Diversity of Binucleate Rhizoctonia spp. and Population Structure of AG-A in Serbia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Surveys, Sample Collection, and Morphological Identification
2.2. Pathogenicity Testing
2.3. DNA Amplification and Sequencing
2.4. Phylogenetic Analyses
2.5. Haplotype Analysis of Binucleate Rhizoctonia AG-A Sequences
2.6. Host Range and Aggressiveness Testing
2.7. Statistical Analysis
3. Results
3.1. Symptoms, Morphology, and Pathogenicity
3.2. Molecular and Phylogenetic Characterization
3.3. Haplotype Structure and Genetic Diversity of BNR AG-A Sequences
3.4. Host Range and Aggressiveness of Four Rhizoctonia spp. AGs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AG | Anastomosis group |
BNR | Binucleate Rhizoctonia |
MNR | Multinucleate Rhizoctonia |
UNR | Uninucleate Rhizoctonia |
ITS | Internal Transcribed Spacer |
LSU | Large subunit |
RPB2 | RNA polymerase II second largest subunit |
tef-1α | Translation elongation factor 1α |
atp6 | ATP synthase membrane subunit 6 |
DNA | Deoxyribonucleic acid |
PDA | Potato Dextrose Agar |
WA | Water Agar |
dpi | Days post inoculation |
nt | Nucleotide |
Hap | Haplotype |
References
- Sneh, B.; Burpee, L.; Ogoshi, A. Identification of Rhizoctonia Species; APS Press: St. Paul, MN, USA, 1991. [Google Scholar]
- Sneh, B.; Jabaji-Hare, S.; Neate, S.; Dijst, G. Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology, and Disease Control; Kluwer Academic Publication: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Tsror, L. Biology, Epidemiology and Management of Rhizoctonia solani on Potato. J. Phytopathol. 2010, 158, 649–658. [Google Scholar] [CrossRef]
- Banville, G.J. Yield losses and damage to potato plants caused by Rhizoctonia solani Kühn. Am. J. Potato Res. 1989, 66, 821–834. [Google Scholar] [CrossRef]
- Dass, S.; Shah, F.A.; Butlera, R.C.; Falloonab, R.E.; Stewartb, A.; Raikarb, S.; Pitman, A.R. Genetic variability and pathogenicity of Rhizoctonia solani associated with black scurf of potato in New Zealand. Plant Pathol. 2013, 63, 651–666. [Google Scholar] [CrossRef]
- Stetina, K.C.; Stetina, S.R.; Russin, J.S. Comparison of severity assessment methods for predicting yield loss to Rhizoctonia foliar blight in soybean. Plant Dis. 2006, 90, 39. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, W.; Ou, Z.; Li, C.; Zhou, G.; Wang, Z.; Yin, L. Analyses of the Temporal Development and Yield Losses due to Sheath Blight of Rice (Rhizoctonia solani AG1). Agri. Sci. China 2007, 6, 1074–1081. [Google Scholar] [CrossRef]
- Jayaweera, D.P.; Ray, R.V. Yield loss and integrated disease control of Rhizoctonia solani AG-2-1 using seed treatment and sowing rate of oilseed rape. Plant Dis. 2023, 107, 1159–1165. [Google Scholar] [CrossRef]
- Ogoshi, A. Grouping of Rhizoctonia solani Kühn and their perfect stages. Rev. Plant Protect. Res. 1975, 8, 93–103. [Google Scholar]
- Ogoshi, A. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annu. Rev. Phytopathol. 1987, 25, 25. [Google Scholar] [CrossRef]
- Ogoshi, A. Introduction—The genus Rhizoctonia. In Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology, and Disease Control; Sneh, B., Jabaji-Hare, S., Neate, S., Dijst, G., Eds.; Kluwer Academic Publication: Amsterdam, The Netherlands, 1996; pp. 1–9. [Google Scholar]
