Wächt. & A. Melzer NE
  • Tulostoma fimbriatum Fr. LC
  • Tulostoma fulvellum Bres. NE
  • Tulostoma squamosum (J.F. Gmel.) Pers. NE
  • Tylopilus himalayanus D. Chakr., K. Das & Vizzini NE
  • Utraria decipiens (Durieu & Mont.) R.L. Zhao & J.Xin Li NE
  • Utraria lambinonii (Demoulin) R.L. Zhao & J.Xin Li NE
  • Utraria nivea (Kreisel) R.L. Zhao & J.Xin Li NE
  • Utraria pulcherrima (Berk. & M.A. Curtis) R.L. Zhao & J.Xin Li NE
  • Volvariella bombycina (Schaeff.) Singer LC E, M
  • Volvariella clavocystidiata Kapitonov & E.F. Malysheva NE
  • Volvariella hypopithys (Fr.) Shaffer DD
  • Volvariella murinella (Quél.) M.M. Moser ex Dennis, P.D. Orton & Hora DD
  • Volvariella subtaylori Hongo NE
  • Volvariella terrea Musumeci & A. Riva NE
  • Volvopluteus earlei (Murrill) Vizzini, Contu & Justo NE
  • Xanthoperenniporia tenuis (Schwein.) B.K. Cui & Xing Ji NE
  • Xerocomellus pruinatus (Fr. & Hök) Šutara NE
Notes: DD: Data deficient; LC: Least concern; NE: Not evaluated; NT: Near threatened; E: Edible; M: Medicinal; P: Poisonous.
A total of 79 new records for China were discovered, primarily including 13 species of Inocybe, 8 of Entoloma, 5 of Pluteus, 4 of Hebeloma, 3 of Amanita, 3 of Leucocoprinus, and 3 of Marasmius, among others. The checklist of new records in China is given below.
  • Agaricus latiumbonatus S. Hussain
  • Agaricus menieri Bon
  • Amanita aurora Härkönen & Niemelä
  • Amanita magniverrucata Thiers & Ammirati
  • Amanita morrisii Peck
  • Boletus subfraternus Coker & Beers
  • Clitocybe lamoureae Armada, Bellanger, Bidaud & P.-A. Moreau
  • Clitocybe lohjaensis Harmaja
  • Clitopilus cretoalbus A. Izhar, Zaman, M. Asif, H. Bashir, Niazi & Khalid
  • Conocybe vestita (Fr.) Kühner
  • Coprinopsis sclerotiorum (Horvers & de Cock) Redhead, Vilgalys & Moncalvo
  • Coprinopsis stangliana (Enderle, Bender & Gröger) Redhead, Vilgalys & Moncalvo
  • Cortinarius fulvopaludosus Kytöv., Niskanen & Liimat.
  • Cortinarius persoonianus Bidaud
  • Cyathus apiculatus M.M.B. Barbosa & Baseia
  • Dendrothele incrustans (P.A. Lemke) P.A. Lemke
  • Entoloma aurorae-borealis Noordel., Weholt, Eidissen & Lorås
  • Entoloma brunneorugulosum Reschke, Noordel. & Lotz-Winter
  • Entoloma bryorum Romagn.
  • Entoloma cyaneolilacinum Noordel., J.B. Jordal, Brandrud & Dima
  • Entoloma indutoides (P.D. Orton) Noordel.
  • Entoloma nigrovelutinum O.V. Morozova & A.V. Alexandrova
  • Entoloma rivulare Kokkonen
  • Entoloma undulatosporum Arnolds & Noordel.
  • Fasciodontia brasiliensis Yurchenko & Riebesehl
  • Fomitopsis marianiae (Bres.) Spirin, Vlasák & Cartabia
  • Geastrum argentinum Speg.
  • Geastrum fuscoglebum (Zeller) Jeppson & E. Larss.
  • Gymnopus cremeostipitatus Antonín, Ryoo & Ka
  • Gyroporus austrobrasiliensis A.C. Magnago & R.M. Silveira
  • Hebeloma affine A.H. Sm., V.S. Evenson & Mitchel
  • Hebeloma asperosporum Beker & U. Eberh.
  • Hebeloma flaccidum A.H. Sm., V.S. Evenson & Mitchel
  • Hebeloma neurophyllum G.F. Atk.
  • Helvella bicolor Raddi
  • Hemimycena mairei (E.-J. Gilbert) Singer
  • Inocybe amblyospora Kühner
  • Inocybe amelandica Bandini & B. Oertel
  • Inocybe bellidiana Bandini, B. Oertel & U. Eberh.
  • Inocybe bombina Bandini & B. Oertel
  • Inocybe castaneicolor A. La Rosa, Bizio, Saitta & Tedersoo
  • Inocybe dryadiana Bandini & B. Oertel
  • Inocybe lampetiana Bandini & B. Oertel
  • Inocybe minutissima Carteret & Reumaux
  • Inocybe morganae Bandini, B. Oertel & U. Eberh.
  • Inocybe perlucida Bandini & E. Ferrari
  • Inocybe plocamophora Singer, I.J.A. Aguiar & Ivory
  • Inocybe sambucella G.F. Atk.
  • Inocybe suryana Bandini & B. Oertel
  • Lactarius microbuccinatus H. Lee, Wisitr. & Y.W. Lim
  • Lactarius mitratus H. Lee, Wisitr. & Y.W. Lim
  • Lepiota andegavensis Mornand
  • Leucoagaricus roseilividus (Murrill) E. Ludw.
  • Leucocoprinus caeruleovertens (Justo, Bizzi & Angelini) M. Asif, Saba & Vellinga
  • Leucocoprinus pakistaniensis (S. Jabeen & A.N. Khalid) M. Asif & Saba
  • Leucocoprinus subvolvatus (Malençon & Bertault) M. Asif, Saba & Vellinga
  • Mallocybe leucothrix Matheny & M.E. Sm.
  • Mallocybe subtomentosa (Peck) Matheny & Kudzma
  • Marasmius occultatus Har. Takah.
  • Marasmius pallescens Murrill
  • Marasmius tangerinus Wannathes, Suwannar., Kumla & Lumyong
  • Mycena cicognanii Robich
  • Panus purpuratus G. Stev.
  • Peziza irina Quél.
  • Pholiotina calongei Siquier, E. Suárez, Salom & Planas
  • Pluteus castroae Justo & E.F. Malysheva
  • Pluteus decoloratus E. Horak
  • Pluteus fibrillosus Murrill
  • Pluteus inflatus Velen.
  • Pluteus siccus E.F. Malysheva
  • Pseudosperma amabile Bandini, B. Oertel & Wehr
  • Pseudosperma solare Bandini, B. Oertel & U. Eberh.
  • Ptychogaster rubescens Boud.
  • Ramaria paraconcolor Franchi & M. Marchetti
  • Rhodocybe formosa Vila, Contu, F. Caball. & A. Ortega
  • Rhodocybe griseonigrella (Vila, Contu, F. Caball. & Ribes) Vizzini, Vila, Picillo & Contu
  • Russula quercicola Razzaq, Shahid, Naseer & Khalid
  • Russula variicolor Murrill
  • Volvariella clavocystidiata Kapitonov & E.F. Malysheva

