Resilience in Resistance: The Role of Cell Wall Integrity in Multidrug-Resistant Candida
Abstract
:1. Introduction
2. The Yeast Cell Wall: Function, Composition, Structure, and Biosynthesis
3. Pathways to Preserve Cell Wall Integrity
4. Adaptive Remodeling of Yeast Cell Walls Under Antifungal and Environmental Stress
5. Experimental Approaches and Techniques in Studying Cell Wall Integrity
5.1. Microscopy and Molecular Trafficking Methods
5.2. Molecular Biology Approaches
6. Clinical Implications
Gene(s) | Function | Mutation or Mechanism | Reference |
---|---|---|---|
FKS1 | Catalytic subunit of β-1,3-glucan synthase | Mutations K143R, Y132F, F126L | [122] |
CDR1 and MDR1 | ABC transporter family (Multidrug efflux pump) | Point mutations or increased expression | [123] |
TAC1B | Transcription factor controlling CDR1 expression | Mutation S611P | [124] |
MRR1A | Transcriptional regulator of MDR1 | Mutations V668G, Y813C | [123] |
ERG11 | Encodes a lanosterol 14-a-demethylase | Point mutations or overexpression | [117] |
ERG1 | Encodes a squalene epoxidase | Point mutations or overexpression | [117] |
ERG2 | Encodes a C-8 sterol isomerase | Point mutations or overexpression | [117] |
ERG6 | Encodes a D(24)-sterol C-methyltransferase | Point mutations or overexpression | [117] |
YPS1 and YPS2 | Aspartic proteases | Overexpression | [125] |
SLT2 | MAPK | Activation of CWI transcription factors | [126,127] |
Compound | Target | Source | Mechanism of Action | Clinical Phase/Status | Reference |
---|---|---|---|---|---|
Ibrexafungerp | GS | Synthetic echinocandin | GS inhibitor | Approved by FDA | [160] |
Rezafungin | GS | Synthetic echinocandin | GS inhibitor | Approved by FDA | [161] |
Fosmanogepix | Gwt1 | Synthetic prodrug of manogepix | Gwt1 inhibitor | Phase II | [162] |
Radicicol | Chitin | Monosporium bonorden | Chs non-competitive inhibitor | - | [163] |
Argifin | Chitin | Streptomyces spp. | Chitinase inhibitor | - | [145] |
Phytolaccoside B | Chitin |
Phytolacca tetramera | Chs activity enhancer | - | [164] |
N-(4-Methoxyfumaroyl)-L-2,3-diaminopropanoic acid | GlcN-6-P synthase | Synthetic molecule | GlcN-6-P synthase inhibitor | - | [152] |
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics 2020, 9, 312. [Google Scholar] [CrossRef]
- Barantsevich, N.; Barantsevich, E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics 2022, 11, 718. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Rüddel, D.O.; Schlattmann, P.; Pletz, M.; Kurzai, O.; Bloos, F. Risk Factors for Invasive Candida Infection in Critically Ill Patients: A Systematic Review and Meta-Analysis. Chest 2022, 161, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Stenkiewicz-Witeska, J.S.; Ene, I.V. Azole Potentiation in Candida Species. PLoS Pathog. 2023, 19, e1011583. [Google Scholar] [CrossRef]
- Mroczyńska, M.; Brillowska-Dąbrowska, A. Review on Current Status of Echinocandins Use. Antibiotics 2020, 9, 227. [Google Scholar] [CrossRef]
- Logan, C.; Martin-Loeches, I.; Bicanic, T. Invasive Candidiasis in Critical Care: Challenges and Future Directions. Intensive Care Med. 2020, 46, 2001–2014. [Google Scholar] [CrossRef]
- Frías-De-León, M.G.; Hernández-Castro, R.; Vite-Garín, T.; Arenas, R.; Bonifaz, A.; Castañón-Olivares, L.; Acosta-Altamirano, G.; Martínez-Herrera, E. Antifungal Resistance in Candida Auris: Molecular Determinants. Antibiotics 2020, 9, 568. [Google Scholar] [CrossRef]
- Czajka, K.M.; Venkataraman, K.; Brabant-Kirwan, D.; Santi, S.A.; Verschoor, C.; Appanna, V.D.; Singh, R.; Saunders, D.P.; Tharmalingam, S. Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells 2023, 12, 2655. [Google Scholar] [CrossRef]
- Paul, S.; Shaw, D.; Joshi, H.; Singh, S.; Chakrabarti, A.; Rudramurthy, S.M.; Ghosh, A.K. Mechanisms of Azole Antifungal Resistance in Clinical Isolates of Candida tropicalis. PLoS ONE 2022, 17, e0269721. [Google Scholar] [CrossRef]
- Milholland, K.L.; AbdelKhalek, A.; Baker, K.M.; Hoda, S.; DeMarco, A.G.; Naughton, N.H.; Koeberlein, A.N.; Lorenz, G.R.; Anandasothy, K.; Esperilla-Muñoz, A.; et al. Reduced Cdc14 Phosphatase Activity Impairs Septation, Hyphal Differentiation and Pathogenesis and Causes Echinocandin Hypersensitivity in Candida albicans. bioRxiv 2022. [Google Scholar] [CrossRef]
- Lenardon, M.D.; Sood, P.; Dorfmueller, H.C.; Brown, A.J.P.; Gow, N.A.R. Scalar Nanostructure of the Candida Albicans Cell Wall; a Molecular, Cellular and Ultrastructural Analysis and Interpretation. Cell Surf. 2020, 6, 100047. [Google Scholar] [CrossRef]
- Ahmadipour, S.; Field, R.A.; Miller, G.J. Prospects for Anti-Candida Therapy through Targeting the Cell Wall: A Mini-Review. Cell Surf. 2021, 7, 100063. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; Hernandez, R.Y.; Clear, A.; Healey, K.R.; Shor, E.; Perlin, D.S. Critical Assessment of Cell Wall Integrity Factors Contributing to in Vivo Echinocandin Tolerance and Resistance in Candida glabrata. Front. Microbiol. 2021, 12, 702779. [Google Scholar] [CrossRef]