- Sharon, M.; Kuninaga, S.; Hyakumachi, M.; Naito, S.; Sneh, B. Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience 2008, 49, 93–114. [Google Scholar] [CrossRef]
- Yang, Y.G.; Zhao, C.; Guo, Z.J.; Wu, X.H. Characterization of new anastomosis group (AG-W) of binucleate Rhizoctonia, causal agent for potato stem cancer. Plant Dis. 2015, 99, 1757–1763. [Google Scholar] [CrossRef]
- Hua, G.K.H.; Bertier, L.; Soltaninejad, S.; Hofte, M. Cropping Systems and Cultural Practices Determine the Rhizoctonia Anastomosis Groups Associated with Brassica spp. in Vietnam. PLoS ONE 2014, 9, e111750. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.; Rodriguez-Carres, M.; Boekhout, T.; Stalpers, J.; Kuramae, E.E.; Nakatani, A.K.; Vilgalys, R.; Cubeta, M.A. Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales. Fungal Biol. 2016, 120, 603–619. [Google Scholar] [CrossRef]
- Tewoldemedhin, Y.T.; Lamprecht, S.C.; McLeod, A.; Mazzola, M. Characterization of Rhizoctonia spp. recovered from crop plants used in rotational cropping systems in the Western Cape Province of South Africa. Plant Dis. 2006, 90, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Ohkura, M.; Abawi, G.S.; Smart, C.D.; Hodge, K.T. Diversity and aggressiveness of Rhizoctonia solani and Rhizoctonia-like fungi on vegetables in New York. Plant Dis. 2009, 93, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Ceresini, P.C.; Shew, H.D.; Vilgalys, R.J.; Cubeta, M.A. Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco in North Carolina. Mycology 2002, 94, 437–449. [Google Scholar] [CrossRef]
- Eken, C.; Demirci, E. Anastomosis groups and pathogenicity of Rhizoctonia solani and binucleate Rhizoctonia isolates from bean in Erzurum. Plant Pathol. J. 2004, 86, 49–52. [Google Scholar] [CrossRef]
- Vojvodić, M.; Tanović, B.; Mihajlović, M.; Mitrović, P.; Vico, I.; Bulajić, A. Molecular identification and characterization of binucleate Rhizoctonia spp. associated with black root rot of strawberry in Serbia. Pestic. Phytomed. 2018, 33, 97–107. [Google Scholar] [CrossRef]
- Cara, M.; Merkuri, J.; Salliu, A.; Vojvodić, M.; Knežević, I.; Grkinić, M.; Bulajić, A. Binucleate Rhizoctonia AG-A causing black root rot of strawberry in Albania. J. Phytopathol. 2024, 172, e13265. [Google Scholar] [CrossRef]
- Mazzola, M. Identification and pathogenicity of Rhizoctonia spp. isolated from apple roots and orchard soils. Phytopathology 1997, 87, 582–587. [Google Scholar] [CrossRef]
- Spedaletti, Y.; Mercado, G.; Gisel, T.; Aban, C.; Aparicio, M.; Rodriguero, M.; Vizgarra, O.; Sühring, S.; Galindez, G.; Galván, M. Molecular identification and pathogenicity of Rhizoctonia spp. recovered from seed and soil samples of the main bean growing area of Argentina. Aust. J. Crop Sci. 2017, 11, 952–959. [Google Scholar] [CrossRef]
- Blanco, A.J.V.; Costa, M.O.; Silva, R.D.N.; Suzart de Albuquerque, F.; Melo, A.T.D.O.; Lopes, F.A.C.; Junior, M.L. Diversity and pathogenicity of Rhizoctonia species from the Brazilian Cerrado. Plant Dis. 2018, 102, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Ceresini, P.C.; Shew, H.D.; James, T.Y.; Vilgalys, R.J.; Cubeta, M. Phylogeography of the Solanaceae-infecting Basidiomycota fungus Rhizoctonia solani AG-3 based on sequence analysis of two nuclear DNA loci. BMC Evol. Biol. 2007, 7, 163. [Google Scholar] [CrossRef]