3.2. Diversity Comparison Across Various Ecological Types

3.2.1. Dominant Families and Genera in Natural Ecological Environments (Protected Areas)

In natural ecological environments, a total of 31 dominant macrofungal families (≥10 species) were identified (Table 1), comprising 753 species in total. The major families include Agaricaceae, Inocybaceae, Russulaceae, Psathyrellaceae, and Entolomataceae. These dominant families represent 28.70% of all recorded families and account for 78.19% of the total number of species in natural ecological environments.
In natural ecological environments, 47 dominant genera of macrofungi (≥5 species) were identified (Table 1), comprising 590 species. The main genera include Inocybe, Russula, Cortinarius, Entoloma, and Agaricus. These dominant genera account for 17.34% of the total number of genera and 61.27% of the total number of species.

3.2.2. Dominant Families and Genera in Urban Green Spaces and Parks

In urban green spaces and parks, a total of 10 dominant macrofungal families (≥10 species) were identified (Table 2), comprising 191 species. The main families include Agaricaceae, Psathyrellaceae, Polyporaceae, Inocybaceae, and Omphalotaceae. These dominant families represent 14.71% of all recorded families and account for 58.77% of the total number of species in urban green spaces and parks.
In urban green spaces and parks, 17 dominant genera of macrofungi (≥5 species) were identified (Table 2), comprising 137 species. The main genera include Agaricus, Leucocoprinus, Candolleomyces, Entoloma, and Inocybe. These dominant genera account for 11.81% of the total number of genera and 42.15% of the total number of species.

3.2.3. Representative Shared Macrofungi in Different Ecological Types

A total of 249 macrofungal species were shared between natural ecological environments and urban green spaces and parks, belonging to 62 families and 121 genera, and accounting for 23.58% of all recorded species (Table 3). These shared taxa are primarily affiliated with families such as Agaricaceae, Psathyrellaceae, Polyporaceae, Inocybaceae, Omphalotaceae, and Pluteaceae, and with genera including Agaricus, Leucocoprinus, Candolleomyces, Inocybe, Marasmius, and Trametes. Most of these shared macrofungi are saprotrophic, capable of growing on a wide range of substrates, and are commonly found in forest soils, decaying wood, or grasslands.
To illustrate the overlap of macrofungal species among different ecological types, a Venn diagram was constructed in this study, visually highlighting the shared and unique species within each type (Figure 2). The diagram reveals that many species are common to the four natural ecological types, with 20 species (such as Coprinellus micaceus (Bull.) Vilgalys, Hopple & Jacq. Johnson, Schizophyllum commune Fr., Trametes hirsuta (Wulfen) Lloyd, Trametes versicolor (L.) Lloyd) occurring in all of them, indicating their broad ecological adaptability.

3.2.4. Representative Endemic Macrofungi

Representative endemic macrofungi in natural ecological environments (protected areas).
In natural ecological environments (protected areas), a total of 714 endemic macrofungal species were recorded, belonging to 96 families and 229 genera (Table 4). The dominant genera include Inocybe, Russula, Cortinarius, Entoloma, Hebeloma, Amanita, Mycena, Lactarius, Pluteus, Geastrum, Tricholoma, Agaricus, Gymnopus, Helvella, and Marasmius. Among these, ectomycorrhizal fungi represent the most characteristic group. These fungi typically form ectomycorrhizal symbiotic relationships with trees and are key components in maintaining forest health and supporting nutrient cycling in soils.
Representative endemic macrofungi in urban green spaces and parks.
In urban green spaces and parks, a total of 76 endemic macrofungi were recorded (Table 5), belonging to 29 families and 56 genera. The main genera include Entoloma, Agaricus, Coprinopsis, Leucocoprinus, Calocybe, Cyathus, Leucoagaricus, Mallocybe, Marasmiellus, Pseudosperma, and Volvariella. These unique taxa are predominantly saprotrophic fungi, playing important roles in organic matter decomposition and soil nutrient cycling.