- Pérez, P.; Cortés, J.C.G.; Cansado, J.; Ribas, J.C. Fission Yeast Cell Wall Biosynthesis and Cell Integrity Signalling. Cell Surf. 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Hopke, A.; Brown, A.J.P.; Hall, R.A.; Wheeler, R.T. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion. Trends Microbiol. 2018, 26, 284–295. [Google Scholar] [CrossRef]
- Stewart, G.G. The Structure and Function of the Yeast Cell Wall, Plasma Membrane and Periplasm. In Brewing and Distilling Yeasts; Stewart, G.G., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 55–75. ISBN 978-3-319-69126-8. [Google Scholar]
- Pérez-García, L.A.; Csonka, K.; Flores-Carreón, A.; Estrada-Mata, E.; Mellado-Mojica, E.; Németh, T.; López-Ramírez, L.A.; Toth, R.; López, M.G.; Vizler, C.; et al. Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction. Front. Microbiol. 2016, 7, 306. [Google Scholar] [CrossRef]
- Ribeiro, R.A.; Bourbon-Melo, N.; Sá-Correia, I. The Cell Wall and the Response and Tolerance to Stresses of Biotechnological Relevance in Yeasts. Front. Microbiol. 2022, 13, 953479. [Google Scholar] [CrossRef]
- Bemena, L.D.; Min, K.; Konopka, J.B.; Neiman, A.M. A Conserved Machinery Underlies the Synthesis of a Chitosan Layer in the Candida Chlamydospore Cell Wall. mSphere 2021, 6. [Google Scholar] [CrossRef]
- Schild, L.; Heyken, A.; de Groot, P.W.J.; Hiller, E.; Mock, M.; de Koster, C.; Horn, U.; Rupp, S.; Hube, B. Proteolytic Cleavage of Covalently Linked Cell Wall Proteins by Candida Albicans Sap9 and Sap10. Eukaryot. Cell 2011, 10, 98–109. [Google Scholar] [CrossRef]
- Brown, H.E.; Esher, S.K.; Alspaugh, J.A. Chitin: A “Hidden Figure” in the Fungal Cell Wall. Curr. Top. Microbiol. Immunol. 2020, 425, 83–111. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 492056. [Google Scholar] [CrossRef]
- Lowman, D.W.; Sameer Al-Abdul-Wahid, M.; Ma, Z.; Kruppa, M.D.; Rustchenko, E.; Williams, D.L. Glucan and Glycogen Exist as a Covalently Linked Macromolecular Complex in the Cell Wall of Candida Albicans and Other Candida Species. Cell Surf. 2021, 7, 100061. [Google Scholar] [CrossRef]
- de Assis, L.J.; Bain, J.M.; Liddle, C.; Leaves, I.; Hacker, C.; da Silva, R.P.; Yuecel, R.; Bebes, A.; Stead, D.; Childers, D.S.; et al. Nature of B-1,3-Glucan-Exposing Features on Candida Albicans Cell Wall and Their Modulation. mBio 2022, 13, e0260522. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, Y.; Chen, X.; Li, H.; Yin, Z.; Zhang, B.; Xu, Y.; Zhang, Y.; Zhang, R.; Huang, X.; et al. Innate Immune Responses against the Fungal Pathogen Candida Auris. Nat. Commun. 2022, 13, 3553. [Google Scholar] [CrossRef]
- Widanage, M.C.D.; Singh, K.; Li, J.; Yarava, J.R.; Scott, F.J.; Xu, Y.; Gow, N.A.R.; Mentink-Vigier, F.; Wang, P.; Lamoth, F.; et al. Unveiling Cell Wall Structure and Echinocandin Response in Candida Auris and Candida Albicans via Solid-State NMR. bioRxiv 2024. [Google Scholar] [CrossRef]
- Navarro-Arias, M.J.; Hernández-Chávez, M.J.; Garcia-Carnero, L.C.; Amezcua-Hernández, D.G.; Lozoya-Pérez, N.E.; Estrada-Mata, E.; Martínez-Duncker, I.; Franco, B.; Mora-Montes, H.M. Differential Recognition of Candida tropicalis, Candida Guilliermondii, Candida Krusei, and Candida Auris by Human Innate Immune Cells. Infect. Drug Resist. 2019, 12, 783–794. [Google Scholar] [CrossRef]
- Takahashi, S.; Kudoh, A.; Okawa, Y.; Shibata, N. Significant Differences in the Cell-Wall Mannans from Three Candida glabrata Strains Correlate with Antifungal Drug Sensitivity. FEBS J. 2012, 279, 1844–1856. [Google Scholar] [CrossRef]
- Vitali, A.; Vavala, E.; Marzano, V.; Leone, C.; Castagnola, M.; Iavarone, F.; Angiolella, L. Cell Wall Composition and Biofilm Formation of Azoles-Susceptible and -Resistant Candida glabrata Strains. J. Chemother. 2017, 29, 164–172. [Google Scholar] [CrossRef]
- Costa-de-Oliveira, S.; Silva, A.P.; Miranda, I.M.; Salvador, A.; Azevedo, M.M.; Munro, C.A.; Rodrigues, A.G.; Pina-Vaz, C. Determination of Chitin Content in Fungal Cell Wall: An Alternative Flow Cytometric Method. Cytom. Part A 2013, 83A, 324–328. [Google Scholar] [CrossRef]
- Plaine, A.; Walker, L.; Da Costa, G.; Mora-Montes, H.M.; McKinnon, A.; Gow, N.A.R.; Gaillardin, C.; Munro, C.A.; Richard, M.L. Functional Analysis of Candida Albicans GPI-Anchored Proteins: Roles in Cell Wall Integrity and Caspofungin Sensitivity. Fungal. Genet. Biol. 2008, 45, 1404–1414. [Google Scholar] [CrossRef]
- Alvarado, M.; Gómez-Navajas, J.A.; Blázquez-Muñoz, M.T.; Gómez-Molero, E.; Fernández-Sánchez, S.; Eraso, E.; Munro, C.A.; Valentín, E.; Mateo, E.; de Groot, P.W.J. The Good, the Bad, and the Hazardous: Comparative Genomic Analysis Unveils Cell Wall Features in the Pathogen Candidozyma Auris Typical for Both Baker’s Yeast and Candida. FEMS Yeast Res. 2024, 24, 39. [Google Scholar] [CrossRef]
- Duggan, S.; Usher, J. Candida glabrata: A Powerhouse of Resistance. PLoS Pathog. 2023, 19, e1011651. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, S.; Xiong, K.; Yu, X.; Mo, X.; Su, C.; Lu, Y. An Alteration in the Expression of Cell Wall Structural Proteins Increases Cell Surface Exposure of Adhesins to Promote Virulence in Candida glabrata. mSphere 2024, 9, e0091024. [Google Scholar] [CrossRef]