- Wei, Y.; Bao, J.; Cao, H.; Zhai, J.; Jantasuriyarat, C.; Zuo, S.; Pan, X.; Wang, H.; Zhou, B. Haplotype variation and phylogeography of Rhizoctonia solani AG1-IA strains based on rDNA5.8S-ITS and -actin gene sequence analyses. Mycol. Prog. 2013, 13, 247–255. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.M.; Hou, X.Y.; Li, L.; Huang, S.W. Pathotypic and genetic diversity in the population of Rhizoctonia solani AG-1-IA causing rice sheath blight in China. Plant Pathol. 2015, 64, 718–728. [Google Scholar] [CrossRef]
- Li, W.; Sun, H.; Deng, Y.; Zhang, A.; Chen, H. The heterogeneity of the rDNA-ITS sequence and its phylogeny in Rhizoctonia cerealis, the cause of sharp eyespot in wheat. Curr. Genet. 2014, 60, 1–9. [Google Scholar] [CrossRef]
- Vico, I. Investigation of anastomosis groups of binucleate Rhizoctonia spp. isolated from strawberries. Phytopathol. Mediterr. 1994, 33, 165–167. [Google Scholar]
- Dhingra, O.; Sinclair, J. Basic Plant Pathology Methods, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Manici, L.M.; Bonora, P. Molecular genetic variability of Italian binucleate Rhizoctonia spp. isolates from strawberry. Eur. J. Plant Pathol. 2007, 118, 31–42. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; White, T.J., Sninsky, J.J., Gelfand, D.H., Innin, M.A., Eds.; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef]
- Matheny, P.B. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, Agaricales). Mol. Phylogenet. Evol. 2005, 35, 1–20. [Google Scholar] [CrossRef]
- Reeb, V.; Lutzoni, F.; Roux, C. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen forming Acarosporaceae and evolution of polyspory. Mol. Phylogenet. Evol. 2004, 32, 1036–1060. [Google Scholar] [CrossRef] [PubMed]
- Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-a sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Kretzer, A.; Bruns, T.D. Use of atp6 in fungal phylogenetics: An example from the Boletales. Mol. Phylogenet. Evol. 1999, 13, 483–492. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Todd, C.; Hamid, M.; Ashworth, V.; Garcia, J.F.; Cantu, D.; Rolshausen, P. First Report of Binucleate Rhizoctonia AG-G Causing Grapevine (Vitis vinifera) Trunk Diseases in California Nurseries. Plant Dis. 2023, 108, 226. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Paul, N.C.; Park, S.; Kim, H.J.; Sang, H. First Report of Binucleate Rhizoctonia AG-G Causing Root Rot of Japanese Bay Tree (Machilus thunbergii) in Korea. Plant Dis. 2022, 107, 2220. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Guo, Z.; Wu, X. Potato stem canker caused by Binucleate Rhizoctonia AG-G in China. J. Plant Pathol. 2015, 81, 287–290. [Google Scholar] [CrossRef]
- Kelderer, M.; Manici, L.M.; Caputo, F.; Thalheimer, M. Planting in the “inter-row” to overcome replant disease in apple orchards: A study on the effectiveness of the practice based on microbial indicators. Plant. Soil 2012, 357, 381–393. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Bandelt, H.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- D’Ercole, N.; Nipoti, P.; Manzali, D. Research on the root rot complex of strawberry plants. Acta Hortic. 1989, 265, 497–506. [Google Scholar] [CrossRef]
- Li, Y.Q.; Lei, L.P.; Dong, W.H.; Wang, S.M.; Naito, S.; Yang, G.H. Molecular diversity of binucleate Rhizoctonia AG-A in China. Phytoparasitica 2011, 39, 461–470. [Google Scholar] [CrossRef]