4. Discussion

As an international metropolis, Beijing is home to a large number of parks and green cities, and the suburbs have important nature reserves such as Baihuashan National Natural Reserve. Through five years of large-scale fungal investigations in Beijing, we discovered that Beijing boasts astonishing species diversity: a total of 1056 macrofungi were recorded in Beijing, belonging to 2 phyla, 7 classes, 25 orders, 109 families, and 286 genera (Table S1). These include 12 new species, 456 species new records in Beijing, and 79 species new records in China. The results indicate that Beijing exhibits a high species diversity of macrofungi.
Among those species, many have economic value, including 116 edible species, 56 species that are both edible and medicinal, 123 medicinal species, and 58 poisonous species (Table S1). The wild species most consumed by residents include Armillaria mellea (Vahl) P. Kumm., Suillus granulatus (L.) Roussel, and others, while the main poisonous macrofungi include Amanita oberwinkleriana Zhu L. Yang & Yoshim. Doi, Coprinellus micaceus (Bull.) Vilgalys, Hopple & Jacq. Johnson, Lepiota brunneoincarnata Chodat & C. Martín, Lysurus mokusin (L.) Fr., and others [41,55].
Among the 1056 macrofungal species identified in Beijing, 542 species have been assessed for their threat status in the Redlist of China’s Biodiversity—Macrofungi, while 514 species remain unassessed (Table S1). The assessment results indicate that eight macrofungal species in Beijing require attention and conservation. Of these, species classified as Near Threatened include Artomyces pyxidatus (Pers.) Jülich, Ganoderma applanatum (Pers.) Pat., Ganoderma sichuanense J.D. Zhao & X.Q. Zhang, Laccaria alba Zhu L. Yang & Lan Wang, Macrocybe gigantea (Massee) Pegler & Lodge, Ramaria stricta (Pers.) Quél., and Stropharia rugosoannulata Farl. ex Murrill; those classified as Vulnerable include Hericium erinaceus (Bull.) Pers.; the remaining species are categorized as either Least Concern or Data Deficient [58,59].
Further analysis shows that the natural ecological environment (protected areas) comprises 31 dominant families and 47 dominant genera, with characteristic taxa primarily represented by Inocybe, Russula, Cortinarius, Entoloma, Hebeloma, Mycena, Amanita, Lactarius, Geastrum, Pluteus, Tricholoma, Agaricus, Gymnopus, Helvella, and Marasmius. Urban green spaces and parks include 10 dominant families and 17 dominant genera, with characteristic taxa mainly represented by Entoloma, Agaricus, Coprinopsis, Leucocoprinus, Calocybe, Candolleomyces, Cyathus, Leucoagaricus, Mallocybe, Marasmiellus, Pseudosperma, and Volvariella. The taxa shared between these two ecological types are primarily dominated by Agaricus, Leucocoprinus, Candolleomyces, Inocybe, Marasmius, and Trametes. These results indicated that the endemic taxa in natural ecological environments (protected areas) are primarily composed of ectomycorrhizal and saprotrophic fungi. This is mainly because natural ecological environments typically possess higher ecological integrity and greater vegetation diversity, especially abundant forest types and sufficient host plant resources, providing a diverse and stable symbiotic foundation for ectomycorrhizal fungi. Additionally, the richness of the soil’s organic matter and minimal disturbances in these environments favor the growth and differentiation of various saprotrophic fungi. Therefore, the rich vegetation structure and relatively stable soil microenvironment in natural ecosystems offer a favorable ecological basis for the symbiotic relationships of ectomycorrhizal fungi and the decomposition of organic matter by saprotrophic fungi [60,61]. The endemic taxa in urban green spaces and parks are primarily dominated by saprotrophic fungi, and the taxa shared between the two ecological types are also mainly saprotrophic. This is largely because urban green spaces and parks are predominantly artificial environments with limited plant diversity, often dominated by ornamental plants and lacking native forest trees. Consequently, the symbiotic plants required by ectomycorrhizal fungi are scarce, hindering the establishment of stable mycorrhizal associations. In contrast, saprotrophic fungi can directly utilize organic residues such as garden waste, fallen leaves, and wood chips as nutrient sources, and exhibit greater resilience to soil disturbances and microbial community changes typical of urban settings. Therefore, due to their low dependence on host plants and strong adaptability to anthropogenic disturbances, saprotrophic fungi become the dominant group in urban green spaces and parks, and serve as taxa commonly shared between natural and urban ecological types [62,63,64].
In the context of accelerating global biodiversity loss and intensifying climate change, it is crucial to deepen our understanding of and effectively protect macrofungal diversity, enhance public awareness and appreciation of the “Kingdom of Fungi”, and collaboratively foster a harmonious ecological vision of a “Beautiful Beijing” where humans and nature coexist. This is essential for advancing Beijing’s leading role in global urban ecological governance, supporting the national ecological civilization strategy, and contributing to the “Beijing Model” and “Chinese Wisdom”. This study provides fundamental data and a scientific basis for biodiversity conservation, as well as the development and utilization of macrofungal resources in Beijing.

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/jof11080607/s1: Table S1: Checklist of macrofungi in Beijing.

Author Contributions

Conceptualization, D.-M.L. and S.-H.W.; data curation, K.W.; formal analysis, D.-M.L., S.-H.W. and K.W.; funding acquisition, W.-W.L. and R.-L.Z.; investigation, D.-M.L., S.-H.W., J.-X.L., W.-Q.Y., X.-X.H., B.C., S.-H.H. and R.-L.Z.; methodology, D.-M.L. and S.-H.W.; project administration, B.C.; writing—original draft, D.-M.L. and S.-H.W.; writing—review and editing, D.-M.L., S.-H.W., K.W., J.-X.L., W.-Q.Y., X.-X.H., B.C., S.-H.H., W.-W.L. and R.-L.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China, grant number 2019HJ2096001006.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are openly available in the Mycological Herbarium, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China (https://nmdc.cn/fungarium/fungi/chinastrain, accessed on 27 June 2025).