- Kim, J.; Oh, S.H.; Rodriguez-Bobadilla, R.; Vuong, V.M.; Hubka, V.; Zhao, X.; Hoyer, L.L. Peering Into Candida Albicans Pir Protein Function and Comparative Genomics of the Pir Family. Front. Cell Infect. Microbiol. 2022, 12, 836632. [Google Scholar] [CrossRef]
- De Groot, P.W.J.; De Boer, A.D.; Cunningham, J.; Dekker, H.L.; De Jong, L.; Hellingwerf, K.J.; De Koster, C.; Klis, F.M. Proteomic Analysis of Candida Albicans Cell Walls Reveals Covalently Bound Carbohydrate-Active Enzymes and Adhesins. Eukaryot. Cell 2004, 3, 955–965. [Google Scholar] [CrossRef]
- Ceballos-Garzon, A.; Monteoliva, L.; Gil, C.; Alvarez-Moreno, C.; Vega-Vela, N.E.; Engelthaler, D.M.; Bowers, J.; Le Pape, P.; Parra-Giraldo, C.M. Genotypic, Proteomic, and Phenotypic Approaches to Decipher the Response to Caspofungin and Calcineurin Inhibitors in Clinical Isolates of Echinocandin-Resistant Candida glabrata. J. Antimicrob. Chemother. 2022, 77, 585–597. [Google Scholar] [CrossRef]
- Satala, D.; Karkowska-Kuleta, J.; Zelazna, A.; Rapala-Kozik, M.; Kozik, A. Moonlighting Proteins at the Candidal Cell Surface. Microorganisms 2020, 8, 1046. [Google Scholar] [CrossRef]
- Arvizu-Rubio, V.J.; García-Carnero, L.C.; Mora-Montes, H.M. Moonlighting Proteins in Medically Relevant Fungi. PeerJ 2022, 10, e14001. [Google Scholar] [CrossRef]
- Urban, C.; Xiong, X.; Sohn, K.; Schröppel, K.; Brunner, H.; Rupp, S. The Moonlighting Protein Tsa1p Is Implicated in Oxidative Stress Response and in Cell Wall Biogenesis in Candida Albicans. Mol. Microbiol. 2005, 57, 1318–1341. [Google Scholar] [CrossRef]
- Paudyal, A.; Vediyappan, G. Cell Surface Expression of Nrg1 Protein in Candida Auris. J. Fungi 2021, 7, 262. [Google Scholar] [CrossRef]
- Karkowska-Kuleta, J.; Satala, D.; Bochenska, O.; Rapala-Kozik, M.; Kozik, A. Moonlighting Proteins Are Variably Exposed at the Cell Surfaces of Candida glabrata, Candida parapsilosis and Candida tropicalis under Certain Growth Conditions. BMC Microbiol. 2019, 19, 149. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Latge, J.-P.; Munro, C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.N.; Acosta-Zaldívar, M.; Qi, W.; Diray-Arce, J.; Walker, L.A.; Kottom, T.J.; Kelly, R.; Yuan, M.; Asara, J.M.; Lasky-Su, J.A.; et al. Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida Albicans Cell Wall Maintenance. mBio 2020, 11. [Google Scholar] [CrossRef]
- Allert, S.; Schulz, D.; Kämmer, P.; Großmann, P.; Wolf, T.; Schäuble, S.; Panagiotou, G.; Brunke, S.; Hube, B. From Environmental Adaptation to Host Survival: Attributes That Mediate Pathogenicity of Candida Auris. Virulence 2022, 13, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Köhler, J.R.; Acosta-Zaldívar, M.; Qi, W. Phosphate in Virulence of Candida Albicans and Candida glabrata. J. Fungi 2020, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Ibe, C.; Munro, C.A. Fungal Cell Wall: An Underexploited Target for Antifungal Therapies. PLoS Pathog. 2021, 17, e1009470. [Google Scholar] [CrossRef]
- Razmi, M.; Kim, J.; Chinnici, J.; Busarajan, S.; Vuppalapaty, H.; Lankipalli, D.; Li, R.; Maddi, A. Candida Albicans Mannosidases, Dfg5 and Dcw1, Are Required for Cell Wall Integrity and Pathogenesis. J. Fungi 2024, 10, 525. [Google Scholar] [CrossRef]
- Pavesic, M.W.; Gale, A.N.; Nickels, T.J.; Harrington, A.A.; Bussey, M.; Cunningham, K.W. Calcineurin-Dependent Contributions to Fitness in the Opportunistic Pathogen Candida glabrata. mSphere 2024, 9, e00554-23. [Google Scholar] [CrossRef]
- Zamith-Miranda, D.; Amatuzzi, R.F.; Munhoz da Rocha, I.F.; Martins, S.T.; Lucena, A.C.R.; Vieira, A.Z.; Trentin, G.; Almeida, F.; Rodrigues, M.L.; Nakayasu, E.S.; et al. Transcriptional and Translational Landscape of Candida Auris in Response to Caspofungin. Comput. Struct. Biotechnol. J. 2021, 19, 5264–5277. [Google Scholar] [CrossRef]
- Jain, P.; Sethi, S.C.; Pratyusha, V.A.; Garai, P.; Naqvi, N.; Singh, S.; Pawar, K.; Puri, N.; Komath, S.S. Ras Signaling Activates Glycosylphosphatidylinositol (GPI) Anchor Biosynthesis via the GPI–N-Acetylglucosaminyltransferase (GPI–GnT) in Candida Albicans. J. Biol. Chem. 2018, 293, 12222–12238. [Google Scholar] [CrossRef]
- de Oliveira, H.C.; Rossi, S.A.; García-Barbazán, I.; Zaragoza, Ó.; Trevijano-Contador, N. Cell Wall Integrity Pathway Involved in Morphogenesis, Virulence and Antifungal Susceptibility in Cryptococcus Neoformans. J. Fungi 2021, 7, 831. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gutiérrez, E.; Alegría-Carrasco, E.; Sellers-Moya, Á.; Molina, M.; Martín, H. Not Just the Wall: The Other Ways to Turn the Yeast CWI Pathway On. Int. Microbiol. 2020, 23, 107–119. [Google Scholar] [CrossRef]
- Ibe, C.; Munro, C.A. Fungal Cell Wall Proteins and Signaling Pathways Form a Cytoprotective Network to Combat Stresses. J. Fungi 2021, 7, 739. [Google Scholar] [CrossRef]
- Sanz, A.B.; Díez-Muñiz, S.; Moya, J.; Petryk, Y.; Nombela, C.; Rodríguez-Peña, J.M.; Arroyo, J. Systematic Identification of Essential Genes Required for Yeast Cell Wall Integrity: Involvement of the RSC Remodelling Complex. J. Fungi 2022, 8, 718. [Google Scholar] [CrossRef]