- Hall, M.; Lawrence, K.; Shannon, D.; Gonzalez, T.; Newman, M. First Report of Binucleate Rhizoctonia AG-G on Common Turmeric (Curcuma longa) in the United States. Plant Dis. 2019, 103, 771. [Google Scholar] [CrossRef]
- Alaei, H.; Molaei, S.; Mahmoodi, S.G.; Saberi-Riseh, R. New Anastomosis Group F (AG-F) of binucleate Rhizoctonia causing root and stem rot of Pistacia vera. J. Crop Prot. 2017, 6, 1–13. [Google Scholar] [CrossRef]
- Hyakumachi, M.; Priyatmojo, A.; Kubota, M.; Fukui, H. New Anastomosis Groups, AG-T and AG-U, of Binucleate Rhizoctonia spp. Causing Root and Stem Rot of Cut-Flower and Miniature Roses. Phytopathology 2005, 95, 784–792. [Google Scholar] [CrossRef]
- Botha, A.; Denman, S.; Lamprecht, S.C.; Mazzola, M.; Crous, P.W. Characterisation and pathogenicity of Rhizoctonia isolates associated with black root rot of strawberries in the Western Cape Province, South Africa. Australas. Plant Pathol. 2003, 32, 195–201. [Google Scholar] [CrossRef]
- Sharon, M.; Freeman, S.; Kuninaga, S.; Sneh, B. Genetic diversity, anastomosis groups and virulence of Rhizoctonia spp. from strawberry. Eur. J. Plant Pathol. 2007, 117, 247–265. [Google Scholar] [CrossRef]
- Demirci, E.; Döken, M.T. Anastomosis groups of Rhizoctonia solani Kühn and binucleate Rhizoctonia isolates from various crops in Türkiye. J. Turk. Phytopathol. 1995, 24, 57–62. [Google Scholar]
- Haddadderafshi, N.; Halász, K.; Pósa, T.; Péter, G.; Hrotkó, K.; Gáspár, L.; Lukács, N. Diversity of endophytic fungi isolated from cherry (Prunus avium). J. Hortic. For. Biotech. 2011, 15, 1–6. [Google Scholar]
- Jemai, N.; Gargouri, S.; Ksouri, M.F.; Mahmoud, K.B.; Jemmali, A. First report of Rhizoctonia solani affecting Prunus rootstock ‘Garnem’. J. Plant Pathol. 2019, 101, 809. [Google Scholar] [CrossRef]
- Gurkanli, C.T.; Ozkoc, I. First Report of B.N. Rhizoctonia from Tobacco (Nicotiana tabacum L.) in Samsun. Pak. J. Bot. 2011, 43, 51–57. [Google Scholar]
- Rinehart, T.A.; Copes, W.E.; Toda, T.; Cubeta, M.A. Genetic characterization of binucleate Rhizoctonia species causing web blight on azalea in Mississippi and Alabama. Plant Dis. 2007, 91, 616–623. [Google Scholar] [CrossRef]
- Misawa, T.; Toda, T. First report of black scurf on carrot caused by binucleate Rhizoctonia AG-U. J. Gen. Plant Pathol. 2013, 79, 86–88. [Google Scholar] [CrossRef]
- Misawa, T.; Kurose, D.; Kuninaga, S. First report of leaf sheath rot of Welsh onion caused by nine taxa of Rhizoctonia spp. and characteristics of the pathogens. J. Gen. Plant Pathol. 2017, 83, 121–130. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Guo, Z.; Wu, X. Anastomosis groups and pathogenicity of binucleate Rhizoctonia isolates associated with stem canker of potato in China. Eur. J. Plant Pathol. 2014, 139, 535–544. [Google Scholar] [CrossRef]
- Keijer, J.; Korsman, M.G.; Dullemans, A.M.; Houterman, P.M.; de Bree, J.; van Silfhout, C.H. In vitro analysis of host plant specificity in Rhizoctonia solani. Plant Pathol. 1997, 46, 659–669. [Google Scholar] [CrossRef]
- Melzer, M.S.; Yu, H.; Labun, T.; Dickson, A.; Boland, G.J. Characterization and pathogenicity of Rhizoctonia spp. from field crops in Canada. Can. J. Plant Pathol. 2016, 38, 367–374. [Google Scholar] [CrossRef]