Acknowledgments

We thank the Mycological Herbarium, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China (HMAS). We thank Bei Han, Fei Liu, Guo-Tao Chen, Hong-Mei Dai, Lin-Hui Liu, Mao-Qiang He, Ming-Yu Zhu, Ming-Yue Liu, Xin-Bin Ma, Xin-Yu Zhu, Yan-Jie Shen, Yi-Xuan Wang, Ze-Zhi Wang, Zhi-Lin Ling, and Zhi-Wen Lü for assistance in specimen collecting.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Boddy, L.; Büntgen, U.; Egli, S.; Gange, A.C.; Heegaard, E.; Kirk, P.M.; Mohammad, A.; Kauserud, H. Climate variation effects on fungal fruiting. Fungal Ecol. 2014, 10, 20–33. [Google Scholar] [CrossRef]
  2. Heilmann-Clausen, J.; Barron, E.S.; Boddy, L.; Dahlberg, A.; Griffith, G.W.; Nordén, J.; Ovaskainen, O.; Perini, C.; Senn-Irlet, B.; Halme, P. A fungal perspective on conservation biology. Conserv. Biol. 2015, 29, 61–68. [Google Scholar] [CrossRef]
  3. Antonelli, A.; Fry, C.; Smith, R.J.; Eden, J.; Govaerts, R.H.A.; Kersey, P.; Nic Lughadha, E.; Onstein, R.E.; Simmonds, M.S.J.; Zizka, A.; et al. State of the World’s Plants and Fungi 2023; Royal Botanic Gardens, Kew: Richmond, UK, 2023. [Google Scholar] [CrossRef]
  4. Liu, Y.; Li, X.; Kou, Y. Ectomycorrhizal fungi: Participation in nutrient turnover and community assembly pattern in forest ecosystems. Forests 2020, 11, 453. [Google Scholar] [CrossRef]
  5. Pec, G.J.; Simard, S.W.; Cahill, J.F., Jr.; Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 2020, 30, 173–183. [Google Scholar] [CrossRef]
  6. Zhang, T.; Zhu, X.; Vizzini, A.; Li, B.; Cao, Z.; Guo, W.; Qi, S.; Wei, X.; Zhao, R. New insights into lichenization in Agaricomycetes based on an unusual new basidiolichen species of Omphalina s. str. J. Fungi 2022, 8, 1033. [Google Scholar] [CrossRef] [PubMed]
  7. De Silva, D.D.; Rapior, S.; Sudarman, E.; Stadler, M.; Xu, J.; Aisyah Alias, S.; Hyde, K.D. Bioactive metabolites from macrofungi: Ethnopharmacology, biological activities and chemistry. Fungal Divers. 2013, 62, 1–40. [Google Scholar] [CrossRef]
  8. Sun, Z.-w.; Zhang, L.-x.; Zhang, B.; Niu, T.-g. Structural characterisation and antioxidant properties of polysaccharides from the fruiting bodies of Russula virescens. Food Chem. 2010, 118, 675–680. [Google Scholar] [CrossRef]
  9. Saithong, P.; Permpool, J.; Rattanaloeadnusorn, S.; Poompurk, P.; Khunnamwong, P.; Lomthong, T. Nutritional compositions, microbial quality, bioactivities, and volatile compounds of a novel vinegar from wild edible mushroom, Russula delica Fr. Food Prod. Process. Nutr. 2024, 6, 50. [Google Scholar] [CrossRef]
  10. Kaewnarin, K.; Suwannarach, N.; Kumla, J.; Lumyong, S. Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. J. Funct. Foods 2016, 27, 352–364. [Google Scholar] [CrossRef]
  11. Mao, Q.; Huang, G.; Buyantuev, A.; Wu, J.; Luo, S.; Ma, K. Spatial heterogeneity of urban soils: The case of the Beijing metropolitan region, China. Ecol. Process. 2014, 3, 23. [Google Scholar] [CrossRef]
  12. Zhang, Y.; Qiu, E.; Wang, C.; Sun, Z.; Jin, J. Characteristics of the Distribution of Village Enclosure Forests in the Beijing Plain Area and Influencing Factors. Forests 2025, 16, 1003. [Google Scholar] [CrossRef]
  13. Qin, Z.; He, D.; Li, Q.; Meng, B.; Zhou, J.; Chen, S.; Chen, Z.; Chen, J. Research on the Chinese capital culture perception based on Weibo big data. Heliyon 2025, 11, e42758. [Google Scholar] [CrossRef] [PubMed]
  14. Hu, H. Spatial Synergy Between Cultural Heritage and Metro Networks: A Case Study of Distribution Patterns and Value Assessment in Beijing. Sustainability 2025, 17, 1666. [Google Scholar] [CrossRef]
  15. Zhou, Z.; Jin, X.; Luo, Y.; Li, Q.; Yue, J.; Liu, F.; He, T.; Li, X.; Dong, H.; Luo, P. Analyses and suggestions on mechanisms of Chinese national forestry and grassland administration to achieve targets of Kunming-Montreal Global Biodiversity Framework. Biodivers. Sci. 2025, 33, 24487. [Google Scholar] [CrossRef]
  16. Weng, Y.Y.; Liu, Z.L. Study on Rainfall Patterns of Beijing. Adv. Mater. Res. 2014, 864, 2073–2079. [Google Scholar] [CrossRef]
  17. Wu, T.; Yu, R.; Zhang, F.; Wang, Z.; Dong, M.; Wang, L.; Jin, X.; Chen, D.; Li, L. The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Clim. Dyn. 2010, 34, 123–147. [Google Scholar] [CrossRef]
  18. Yang, S.; Wang, J.; Dou, Y.; Luan, Q.; Kuang, W. Spatio-temporal evolution of urbanization and its relationship with regional climate change in Beijing over the past century. Acta Geogr. Sin 2023, 78, 620–639. [Google Scholar] [CrossRef]
  19. Xie, G.; Yao, Y.-F.; Li, J.-F.; Yang, J.; Bai, J.-D.; Ferguson, D.K.; Trivedi, A.; Li, C.-S.; Wang, Y.-F. Holocene climate, dynamic landscapes and environmentally driven changes in human living conditions in Beijing. Earth-Sci. Rev. 2019, 191, 57–65. [Google Scholar] [CrossRef]
  20. Zhang, B.; Xie, G.-d.; Li, N.; Wang, S. Effect of urban green space changes on the role of rainwater runoff reduction in Beijing, China. Landsc. Urban Plan. 2015, 140, 8–16. [Google Scholar] [CrossRef]
  21. Sun, Y.; Zhang, X.; Ren, G.; Zwiers, F.W.; Hu, T. Contribution of urbanization to warming in China. Nat. Clim. Chang. 2016, 6, 706–709. [Google Scholar] [CrossRef]
  22. Li, X.; Kuang, W.; Sun, F. Identifying urban flood regulation priority areas in Beijing based on an ecosystem services approach. Sustainability 2020, 12, 2297. [Google Scholar] [CrossRef]