- Wang, W.-H.; Lai, T.-X.; Wu, Y.-C.; Chen, Z.-T.; Tseng, K.-Y.; Lan, C.-Y. Associations of Rap1 with Cell Wall Integrity, Biofilm Formation, and Virulence in Candida Albicans. Microbiol. Spectr. 2022, 10, e03285-22. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.-C.; Wang, H.-Y.; Lan, C.-Y. Candida Albicans Aro1 Affects Cell Wall Integrity, Biofilm Formation and Virulence. J. Microbiol. Immunol. Infect. 2020, 53, 115–124. [Google Scholar] [CrossRef]
- Shivarathri, R.; Jenull, S.; Stoiber, A.; Chauhan, M.; Mazumdar, R.; Singh, A.; Nogueira, F.; Kuchler, K.; Chowdhary, A.; Chauhan, N. The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of Candida Auris. mSphere 2020, 5. [Google Scholar] [CrossRef]
- Heredia, M.Y.; Ikeh, M.A.C.; Gunasekaran, D.; Conrad, K.A.; Filimonava, S.; Marotta, D.H.; Nobile, C.J.; Rauceo, J.M. An Expanded Cell Wall Damage Signaling Network Is Comprised of the Transcription Factors Rlm1 and Sko1 in Candida Albicans. PLoS Genet. 2020, 16, e1008908. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, K.-T.; Lee, M.H.; Cheong, E.; Bahn, Y.-S. Adenylyl Cyclase and Protein Kinase A Play Redundant and Distinct Roles in Growth, Differentiation, Antifungal Drug Resistance, and Pathogenicity of Candida Auris. mBio 2021, 12, e0272921. [Google Scholar] [CrossRef]
- González-Rubio, G.; Sastre-Vergara, L.; Molina, M.; Martín, H.; Fernández-Acero, T. Substrates of the MAPK Slt2: Shaping Yeast Cell Integrity. J. Fungi 2022, 8, 368. [Google Scholar] [CrossRef]
- Sanz, A.B.; García, R.; Rodríguez-Peña, J.M.; Arroyo, J. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast. J. Fungi 2018, 4, 1. [Google Scholar] [CrossRef]
- Balachandra, V.K.; Verma, J.; Shankar, M.; Tucey, T.M.; Traven, A.; Schittenhelm, R.B.; Ghosh, S.K. The RSC (Remodels the Structure of Chromatin) Complex of Candida Albicans Shows Compositional Divergence with Distinct Roles in Regulating Pathogenic Traits. PLoS Genet. 2020, 16, e1009071. [Google Scholar] [CrossRef]
- Sanz, A.B.; García, R.; Pavón-Vergés, M.; Rodríguez-Peña, J.M.; Arroyo, J. Control of Gene Expression via the Yeast CWI Pathway. Int. J. Mol. Sci. 2022, 23, 1791. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, R.; Weng, Q.; Lin, S.; Wang, H.; Li, L.; Fuchs, B.B.; Tan, X.; Mylonakis, E. SPT20 Regulates the Hog1-MAPK Pathway and Is Involved in Candida Albicans Response to Hyperosmotic Stress. Front. Microbiol. 2020, 11, 213. [Google Scholar] [CrossRef]
- Dong, Y.; Du, J.; Deng, Y.; Cheng, M.; Shi, Z.; Zhu, H.; Sun, H.; Yu, Q.; Li, M. Reduction of Histone Proteins Dosages Increases CFW Sensitivity and Attenuates Virulence of Candida Albicans. Microbiol. Res. 2024, 279, 127552. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, N.; Ma, X.; Jiang, L. The Transcriptional Control Machinery as Well as the Cell Wall Integrity and Its Regulation Are Involved in the Detoxification of the Organic Solvent Dimethyl Sulfoxide in Saccharomyces Cerevisiae. FEMS Yeast Res. 2013, 13, 200–218. [Google Scholar] [CrossRef] [PubMed]
- Viéitez, C.; Martínez-Cebrián, G.; Solé, C.; Böttcher, R.; Potel, C.M.; Savitski, M.M.; Onnebo, S.; Fabregat, M.; Shilatifard, A.; Posas, F.; et al. A Genetic Analysis Reveals Novel Histone Residues Required for Transcriptional Reprogramming upon Stress. Nucleic Acids Res. 2020, 48, 3455–3475. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, Y.; Zeng, L.; HUANG, X.; Wang, Y.; Chen, G.; Moses, M.; Zou, Y.; Xiong, S.; Xue, W.; et al. Targeting Epigenetic Regulators to Overcome Drug Resistance in the Emerging Human Fungal Pathogen Candida Auris. preprint 2024. [Google Scholar] [CrossRef]
- Kumar, K.; Pareek, A.; Kaur, R. SWI/SNF Complex-Mediated Chromatin Remodeling in Candida glabrata Promotes Immune Evasion. iScience 2024, 27, 109607. [Google Scholar] [CrossRef]
- Filler, E.E.; Liu, Y.; Solis, N.V.; Wang, L.; Diaz, L.F.; Edwards, J.E.; Filler, S.G.; Yeaman, M.R. Identification of Candida glabrata Transcriptional Regulators That Govern Stress Resistance and Virulence. Infect. Immun. 2021, 89. [Google Scholar] [CrossRef]
- Su, S.; Li, X.; Yang, X.; Li, Y.; Chen, X.; Sun, S.; Jia, S. Histone Acetylation/Deacetylation in Candida Albicans and Their Potential as Antifungal Targets. Future Microbiol. 2020, 15, 1075–1090. [Google Scholar] [CrossRef] [PubMed]
- Bresson, S.; Shchepachev, V.; Tollervey, D. A Posttranscriptional Pathway Regulates Cell Wall MRNA Expression in Budding Yeast. Cell Rep. 2023, 42, 112184. [Google Scholar] [CrossRef] [PubMed]
- Jnied, M.M. Post-Transcriptional Regulation of Fungal Cell Walls by RNA-Binding Proteins and Untranslated Regions. Ph.D. Thesis, Institute of Cell and Molecular Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK, 2024. [Google Scholar] [CrossRef]
- Healey, K.R.; Paderu, P.; Hou, X.; Jimenez Ortigosa, C.; Bagley, N.; Patel, B.; Zhao, Y.; Perlin, D.S. Differential Regulation of Echinocandin Targets Fks1 and Fks2 in Candida glabrata by the Post-Transcriptional Regulator Ssd1. J. Fungi 2020, 6, 143. [Google Scholar] [CrossRef]
- Hall, R.A.; Wallace, E.W.J. Post-Transcriptional Control of Fungal Cell Wall Synthesis. Cell Surf. 2022, 8, 100074. [Google Scholar] [CrossRef]