- Kucharska, K.; Katulski, B.; Goriewa-Duba, K.; Duba, A.; Wachowska, U. Pathogenicity and Fungicide Sensitivity of Rhizoctonia solani and R. cerealis Isolates. Gesunde Pflanz. 2018, 70, 13–19. [Google Scholar] [CrossRef]
- Carling, D.E.; Kuninaga, S.; Brainard, K.A. Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology 2002, 92, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Unal, F.; Dolar, F.S.; Yildirim, F.; Demirci, E. Isolation and identification of binucleate Rhizoctonia spp. from wheat field soils in the Central Anatolia Region, Turkey. Turk. J. Agric. Nat. Sci. 2014, SI2, 1933–1938. [Google Scholar]
- Fenille, R.C.; Ciampi, M.B.; Souza, N.L.; Nakatani, A.K.; Kuramae, E.E. Binucleate Rhizoctonia sp. AG-G causing rot rot in yacon (Smallanyhus sonchifolius) in Brazil. Plant Pathol. 2005, 54, 325–330. [Google Scholar] [CrossRef]
- Tuncer, S.; Eken, C. Anastomosis grouping of Rhizoctonia solani and binucleate Rhizoctonia spp. isolated from pepper in Erzincan, Turkey. Plant Protect. Sci. 2013, 49, 127–131. [Google Scholar] [CrossRef]
- Sharma-Poudyal, D.; Paulitz, T.C.; Porter, L.D.; du Toit, L.J. Characterization and Pathogenicity of Rhizoctonia and Rhizoctonia-Like spp. from Pea Crops in the Columbia Basin of Oregon and Washington. Plant Dis. 2015, 99, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Eken, C.; Tuncer, S. Rhizoctonia Species and Anastomosis Groups Isolated from Tomato and Cucumber in Erzincan, Turkey. Int. J. Res. Agric. For. 2019, 6, 26–31. [Google Scholar]
- Pritchard, S.G. Soil organisms and global climate change. Plant Pathol. 2011, 60, 82–99. [Google Scholar] [CrossRef]
- Lisiecki, K.; Lemańczyk, G.; Piesik, D.; Mayhew, C.A. Screening Winter Wheat Genotypes for Resistance Traits against Rhizoctonia cerealis and Rhizoctonia solani Infection. Agriculture 2022, 12, 1981. [Google Scholar] [CrossRef]
Year | Locality | District | Host | Disease Incidence (%) ** | Number of Collected Samples | Number of Isolates | AG *** |
---|---|---|---|---|---|---|---|
2013 | Subotica | North Bačka | Strawberry | 20 | 15 | 12 | AG-A |
2016 | Belgrade 1 | Belgrade | Strawberry | 30 | 13 | 9 | AG-A |
Togočevce | Jablanica | Tomato | 25 | 6 | 4 | AG-G | |
Novi Sad | South Bačka | Strawberry | 30 | 12 | 9 | AG-A | |
Zaječar | Zaječar | Apple | 5 | 7 | 3 | AG-U | |
2017 | Belgrade 2 | Belgrade | Cherry | 5 | 7 | 5 | AG-G |
Futog 2 | South Bačka | Bean | 15 | 8 | 5 | AG-G | |
2018 | Kruševac | Rasina | Strawberry | 25 | 13 | 10 | AG-A |
Mačkovac | Rasina | Papper | 15 | 7 | 4 | AG-F | |
Šid | Sremski | Strawberry | 35 | 10 | 8 | AG-A | |
2020 | Belgrade 3 | Belgrade | Meadow grass | 30 | 14 | 6 | AG-U |
Belgrade 4 | Belgrade | Strawberry | 25 | 12 | 10 | AG-A | |
Kraljevo | Raška | Strawberry | 20 | 10 | 7 | AG-A | |
Arilje | Zlatibor | Strawberry | 25 | 11 | 9 | AG-A | |
2021 | Vrbas | South Bačka | Soil (strawberry *) | - | 10 | 5 | AG-A |
Bečej | South Bačka | Soil (strawberry) | - | 8 | 6 | AG-A |
Isolate | Rhizoctonia spp. AG | Host | Country | Acc. No. GenBank | Literature Reference |
---|---|---|---|---|---|
R78 | AG-A | Strawberry | Italy | AY927362 | [31] |
R79 | AG-A | Strawberry | Italy | AY927363 | [31] |
C-662 | AG-A | Soil | Japan | AF354092 | [31] |
Str22 | AG-A | Strawberry | Israel | DQ102423 | [12] |
107-13 | AG-A | Strawberry | Serbia | MN517394 | [20] |