  23. He, X.; Shen, S.; Miao, S.; Dou, J.; Zhang, Y. Quantitative detection of urban climate resources and the establishment of an urban climate map (UCMap) system in Beijing. Build. Environ. 2015, 92, 668–678. [Google Scholar] [CrossRef]
  24. Liu, L.; Lei, Y.; Zhuang, M.; Ding, S. The impact of climate change on urban resilience in the Beijing-Tianjin-Hebei region. Sci. Total Environ. 2022, 827, 154157. [Google Scholar] [CrossRef] [PubMed]
  25. Zhao, C.; Fu, G.; Liu, X.; Fu, F. Urban planning indicators, morphology and climate indicators: A case study for a north-south transect of Beijing, China. Build. Environ. 2011, 46, 1174–1183. [Google Scholar] [CrossRef]
  26. Yan, J.; Wei, R.; Wang, J.; Ji, S.; Wang, L.; Lv, J.; Li, X.; Li, J. Changes of Sunshine Duration in Beijing for the Recent 100 years and Future Trends. J. Xinyang Norm. Univ. (Nat. Sci. Ed.) 2023, 36, 605–610. [Google Scholar]
  27. Lorenz, K.; Kandeler, E. Microbial biomass activities in urban soils in two consecutive years. J. Plant Nutr. Soil Sci. 2006, 169, 799–808. [Google Scholar] [CrossRef]
  28. Wang, M.; Markert, B.; Shen, W.; Chen, W.; Peng, C.; Ouyang, Z. Microbial biomass carbon and enzyme activities of urban soils in Beijing. Environ. Sci. Pollut. Res. 2011, 18, 958–967. [Google Scholar] [CrossRef]
  29. Kissling, M.; Hegetschweiler, K.T.; Rusterholz, H.-P.; Baur, B. Short-term and long-term effects of human trampling on above-ground vegetation, soil density, soil organic matter and soil microbial processes in suburban beech forests. Appl. Soil Ecol. 2009, 42, 303–314. [Google Scholar] [CrossRef]
  30. Rodríguez-Loinaz, G.; Onaindia, M.; Amezaga, I.; Mijangos, I.; Garbisu, C. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biol. Biochem. 2008, 40, 49–60. [Google Scholar] [CrossRef]
  31. Zhang, P.; Dong, Y.; Ren, Z.; Wang, G.; Guo, Y.; Wang, C.; Ma, Z. Rapid urbanization and meteorological changes are reshaping the urban vegetation pattern in urban core area: A national 315-city study in China. Sci. Total Environ. 2023, 904, 167269. [Google Scholar] [CrossRef]
  32. Wang, X.; Meng, J.; Ren, S.; Zhu, Y. Relationship between biodiversity and aboveground biomass in the warm temperate deciduous broad-leaved forest of Donglingshan, Beijing. Biodivers. Sci. 2024, 32, 24230. [Google Scholar] [CrossRef]
  33. Zhou, Q.; Zhao, X.; Wu, D.; Tang, R.; Du, X.; Wang, H.; Zhao, J.; Xu, P.; Peng, Y. Impact of urbanization and climate on vegetation coverage in the Beijing–Tianjin–Hebei Region of China. Remote Sens. 2019, 11, 2452. [Google Scholar] [CrossRef]
  34. Shi, X.; Nie, S.; Ju, W.; Yu, L. Climate effects of the GlobeLand30 land cover dataset on the Beijing Climate Center climate model simulations. Sci. China Earth Sci. 2016, 59, 1754–1764. [Google Scholar] [CrossRef]
  35. Liu, Y.; Xuan, C.; Xu, Y.; Fu, N.; Xiong, F.; Gan, L. Local climate effects of urban wind corridors in Beijing. Urban Clim. 2022, 43, 101181. [Google Scholar] [CrossRef]
  36. Zhang, X.-X.; Ge, Q.-S.; Zheng, J.-Y. Relationships between climate change and vegetation in Beijing using remote sensed data and phenological data. Chin. J. Plant Ecol. 2004, 28, 499. [Google Scholar] [CrossRef]
  37. Pei, N.; Wang, C.; Jin, J.; Jia, B.; Chen, B.; Qie, G.; Qiu, E.; Gu, L.; Sun, R.; Li, J. Long-term afforestation efforts increase bird species diversity in Beijing, China. Urban For. Urban Green. 2018, 29, 88–95. [Google Scholar] [CrossRef]
  38. Liu, J.; Wang, X.; Niu, Y.; Zhong, Y.; Cui, G. Study on diversity of macrofungus in Labagoumen Nature Reserve in Beijing. J. Henan Univ. Sci. Technol. (Nat. Sci.) 2006, 027, 54–56. [Google Scholar] [CrossRef]
  39. Zhang, X.; Zhou, X.; Huang, Z.; Pu, Z.; Zhang, X.; Wang, Q.; Xie, S. Ecological distribution of marcofungi in Badaling Forest Park, Beijing. J. Arid. Land Resour. Environ. 2017, 31, 6. [Google Scholar] [CrossRef]
  40. Jin, R.; Zhou, X.; Ma, R.; Wang, Q.; Li, H.; Ren, Y. Species diversity of macrofungi in Xiaoxishan Mountain of Beijing. Biot. Resour. 2021, 43, 482–488. [Google Scholar] [CrossRef]
  41. Xu, W.; Li, Y.; Li, H.; Liu, D.; Yang, N.; Zhang, Q.; He, S. Species diversity and resource evaluation of macrofungi in Beijing. Biodivers. Sci. 2023, 31, 23196. [Google Scholar] [CrossRef]
  42. Li, J.-X.; Cao, B.; He, M.-Q.; Zhu, X.-Y.; Liu, D.-M.; Zhao, R.-L. Ten new species of Leucoagaricus and Leucocoprinus from Beijing: Revealing rich diversity in temperate regions. Mycology 2025, 1–31. [Google Scholar] [CrossRef]
  43. Li, Y.; He, S.-H.; Zhang, Y.-Z.; Liang, J.-Q.; Sheng, W.-Y.; Si, J.; Li, H.-J. Crinipellis deutziae, Marasmius pinicola spp. nov., and C. rhizomaticola (Agaricales, Basidiomycota) New to China from Beijing. Forests 2023, 14, 1480. [Google Scholar] [CrossRef]
  44. Man, X.-W.; Dai, Y.-C.; Bian, L.-S.; Zhou, M.; Zhao, H.; Vlasák, J. Two new species of Haploporus (Polyporales, Basidiomycota) from China and Ecuador based on morphology and phylogeny. Front. Cell. Infect. Microbiol. 2023, 13, 1133839. [Google Scholar] [CrossRef]
  45. Jiang, N.; Xue, H.; Li, Y. Novel genus and species of Diaporthostomataceae (Diaporthales) in China. IMA Fungus 2025, 16, e145422. [Google Scholar] [CrossRef] [PubMed]
  46. Huang, J.-M.; Xu, T.-M.; Zhao, W.; Mumin, R.; Zeng, L.; Sun, Y.-F.; Cui, B.-K. Species Diversity and Community Composition of Macrofungi in the Dongling Mountains, Western Beijing, China. J. Fungi 2025, 11, 155. [Google Scholar] [CrossRef] [PubMed]