- Cañonero, L.; Pautasso, C.; Galello, F.; Sigaut, L.; Pietrasanta, L.; Arroyo, J.; Bermúdez-Moretti, M.; Portela, P.; Rossi, S. Heat Stress Regulates the Expression of TPK1 Gene at Transcriptional and Post-Transcriptional Levels in Saccharomyces Cerevisiae. Biochim. et Biophys. Acta (BBA)-Mol. Cell Res. 2022, 1869, 119209. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Long, S.; Zhao, C. Maintenance of Cell Wall Integrity under High Salinity. Int. J. Mol. Sci. 2021, 22, 3260. [Google Scholar] [CrossRef]
- Liu, W.; Yuan, L.; Wang, S. Recent Progress in the Discovery of Antifungal Agents Targeting the Cell Wall. J. Med. Chem. 2020, 63, 12429–12459. [Google Scholar] [CrossRef] [PubMed]
- Iyer, K.R.; Robbins, N.; Cowen, L.E. The Role of Candida Albicans Stress Response Pathways in Antifungal Tolerance and Resistance. iScience 2022, 25, 103953. [Google Scholar] [CrossRef]
- Gerik, K.J.; Donlin, M.J.; Soto, C.E.; Banks, A.M.; Banks, I.R.; Maligie, M.A.; Selitrennikoff, C.P.; Lodge, J.K. Cell Wall Integrity Is Dependent on the PKC1 Signal Transduction Pathway in Cryptococcus Neoformans. Mol. Microbiol. 2005, 58, 393–408. [Google Scholar] [CrossRef]
- Alonso-Monge, R.; Guirao-Abad, J.P.; Sánchez-Fresneda, R.; Pla, J.; Yagüe, G.; Argüelles, J.C. The Fungicidal Action of Micafungin Is Independent on Both Oxidative Stress Generation and HOG Pathway Signaling in Candida Albicans. Microorganisms 2020, 8, 1867. [Google Scholar] [CrossRef]
- García, R.; Itto-Nakama, K.; Rodríguez-Peña, J.M.; Chen, X.; Sanz, A.B.; de Lorenzo, A.; Pavón-Vergés, M.; Kubo, K.; Ohnuki, S.; Nombela, C.; et al. Poacic Acid, a β-1,3-Glucan–Binding Antifungal Agent, Inhibits Cell-Wall Remodeling and Activates Transcriptional Responses Regulated by the Cell-Wall Integrity and High-Osmolarity Glycerol Pathways in Yeast. FASEB J. 2021, 35, e21778. [Google Scholar] [CrossRef]
- Blomberg, A. Yeast Osmoregulation–Glycerol Still in Pole Position. FEMS Yeast Res. 2022, 22, foac035. [Google Scholar] [CrossRef] [PubMed]
- de Nadal, E.; Posas, F. The HOG Pathway and the Regulation of Osmoadaptive Responses in Yeast. FEMS Yeast Res. 2022, 22, foac013. [Google Scholar] [CrossRef]
- Duveau, F.; Cordier, C.; Chiron, L.; Le Bec, M.; Pouzet, S.; Séguin, J.; Llamosi, A.; Sorre, B.; Di Meglio, J.-M.; Hersen, P. Yeast Cell Responses and Survival during Periodic Osmotic Stress Are Controlled by Glucose Availability. Elife 2024, 12, RP88750. [Google Scholar] [CrossRef] [PubMed]
- Saldaña, C.; Villava, C.; Ramírez-Villarreal, J.; Morales-Tlalpan, V.; Campos-Guillen, J.; Chávez-Servín, J.; García-Gasca, T. Rapid and Reversible Cell Volume Changes in Response to Osmotic Stress in Yeast. Braz. J. Microbiol. 2021, 52, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Herrero-de-Dios, C.; Román, E.; Pla, J.; Alonso-Monge, R. Hog1 Controls Lipids Homeostasis Upon Osmotic Stress in Candida Albicans. J. Fungi 2020, 6, 355. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Tao, X.-H.; Xu, D.-F.; Yu, Y.; Teng, Y.; Xie, W.-Q.; Fan, Y.-B. HOG1 Has an Essential Role in the Stress Response, Virulence and Pathogenicity of EmCryptococcus Gattii/Em. Exp. Ther. Med. 2021, 21, 476. [Google Scholar] [CrossRef]
- Guirao-Abad, J.P.; Sánchez-Fresneda, R.; Román, E.; Pla, J.; Argüelles, J.C.; Alonso-Monge, R. The MAPK Hog1 Mediates the Response to Amphotericin B in Candida Albicans. Fungal Genet. Biol. 2020, 136, 103302. [Google Scholar] [CrossRef]
- Sahu, M.S.; Purushotham, R.; Kaur, R. The Hog1 MAPK Substrate Governs Candida glabrata-Epithelial Cell Adhesion via the Histone H2A Variant. PLoS Genet. 2024, 20, e1011281. [Google Scholar] [CrossRef]
- Cui, S.; Li, M.; Hassan, R.Y.A.; Heintz-Buschart, A.; Wang, J.; Bilitewski, U. Inhibition of Respiration of Candida Albicans by Small Molecules Increases Phagocytosis Efficacy by Macrophages. mSphere 2020, 5, e00016-20. [Google Scholar] [CrossRef]
- Kim, H.; Lee, D.G. Naringin-Generated ROS Promotes Mitochondria-Mediated Apoptosis in Candida albicans. IUBMB Life 2021, 73, 953–967. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Sanguinetti, M.; De Bernardis, F.; Torelli, R.; Posteraro, B.; Vandeputte, P.; Sanglard, D. Loss of Mitochondrial Functions Associated with Azole Resistance in Candida glabrata Results in Enhanced Virulence in Mice. Antimicrob. Agents Chemother. 2011, 55, 1852–1860. [Google Scholar] [CrossRef] [PubMed]
- Simm, C.; Weerasinghe, H.; Thomas, D.R.; Harrison, P.F.; Newton, H.J.; Beilharz, T.H.; Traven, A. Disruption of Iron Homeostasis and Mitochondrial Metabolism Are Promising Targets to Inhibit Candida Auris. Microbiol. Spectr. 2022, 10, e0010022. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, X.; Ren, B.; Cheng, L. The Regulation of Hyphae Growth in Candida Albicans. Virulence 2020, 11, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Neeli-Venkata, R.; Diaz, C.M.; Celador, R.; Sanchez, Y.; Minc, N. Detection of Surface Forces by the Cell-Wall Mechanosensor Wsc1 in Yeast. Dev. Cell 2021, 56, 2856–2870.e7. [Google Scholar] [CrossRef]
- Lodder, A.L.; Lee, T.K.; Ballester, R. Characterization of the Wsc1 Protein, a Putative Receptor in the Stress Response of Saccharomyces Cerevisiae. Genetics 1999, 152, 1487–1499. [Google Scholar] [CrossRef]