101-16 | AG-A | Strawberry | Serbia | MH517393 | [20] |
293-16 | AG-A | Strawberry | Serbia | MH517395 | [20] |
BJ4-18 | AG-A | Strawberry | Serbia | MH517396 | [20] |
254-18 | AG-A | Strawberry | Serbia | MN977414 | This study |
68-20 | AG-A | Strawberry | Serbia | OR351887 | This study |
69-20 | AG-A | Strawberry | Serbia | OR351913 | This study |
74-20 | AG-A | Strawberry | Serbia | OR351911 | This study |
14-21 | AG-A | Strawberry | Serbia | OR351925 | This study |
27-21 | AG-A | Strawberry | Serbia | OR351920 | This study |
Scl2 | AG-B | Rice | Japan | AB286930 | [12] |
C-350 | AG-B | Rice | Japan | AB122144 | [12] |
Gm1 | AG-G | Strawberry | USA | DQ102395 | [12] |
Str14 | AG-G | Strawberry | Israel | DQ102402 | [12] |
DCHG2B | AG-G | Grapevine | USA | OR052655 | [42] |
CMML21-35 | AG-G | Japanese bay tree | South Korea | OM049427 | [43] |
CQ-YY | AG-G | Potato | China | KM386636 | [44] |
Rh190 | AG-G | Apple rootstock | Italy | JF519832 | [45] |
140-16 | AG-G | Tomato | Serbia | MN977418 | This study |
163-17 | AG-G | Cherry | Serbia | MN977411 | This study |
296-17 | AG-G | Bean | Serbia | MN977415 | This study |
Oc-1 | AG-E | Wood sorrels | Japan | AB290019 | [12] |
Lu-5 | AG-E | Flax | Japan | AB290018 | [12] |
Str36 | AG-F | Strawberry | Israel | DQ102435 | [12] |
SIR | AG-F | Sweet potato | Japan | AF354085 | [12] |
190-18 | AG-F | Papper | Serbia | MN977417 | This study |
MWR-22 | AG-U | Rose | Japan | AB196666 | [12] |
MWR-20 | AG-U | Rose | Japan | AB196664 | [12] |
314-16 | AG-U | Apple | Serbia | MN977416 | This study |
16-20 | AG-U | Meadow grass | Serbia | MT835230 | This study |
Ibs1 | AG-I | Soil | Israel | DQ102442 | [12] |
Im1 | AG-I | Strawberry | USA | DQ102443 | [12] |
FSR-052 | Athelia rolfsi | Lily | Taiwan | AY684917 | [12] |
Haplotype | Accession Number | Continent | Country | Host |
---|---|---|---|---|
Hap_1 | OR351925 | Europe | Serbia | strawberry |
Hap_2 | MH517393 | Europe | Serbia | strawberry |
Hap_3 | MH517395 | Europe | Serbia | strawberry |
Hap_4 | MH517394 | Europe | Serbia | strawberry |
Hap_5 | MH517396 | Europe | Serbia | strawberry |
Hap_5 | MN977414 | Europe | Serbia | strawberry |
Hap_6 | OR351920 | Europe | Serbia | strawberry |
Hap_6 | OL840587 | Europe | France | Pea |
Hap_6 | JQ859848 | Australia | Australia | strawberry |
Hap_6 | FR734303 | Asia | Turkey | Tobacco |
Hap_6 | FR734301 | Asia | Turkey | Tobacco |
Hap_6 | FR734300 | Asia | Turkey | Tobacco |
Hap_6 | FR734299 | Asia | Turkey | Tobacco |
Hap_6 | FR734293 | Asia | Turkey | Tobacco |
Hap_6 | FR734288 | Asia | Turkey | Tobacco |
Hap_6 | AY927349 | Europe | Italy | strawberry |
Hap_6 | AY927342 | Europe | Italy | strawberry |
Hap_6 | AY927330 | Europe | Italy | strawberry |
Hap_6 | AY927328 | Europe | Italy | strawberry |
Hap_6 | AY927326 | Europe | Italy | strawberry |
Hap_6 | AY927322 | Europe | Italy | strawberry |
Hap_6 | JX073669 | Asia | China | sugar beet |
Hap_6 | JX073668 | Asia | China | sugar beet |
Hap_6 | AB196663 | Asia | Japan | Rose |
Hap_6 | KJ777575 | Africa | South Africa | Potato |
Hap_6 | KJ777644 | Africa | South Africa | Potato |
Hap_6 | KJ777636 | Africa | South Africa | Potato |
Hap_6 | OL471747 | North America | USA | Potato |
Hap_7 | OR351913 | Europe | Serbia | strawberry |
Hap_8 | OR351911 | Europe | Serbia | strawberry |