  47. Wang, S.-H.; Li, G.-J.; Phurbu, D.; He, M.-Q.; Zhang, M.-Z.; Zhu, X.-Y.; Li, J.-X.; Zhao, R.-L.; Cao, B. Four new species of Russula from the Xizang Autonomous Region and other provinces of China. Mycology 2024, 15, 210–237. [Google Scholar] [CrossRef] [PubMed]
  48. He, M.-Q.; Cao, B.; Liu, F.; Boekhout, T.; Denchev, T.T.; Schoutteten, N.; Denchev, C.M.; Kemler, M.; Gorjón, S.P.; Begerow, D. Phylogenomics, divergence times and notes of orders in Basidiomycota. Fungal Divers. 2024, 126, 127–406. [Google Scholar] [CrossRef]
  49. He, M.-Q.; Zhao, R.-L.; Hyde, K.D.; Begerow, D.; Kemler, M.; Yurkov, A.; McKenzie, E.H.; Raspé, O.; Kakishima, M.; Sánchez-Ramírez, S. Notes, outline and divergence times of Basidiomycota. Fungal Divers. 2019, 99, 105–367. [Google Scholar] [CrossRef]
  50. Wijayawardene, N.N.; Hyde, K.D.; Rajeshkumar, K.C.; Hawksworth, D.L.; Madrid, H.; Kirk, P.M.; Braun, U.; Singh, R.V.; Crous, P.W.; Kukwa, M. Notes for genera: Ascomycota. Fungal Divers. 2017, 86, 1–594. [Google Scholar] [CrossRef]
  51. Tolgor, L. Study on fungal flora diversity in Daqinggou Nature Reserve. Biodivers. Sci. 2000, 8, 73. [Google Scholar] [CrossRef]
  52. Cui, Y.-J.; Wu, Y.-D.; Jiang, Y.-H.; Zhu, A.-H.; Wu, F.; Liu, H.-G.; Dai, Y.-C.; Yuan, Y. Diversity of macrofungi in southeast Xizang 1. The wood-decay fungi. Mycology 2025, 16, 635–669. [Google Scholar] [CrossRef]
  53. Ma, H.; Si, J.; Dai, Y.; Zhu, A.; Cui, B.; Fan, Y.; Yuan, Y.; He, S. Diversity of wood-inhabiting macrofungi in Hainan Province, South China. Mycosystema 2022, 41, 695. [Google Scholar] [CrossRef]
  54. He, M.-Q.; Wang, M.-Q.; Chen, Z.-H.; Deng, W.-Q.; Li, T.-H.; Vizzini, A.; Jeewon, R.; Hyde, K.D.; Zhao, R.-L. Potential benefits and harms: A review of poisonous mushrooms in the world. Fungal Biol. Rev. 2022, 42, 56–68. [Google Scholar] [CrossRef]
  55. Wu, F.; Zhou, L.-W.; Yang, Z.-L.; Bau, T.; Li, T.-H.; Dai, Y.-C. Resource diversity of Chinese macrofungi: Edible, medicinal and poisonous species. Fungal Divers. 2019, 98, 1–76. [Google Scholar] [CrossRef]
  56. RR Core Team. R: A Language and Environment for Statistical Computing; RR Core Team: Vienna, Austria, 2020. [Google Scholar]
  57. Han, X.-X.; Phurbu, D.; Ma, G.-F.; Li, Y.-Z.; Mei, Y.-J.; Liu, D.-M.; Lin, F.-C.; Zhao, R.-L.; Thongklang, N.; Cao, B. A taxonomic study of Candolleomyces specimens from China revealed seven new species. J. Fungi 2024, 10, 499. [Google Scholar] [CrossRef] [PubMed]
  58. Liu, D.; Cai, L.; Wang, K.; Li, J.; Wei, T.; Yao, Y. Threat assessments, problems and countermeasures of China’s macrofungi. Biodivers. Sci. 2018, 26, 1236. [Google Scholar] [CrossRef]
  59. Liu, D.-M.; Li, J.-S.; Li, Y.; Wang, K.; Yang, R.-H.; Yao, Y.-J. Status of global macrofungal conservation based on red lists and suggestions for a comprehensive strategy in China. Acta Edulis Fungi 2021, 28, 108–114. [Google Scholar] [CrossRef]
  60. Nowak, A.; Nowak, S.; Nobis, M. Distribution patterns, ecological characteristic and conservation status of endemic plants of Tadzhikistan–a global hotspot of diversity. J. Nat. Conserv. 2011, 19, 296–305. [Google Scholar] [CrossRef]
  61. Pouteau, R.; Brunel, C.; Dawson, W.; Essl, F.; Kreft, H.; Lenzner, B.; Meyer, C.; Pergl, J.; Pyšek, P.; Seebens, H. Environmental and socioeconomic correlates of extinction risk in endemic species. Divers. Distrib. 2022, 28, 53–64. [Google Scholar] [CrossRef]
  62. Baruch, Z.; Liddicoat, C.; Laws, M.; Marker, L.K.; Morelli, H.; Yan, D.; Young, J.M.; Breed, M.F. Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecol. 2020, 47, 100939. [Google Scholar] [CrossRef]
  63. Purahong, W.; Günther, A.; Gminder, A.; Tanunchai, B.; Gossner, M.M.; Buscot, F.; Schulze, E.-D. City life of mycorrhizal and wood-inhabiting macrofungi: Importance of urban areas for maintaining fungal biodiversity. Landsc. Urban Plan. 2022, 221, 104360. [Google Scholar] [CrossRef]
  64. Hui, N.; Liu, X.; Kotze, D.J.; Jumpponen, A.; Francini, G.; Setälä, H. Ectomycorrhizal fungal communities in urban parks are similar to those in natural forests but shaped by vegetation and park age. Appl. Environ. Microbiol. 2017, 83, e01797-17. [Google Scholar] [CrossRef]
Figure 1. Investigation sites of macrofungi in Beijing.
Figure 1. Investigation sites of macrofungi in Beijing.
Jof 11 00607 g001
Figure 2. Venn diagram showing the overlap of macrofungal species among ecological types. The numbers in parentheses are the values of all observed fungi in each ecological type studied (cumulative species richness).
Figure 2. Venn diagram showing the overlap of macrofungal species among ecological types. The numbers in parentheses are the values of all observed fungi in each ecological type studied (cumulative species richness).
Jof 11 00607 g002
Table 1. Dominant families (≥10 species) and genera (≥5 species) of macrofungi in natural ecological environments.
Table 1. Dominant families (≥10 species) and genera (≥5 species) of macrofungi in natural ecological environments.
Dominant FamiliesDominant Genera
FamilyNumber of GeneraNumber of SpeciesPercentage (%)GeneraNumber of SpeciesPercentage (%)
Agaricaceae12818.41Inocybe505.19
Inocybaceae4676.96Russula414.26
Russulaceae2596.13Cortinarius272.80
Psathyrellaceae8454.67Entoloma272.80
Entolomataceae3353.63Agaricus252.60
Polyporaceae16323.32Amanita202.08
Cortinariaceae2282.91Geastrum181.87
Incertae sedis12282.91Hebeloma181.87
Pluteaceae3262.70Lactarius181.87
Omphalotaceae4242.49Marasmius181.87
Hymenogastraceae4232.39Pluteus181.87
Lycoperdaceae5232.39Mycena171.77