- Puerner, C.; Kukhaleishvili, N.; Thomson, D.; Schaub, S.; Noblin, X.; Seminara, A.; Bassilana, M.; Arkowitz, R.A. Mechanical Force-Induced Morphology Changes in a Human Fungal Pathogen. BMC Biol. 2020, 18, 122. [Google Scholar] [CrossRef]
- Milne, G.; Walker, L.A. High-Pressure Freezing and Transmission Electron Microscopy to Visualize the Ultrastructure of the C. Auris Cell Wall. Methods Mol. Biol. 2022, 2517, 189–201. [Google Scholar] [CrossRef]
- Atamas, A.A.; Guskov, A.I.; Rogachev, A.V. Structural Study of the Candida Auris Ribosome. Mosc. Univ. Biol. Sci. Bull. 2023, 78, S56–S58. [Google Scholar] [CrossRef]
- Jiang, J.; Keniya, M.V.; Puri, A.; Zhan, X.; Cheng, J.; Wang, H.; Lin, G.; Lee, Y.-K.; Jaber, N.; Hassoun, Y.; et al. Structural and Biophysical Dynamics of Fungal Plasma Membrane Proteins and Implications for Echinocandin Action in Candida glabrata. bioRxiv 2024. [Google Scholar] [CrossRef]
- Jiménez-Ortigosa, C.; Jiang, J.; Chen, M.; Kuang, X.; Healey, K.R.; Castellano, P.; Boparai, N.; Ludtke, S.J.; Perlin, D.S.; Dai, W. Cryo-Electron Tomography of Candida glabrata Plasma Membrane Proteins. J. Fungi 2021, 7, 120. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Jiménez-Ortigosa, C.; Chen, M.; Healey, K.R.; Kong, J.; Lee, Y.-K.; Farrell, D.P.; DiMaio, F.; Perlin, D.S.; Dai, W. Elucidating the 3D Structure of β-(1,3)-Glucan Synthase from Candida glabrata by Subtomogram Averaging. Microsc. Microanal. 2022, 28, 1120–1123. [Google Scholar] [CrossRef]
- Turk, M.; Baumeister, W. The Promise and the Challenges of Cryo-Electron Tomography. FEBS Lett. 2020, 594, 3243–3261. [Google Scholar] [CrossRef] [PubMed]
- Petrokilidou, C.; Pavlou, E.; Velegraki, A.; Simou, A.; Marsellou, I.; Filis, G.; Bassukas, I.D.; Gaitanis, G.; Kourkoumelis, N. Characterization and Differentiation of Candida Auris on Dixon’s Agar Using Raman Spectroscopy. Pathogens 2024, 13, 978. [Google Scholar] [CrossRef]
- Kudla, G.; Wan, Y.; Helwak, A. RNA Conformation Capture by Proximity Ligation. Annu. Rev. Genom. Hum. Genet. 2020, 21, 81–100. [Google Scholar] [CrossRef]
- Bentsen, M.; Goymann, P.; Schultheis, H.; Klee, K.; Petrova, A.; Wiegandt, R.; Fust, A.; Preussner, J.; Kuenne, C.; Braun, T.; et al. ATAC-Seq Footprinting Unravels Kinetics of Transcription Factor Binding during Zygotic Genome Activation. Nat. Commun. 2020, 11, 4267. [Google Scholar] [CrossRef]
- Liao, B.; Ye, X.; Chen, X.; Zhou, Y.; Cheng, L.; Zhou, X.; Ren, B. The Two-Component Signal Transduction System and Its Regulation in Candida Albicans. Virulence 2021, 12, 1884–1899. [Google Scholar] [CrossRef]
- Kotey, F.C.; Dayie, N.T.; Tetteh-Uarcoo, P.B.; Donkor, E.S. Candida Bloodstream Infections: Changes in Epidemiology and Increase in Drug Resistance. Infect. Dis. Res. Treat. 2021, 14, 117863372110269. [Google Scholar] [CrossRef]
- Parslow, B.Y.; Thornton, C.R. Continuing Shifts in Epidemiology and Antifungal Susceptibility Highlight the Need for Improved Disease Management of Invasive Candidiasis. Microorganisms 2022, 10, 1208. [Google Scholar] [CrossRef]
- Perlin, D.S. Cell Wall-Modifying Antifungal Drugs. Curr. Top. Microbiol. Immunol. 2020, 425, 255–275. [Google Scholar] [CrossRef]
- Cândido, E.d.S.; Affonseca, F.; Cardoso, M.H.; Franco, O.L. Echinocandins as Biotechnological Tools for Treating Candida Auris Infections. J. Fungi 2020, 6, 185. [Google Scholar] [CrossRef]
- Liu, F.; Zhong, L.; Zhou, F.; Zheng, C.; Zhang, K.; Cai, J.; Zhou, H.; Tang, K.; Dong, Z.; Cui, W.; et al. Clinical Features, Strain Distribution, Antifungal Resistance and Prognosis of Patients with Non-Albicans Candidemia: A Retrospective Observational Study. Infect. Drug Resist. 2021, 14, 3233–3246. [Google Scholar] [CrossRef]
- Bohner, F.; Papp, C.; Gácser, A. The Effect of Antifungal Resistance Development on the Virulence of Candida Species. FEMS Yeast Res. 2022, 22, foac019. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ami, R.; Kontoyiannis, D.P. Resistance to Antifungal Drugs. Infect. Dis. Clin. 2021, 35, 279–311. [Google Scholar] [CrossRef]
- Sharma, C.; Kadosh, D. Perspective on the Origin, Resistance, and Spread of the Emerging Human Fungal Pathogen Candida Auris. PLoS Pathog. 2023, 19, e1011190. [Google Scholar] [CrossRef]
- Izumi, H.; Nafie, L.A.; Dukor, R.K. Effect of Conformational Variability on the Drug Resistance of Candida Auris ERG11p and FKS1. ACS Omega 2024, 9, 19816–19823. [Google Scholar] [CrossRef]
- Frías-De-león, M.G.; Hernández-Castro, R.; Conde-Cuevas, E.; García-Coronel, I.H.; Vázquez-Aceituno, V.A.; Soriano-Ursúa, M.A.; Farfán-García, E.D.; Ocharán-Hernández, E.; Rodríguez-Cerdeira, C.; Arenas, R.; et al. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021, 13, 1529. [Google Scholar] [CrossRef]
- Badrane, H.; Cheng, S.; Dupont, C.L.; Hao, B.; Driscoll, E.; Morder, K.; Liu, G.; Newbrough, A.; Fleres, G.; Kaul, D.; et al. Genotypic Diversity and Unrecognized Antifungal Resistance among Populations of Candida glabrata from Positive Blood Cultures. Nat. Commun. 2023, 14, 5918. [Google Scholar] [CrossRef]