Hap_9 | OR351887 | Europe | Serbia | strawberry |
Hap_10 | PP902547 | Asia | Turkey | strawberry |
Hap_10 | PP902546 | Asia | Turkey | strawberry |
Hap_10 | PP902545 | Asia | Turkey | strawberry |
Hap_10 | PP902544 | Asia | Turkey | strawberry |
Hap_10 | PP902543 | Asia | Turkey | strawberry |
Hap_10 | PP902542 | Asia | Turkey | strawberry |
Hap_10 | PP902541 | Asia | Turkey | strawberry |
Hap_10 | PP902540 | Asia | Turkey | strawberry |
Hap_10 | PP902539 | Asia | Turkey | strawberry |
Hap_10 | PP902538 | Asia | Turkey | strawberry |
Hap_10 | PP902537 | Asia | Turkey | strawberry |
Hap_10 | PP902536 | Asia | Turkey | strawberry |
Hap_10 | PP902535 | Asia | Turkey | strawberry |
Hap_10 | PP902534 | Asia | Turkey | strawberry |
Hap_10 | PP902533 | Asia | Turkey | strawberry |
Hap_10 | PP902532 | Asia | Turkey | strawberry |
Hap_10 | PP902531 | Asia | Turkey | strawberry |
Hap_10 | PP902530 | Asia | Turkey | strawberry |
Hap_10 | PP902529 | Asia | Turkey | strawberry |
Hap_10 | PP902528 | Asia | Turkey | strawberry |
Hap_11 | OR231136 | Europe | Albania | strawberry |
Hap_12 | JQ859850 | Australia | Australia | strawberry |
Hap_13 | JQ859849 | Australia | Australia | strawberry |
Hap_14 | FR734298 | Asia | Turkey | Tobacco |
Hap_15 | AY927363 | Europe | Italy | strawberry |
Hap_15 | AY927360 | Europe | Italy | strawberry |
Hap_15 | AY738628 | Europe | Italy | strawberry |
Hap_15 | OL471751 | North America | USA | Potato |
Hap_16 | AY927362 | Europe | Italy | strawberry |
Hap_16 | AY927361 | Europe | Italy | strawberry |
Hap_16 | AY927347 | Europe | Italy | strawberry |
Hap_16 | AY927343 | Europe | Italy | strawberry |
Hap_16 | AY927339 | Europe | Italy | strawberry |
Hap_16 | AY927338 | Europe | Italy | strawberry |
Hap_16 | AY927337 | Europe | Italy | strawberry |
Hap_16 | AY927335 | Europe | Italy | strawberry |
Hap_16 | AY927315 | Europe | Italy | strawberry |
Hap_17 | AY927358 | |||
Hap_18 | KP893156 | Asia | China | strawberry |
Hap_19 | AB196661 | Europe | Italy | hop bush |
Hap_20 | KJ777564 | Africa | South Africa | Potato |
Hap_21 | KJ777631 | Africa | South Africa | Potato |
Hap_22 | KJ777641 | Africa | South Africa | Potato |
Hap_23 | KM065554 | South America | Brazil | Soil |
Hap_24 | KM065539 | South America | Brazil | Soil |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vojvodić, M.; Pešić, B.; Mitrović, P.; Marjanović Jeromela, A.; Vico, I.; Bulajić, A. Diversity of Binucleate Rhizoctonia spp. and Population Structure of AG-A in Serbia. J. Fungi 2025, 11, 410. https://doi.org/10.3390/jof11060410
Vojvodić M, Pešić B, Mitrović P, Marjanović Jeromela A, Vico I, Bulajić A. Diversity of Binucleate Rhizoctonia spp. and Population Structure of AG-A in Serbia. Journal of Fungi. 2025; 11(6):410. https://doi.org/10.3390/jof11060410
Chicago/Turabian StyleVojvodić, Mira, Brankica Pešić, Petar Mitrović, Ana Marjanović Jeromela, Ivana Vico, and Aleksandra Bulajić. 2025. "Diversity of Binucleate Rhizoctonia spp. and Population Structure of AG-A in Serbia" Journal of Fungi 11, no. 6: 410. https://doi.org/10.3390/jof11060410
APA StyleVojvodić, M., Pešić, B., Mitrović, P., Marjanović Jeromela, A., Vico, I., & Bulajić, A. (2025). Diversity of Binucleate Rhizoctonia spp. and Population Structure of AG-A in Serbia. Journal of Fungi, 11(6), 410. https://doi.org/10.3390/jof11060410