Amanitaceae2212.18Lepiota151.56
Marasmiaceae3202.08Leucocoprinus151.56
Mycenaceae3202.08Gymnopus141.45
Hymenochaetaceae10191.97Helvella131.35
Strophariaceae5191.97Melanoleuca121.25
Clitocybaceae4181.87Tricholoma121.25
Geastraceae1181.87Calocybe111.14
Boletaceae11171.77Lycoperdon111.14
Peniophoraceae5141.45Candolleomyces101.04
Physalacriaceae5141.45Conocybe101.04
Bolbitiaceae4131.35Leucoagaricus101.04
Helvellaceae1131.35Psathyrella101.04
Lyophyllaceae2121.25Trametes101.04
Tricholomataceae1121.25Collybiopsis90.93
Phanerochaetaceae6111.14Peniophora90.93
Schizoporaceae4111.14Mallocybe80.83
Hydnaceae4101.04Pseudosperma80.83
Irpicaceae6101.04Laccaria70.73
Phallaceae4101.04Parasola70.73
    Pholiota70.73
    Utraria70.73
    Volvariella70.73
    Clitocybe60.62
    Collybia60.62
    Coprinellus60.62
    Coprinopsis60.62
    Scleroderma60.62
    Suillus60.62
    Agrocybe50.52
    Armillaria50.52
    Clitopilus50.52
    Hymenopellis50.52
    Hypoxylon50.52
    Stereum50.52
    Xylodon50.52
Table 2. Dominant families (≥10 species) and genera (≥5 species) of macrofungi in urban green spaces and parks.
Table 2. Dominant families (≥10 species) and genera (≥5 species) of macrofungi in urban green spaces and parks.
Dominant FamiliesDominant Genera
FamilyNumber of GeneraNumber of SpeciesPercentage (%)GeneraNumber of SpeciesPercentage (%)
Agaricaceae115115.69Agaricus185.54
Psathyrellaceae6298.92Leucocoprinus134.00
Polyporaceae12226.77Candolleomyces92.77
Inocybaceae4185.54Entoloma92.77
Omphalotaceae5144.31Inocybe92.77
Pluteaceae3144.31Marasmius92.77
Entolomataceae3123.69Trametes92.77
Marasmiaceae3113.38Lepiota72.15
Incertae sedis3103.08Volvariella72.15
Russulaceae2103.08Collybiopsis61.85
    Coprinellus61.85
    Coprinopsis61.85
    Geastrum61.85
    Melanoleuca61.85
    Pluteus61.85
    Russula61.85
    Calocybe51.54
Table 3. Number of families, genera, and species of shared macrofungi.
Table 3. Number of families, genera, and species of shared macrofungi.
FamilyNumber of GeneraNumber of SpeciesPercentage (%)
Agaricaceae104016.06
Psathyrellaceae5218.43
Polyporaceae11187.23
Inocybaceae3124.82
Omphalotaceae4104.02
Pluteaceae2104.02
Marasmiaceae293.61
Phallaceae493.61
Russulaceae283.21
Incertae sedis372.81
Geastraceae162.41
Hymenochaetaceae662.41
Entolomataceae252.01
Peniophoraceae452.01
Amanitaceae241.61
Auriculariaceae141.61
Irpicaceae341.61
Lycoperdaceae341.61
Bolbitiaceae131.20
Lyophyllaceae131.20
Peniophorellaceae131.20
Phanerochaetaceae331.20
Physalacriaceae331.20
Sclerodermataceae131.20
Strophariaceae231.20
Bondarzewiaceae120.80
Clitocybaceae220.80
Fomitopsidaceae120.80
Gloeophyllaceae120.80
Helvellaceae120.80
Hypoxylaceae220.80
Oxyporaceae120.80
Schizoporaceae220.80
Tubariaceae220.80
Boletaceae110.40
Ceratobasidiaceae110.40
Cerrenaceae110.40
Clathraceae110.40
Coniophoraceae110.40
Dacrymycetaceae110.40
Dacryobolaceae110.40
Galeropsidaceae110.40
Ganodermataceae110.40
Hydnaceae110.40
Hygrophoropsidaceae110.40
Hyphodermataceae110.40
Macrocystidiaceae110.40
Meripilaceae110.40
Meruliaceae110.40
Mycenaceae110.40
Paxillaceae110.40
Pezizaceae110.40
Pleurotaceae110.40
Podoscyphaceae110.40
Porotheleaceae110.40
Postiaceae110.40
Punctulariaceae110.40
Schizophyllaceae110.40
Steccherinaceae110.40
Stereaceae110.40
Suillaceae110.40
Tapinellaceae110.40
Table 4. Representative endemic macrofungi (≥5 species) in natural ecological environments (protected areas).
Table 4. Representative endemic macrofungi (≥5 species) in natural ecological environments (protected areas).
GeneraNumber of SpeciesPercentage (%)
Inocybe425.88
Russula365.04
Cortinarius273.78
Entoloma243.36
Hebeloma182.52
Amanita172.38
Mycena172.38
Lactarius152.10
Pluteus131.82
Geastrum121.68
Tricholoma121.68
Agaricus111.54
Gymnopus111.54
Helvella111.54
Marasmius101.40
Lepiota91.26
Lycoperdon91.26
Calocybe81.12
Leucoagaricus81.12
Conocybe70.98
Laccaria70.98
Mallocybe70.98
Melanoleuca70.98
Parasola70.98
Peniophora70.98
Psathyrella70.98
Utraria70.98
Clitocybe60.84
Collybia60.84
Pholiota60.84
Armillaria50.70
Leucocoprinus50.70
Pseudosperma50.70
Stereum50.70
Suillus50.70
Table 5. Endemic macrofungi in urban green spaces and parks.
Table 5. Endemic macrofungi in urban green spaces and parks.
GeneraNumber of SpeciesPercentage (%)
Entoloma67.89
Agaricus45.26
Coprinopsis45.26
Leucocoprinus33.95
Calocybe22.63
Cyathus22.63
Leucoagaricus22.63
Mallocybe22.63
Marasmiellus22.63
Pseudosperma22.63
Volvariella22.63
Aleuria11.32
Antrodia11.32
Bovista11.32
Calvatia11.32
Candolleomyces11.32
Chamaemyces11.32
Collybiopsis11.32
Coniophora11.32
Conocybe11.32
Crinipellis11.32
Efibula11.32
Entocybe11.32
Flammulina11.32
Fomitopsis11.32
Ganoderma11.32
Henningsomyces11.32
Hyphodontia11.32
Inocybe11.32
Kuehneromyces11.32
Laccaria11.32
Lacrymaria11.32
Lactarius11.32
Lenzitopsis11.32
Lepiota11.32
Marasmius11.32
Mattirolomyces11.32
Melanoleuca11.32
Mycetinis11.32
Neolentinus11.32
Panus11.32
Parasola11.32
Pilatoporus11.32
Pluteus11.32
Polyporus11.32
Psathyrella11.32
Pseudocercospora11.32
Pseudosperma11.32
Russula11.32
Scleroderma11.32
Sinoperdon11.32
Stropharia11.32
Trametes11.32
Vanderbylia11.32
Volvopluteus11.32
Xanthoperenniporia11.32
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Liu, D.-M.; Wang, S.-H.; Wang, K.; Li, J.-X.; Yang, W.-Q.; Han, X.-X.; Cao, B.; He, S.-H.; Liu, W.-W.; Zhao, R.-L. Species Diversity and Resource Status of Macrofungi in Beijing: Insights from Natural and Urban Habitats. J. Fungi 2025, 11, 607. https://doi.org/10.3390/jof11080607