- Kappel, D.; Gifford, H.; Brackin, A.; Abdolrasouli, A.; Eyre, D.W.; Jeffery, K.; Schlenz, S.; Aanensen, D.M.; Brown, C.S.; Borman, A.; et al. Genomic Epidemiology Describes Introduction and Outbreaks of Antifungal Drug-Resistant Candida Auris. Npj Antimicrob. Resist. 2024, 2, 26. [Google Scholar] [CrossRef]
- Eix, E.F.; Nett, J.E. Candida auris: Epidemiology and Antifungal Strategy. Annu. Rev. Med. 2025, 76, 57–67. [Google Scholar] [CrossRef]
- Borgeat, V.; Brandalise, D.; Grenouillet, F.; Sanglard, D. Participation of the Abc Transporter Cdr1 in Azole Resistance of Candida Lusitaniae. J. Fungi 2021, 7, 760. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Coste, A.T.; Liechti, M.; Bachmann, D.; Sanglard, D.; Lamoth, F. Novel ERG11 and TAC1b Mutations Associated with Azole Resistance in Candida Auris. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Bednarek, A.; Kabut, A.; Rapala-Kozik, M.; Satala, D. Exploring the Effects of Culture Conditions on Yapsin (YPS) Gene Expression in Nakaseomyces Glabratus. Open Life Sci. 2024, 19, 20220995. [Google Scholar] [CrossRef]
- Nagayoshi, Y.; Miyazaki, T.; Minematsu, A.; Yamauchi, S.; Takazono, T.; Nakamura, S.; Imamura, Y.; Izumikawa, K.; Kakeya, H.; Yanagihara, K.; et al. Contribution of the Slt2-Regulated Transcription Factors to Echinocandin Tolerance in Candida glabrata. FEMS Yeast Res. 2014, 14, 1128–1131. [Google Scholar] [CrossRef]
- Reinoso-Martín, C.; Schüller, C.; Schuetzer-Muehlbauer, M.; Kuchler, K. The Yeast Protein Kinase C Cell Integrity Pathway Mediates Tolerance to the Antifungal Drug Caspofungin through Activation of Slt2p Mitogen-Activated Protein Kinase Signaling. Eukaryot. Cell 2003, 2, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, X.; Li, R. Sphingolipids: Regulators of Azole Drug Resistance and Fungal Pathogenicity. Mol. Microbiol. 2020, 114, 891–905. [Google Scholar] [CrossRef]
- Chang, C.K.; Yang, M.C.; Chen, H.F.; Liao, Y.L.; Lan, C.Y. The Role of Sfp1 in Candida Albicans Cell Wall Maintenance. J. Fungi 2022, 8, 1196. [Google Scholar] [CrossRef]
- Elias, D.; Toth Hervay, N.; Jacko, J.; Morvova, M.; Valachovic, M.; Gbelska, Y. Erg6p Is Essential for Antifungal Drug Resistance, Plasma Membrane Properties and Cell Wall Integrity in Candida glabrata. FEMS Yeast Res. 2022, 22, foac045. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, X.; Xie, Y.; Zhong, Y. O-Vanillin, a Promising Antifungal Agent, Inhibits Aspergillus Flavus by Disrupting the Integrity of Cell Walls and Cell Membranes. Appl. Microbiol. Biotechnol. 2021, 105, 5147–5158. [Google Scholar] [CrossRef]
- Mikulášová, M.; Vodný, Š.; Pekarovičová, A. Influence of Phenolics on Biomass Production by Candida Utilis and Candida Albicans. Biomass 1990, 23, 149–154. [Google Scholar] [CrossRef]
- Sri, P.V.L.; Srinivasan, S.; Muthukumar, S.; Chellaswamy, S.; Nachiappan, N.N.; Thamilselvan, S. Evaluation of Antifungal Activity of Vanilla Pods Silver Nanoparticles against Various Oral Candidal Species: An In-vitro Study. J. Oral Maxillofac. Pathol. 2023, 27, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Raymond Mohanraj, D.G.; Alagumuthu, M.; Subramaniam, P.; Bakthavachalam, D.; Arumugam, S.; Chellam, S. Antimicrobial Effects of Vanillin-Based Pyridyl-Benzylidene-5-Fluoroindolins. J. Heterocycl. Chem. 2021, 58, 1515–1524. [Google Scholar] [CrossRef]
- Iraji, A.; Yazdanpanah, S.; Alizadeh, F.; Mirzamohammadi, S.; Ghasemi, Y.; Pakshir, K.; Yang, Y.; Zomorodian, K. Screening the Antifungal Activities of Monoterpenes and Their Isomers against Candida Species. J. Appl. Microbiol. 2020, 129, 1541–1551. [Google Scholar] [CrossRef]
- Contreras Martínez, O.I.; Angulo Ortíz, A.; Santafé Patiño, G.; Peñata-Taborda, A.; Berrio Soto, R. Isoespintanol Antifungal Activity Involves Mitochondrial Dysfunction, Inhibition of Biofilm Formation, and Damage to Cell Wall Integrity in Candida tropicalis. Int. J. Mol. Sci. 2023, 24, 10187. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.; Ribeiro, R.; Costa, R.; Henriques, M.; Rodrigues, M.E. Essential Oils as a Good Weapon against Drug-Resistant Candida Auris. Antibiotics 2022, 11, 977. [Google Scholar] [CrossRef]
- Konuk, H.B.; Ergüden, B. Phenolic –OH Group Is Crucial for the Antifungal Activity of Terpenoids via Disruption of Cell Membrane Integrity. Folia Microbiol. 2020, 65, 775–783. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Feng, Q.; Liu, L.; Levin, D.E.; Roy, K.K.; Doerksen, R.J.; Baerson, S.R.; Shi, X.; Pan, X.; Xu, W.-H.; et al. Puupehenone, a Marine-Sponge-Derived Sesquiterpene Quinone, Potentiates the Antifungal Drug Caspofungin by Disrupting Hsp90 Activity and the Cell Wall Integrity Pathway. mSphere 2020, 5. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Rezaie, S.; Daie Ghazvini, R.; Hashemi, S.J.; Badali, H.; Foroumadi, A.; Diba, K.; Chowdhary, A.; Meis, J.F.; Khodavaisy, S. In Vitro Interaction of Geldanamycin with Triazoles and Echinocandins Against Common and Emerging Candida Species. Mycopathologia 2019, 184, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Kitson, R.R.A.; Kitsonova, D.; Siegel, D.; Ross, D.; Moody, C.J. Geldanamycin, a Naturally Occurring Inhibitor of Hsp90 and a Lead Compound for Medicinal Chemistry. J. Med. Chem. 2024, 67, 17946–17963. [Google Scholar] [CrossRef]