AMA Style

Liu D-M, Wang S-H, Wang K, Li J-X, Yang W-Q, Han X-X, Cao B, He S-H, Liu W-W, Zhao R-L. Species Diversity and Resource Status of Macrofungi in Beijing: Insights from Natural and Urban Habitats. Journal of Fungi. 2025; 11(8):607. https://doi.org/10.3390/jof11080607

Chicago/Turabian Style

Liu, Dong-Mei, Shi-Hui Wang, Ke Wang, Jia-Xin Li, Wen-Qiang Yang, Xi-Xi Han, Bin Cao, Shuang-Hui He, Wei-Wei Liu, and Rui-Lin Zhao. 2025. "Species Diversity and Resource Status of Macrofungi in Beijing: Insights from Natural and Urban Habitats" Journal of Fungi 11, no. 8: 607. https://doi.org/10.3390/jof11080607

APA Style

Liu, D.-M., Wang, S.-H., Wang, K., Li, J.-X., Yang, W.-Q., Han, X.-X., Cao, B., He, S.-H., Liu, W.-W., & Zhao, R.-L. (2025). Species Diversity and Resource Status of Macrofungi in Beijing: Insights from Natural and Urban Habitats. Journal of Fungi, 11(8), 607. https://doi.org/10.3390/jof11080607

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.
Back to TopTop