- Chanklan, R.; Aihara, E.; Koga, S.; Takahashi, H.; Mizunuma, M.; Miyakawa, T. Inhibition of Ca2+-Signal-Dependent Growth Regulation by Radicicol in Budding Yeast. Biosci. Biotechnol. Biochem. 2008, 72, 132–138. [Google Scholar] [CrossRef]
- Kiraz, N.; Şen Kaya, S.; Öz, Y.; Dağ, İ. Evaluation of the Efficacy of Heat Shock Protein Inhibitors and Antifungal Drug Combinations against Candida spp. Rend. Lincei 2023, 34, 179–188. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Q.; Zeng, Q.; Wu, P.; Yu, Q.; Gu, K.; Xue, J.; Wei, X. Radicicol, a Novel Lead Compound against the Migratory-Stage Schistosomula of Schistosoma Japonicum. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Andersen, O.A.; Nathubhai, A.; Dixon, M.J.; Eggleston, I.M.; van Aalten, D.M.F. Structure-Based Dissection of the Natural Product Cyclopentapeptide Chitinase Inhibitor Argifin. Chem. Biol. 2008, 15, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Neelabh; Singh, K. In-Silico Studies of Some Natural, Synthetic and Semi-Synthetic Antifungal Drugs for Their Multi-Targeting Nature. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 711–716. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, Q.; Chen, W.; Wang, S.; Yang, Q.; Dong, Y.; Zhang, J. Rational Design, Synthesis, and Biological Investigations of N-Methylcarbamoylguanidinyl Azamacrolides as a Novel Chitinase Inhibitor. J. Agric. Food Chem. 2022, 70, 4889–4898. [Google Scholar] [CrossRef]
- Rai, M.; Mares, D. Plant-Derived Antimycotics: Current Trends and Future Prospects; CRC Press: Boca Raton, FL, USA, 2003; ISBN 13:978-1-56022-926-1. [Google Scholar]
- Butassi, E.; Blanc, A.R.; Svetaz, L.A. Phytolacca Tetramera Berries Extracts and Its Main Constituents as Potentiators of Antifungal Drugs against Candida spp. Phytomedicine 2024, 130, 155569. [Google Scholar] [CrossRef]
- Li, C.; Tu, J.; Han, G.; Liu, N.; Sheng, C. Heat Shock Protein 90 (Hsp90)/Histone Deacetylase (HDAC) Dual Inhibitors for the Treatment of Azoles-Resistant Candida Albicans. Eur. J. Med. Chem. 2022, 227, 113961. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Tu, J.; Yang, W.; Liu, N.; Wang, W.; Sheng, C. Discovery of BRD4-HDAC Dual Inhibitors with Improved Fungal Selectivity and Potent Synergistic Antifungal Activity against Fluconazole-Resistant Candida Albicans. J. Med. Chem. 2023, 66, 5950–5964. [Google Scholar] [CrossRef]
- Shahi, G.; Kumar, M.; Skwarecki, A.S.; Edmondson, M.; Banerjee, A.; Usher, J.; Gow, N.A.R.; Milewski, S.; Prasad, R. Fluconazole Resistant Candida Auris Clinical Isolates Have Increased Levels of Cell Wall Chitin and Increased Susceptibility to a Glucosamine-6-Phosphate Synthase Inhibitor. Cell Surf. 2022, 8, 100076. [Google Scholar] [CrossRef]
- Wakieć, R.; Gabriel, I.; Prasad, R.; Becker, J.M.; Payne, J.W.; Milewski, S. Enhanced Susceptibility to Antifungal Oligopeptides in Yeast Strains Overexpressing ABC Multidrug Efflux Pumps. Antimicrob. Agents Chemother. 2008, 52, 4057–4063. [Google Scholar] [CrossRef]
- Milewski, S.; Mignini, F.; Prasad, R.; Borowski, E. Unusual Susceptibility of a Multidrug-Resistant Yeast Strain to Peptidic Antifungals. Antimicrob. Agents Chemother. 2001, 45, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Jaromin, A.; Zarnowski, R.; Markowski, A.; Zagórska, A.; Johnson, C.J.; Etezadi, H.; Kihara, S.; Mota-Santiago, P.; Nett, J.E.; Boyd, B.J.; et al. Liposomal Formulation of a New Antifungal Hybrid Compound Provides Protection against Candida Auris in the Ex Vivo Skin Colonization Model. Antimicrob. Agents Chemother. 2024, 68, e0095523. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A.; Wiederhold, N.P. A Mini-Review of In Vitro Data for Candida Species, Including C. Auris, Isolated during Clinical Trials of Three New Antifungals: Fosmanogepix, Ibrexafungerp, and Rezafungin. J. Fungi 2024, 10, 362. [Google Scholar] [CrossRef]
- Ghannoum, M.; Arendrup, M.C.; Chaturvedi, V.P.; Lockhart, S.R.; McCormick, T.S.; Chaturvedi, S.; Berkow, E.L.; Juneja, D.; Tarai, B.; Azie, N.; et al. Ibrexafungerp: A Novel Oral Triterpenoid Antifungal in Development for the Treatment of Candida Auris Infections. Antibiotics 2020, 9, 539. [Google Scholar] [CrossRef]
- Nunnally, N.S.; Etienne, K.A.; Angulo, D.; Lockhart, S.R.; Berkow, E.L. In Vitro Activity of Ibrexafungerp, a Novel Glucan Synthase Inhibitor against Candida glabrata Isolates with FKS Mutations. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Najvar, L.K.; Olivo, M.; Morris, K.N.; Patterson, H.P.; Catano, G.; Patterson, T.F. Ibrexafungerp Demonstrates in Vitro Activity against Fluconazole-Resistant Candida Auris and in Vivo Efficacy with Delayed Initiation of Therapy in an Experimental Model of Invasive Candidiasis. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Phillips, N.A.; Rocktashel, M.; Merjanian, L. Ibrexafungerp for the Treatment of Vulvovaginal Candidiasis: Design, Development and Place in Therapy. Drug Des. Devel. Ther. 2023, 17, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R.; Soriano, A.; Cornely, O.A.; Kullberg, B.J.; Kollef, M.; Vazquez, J.; Honore, P.M.; Bassetti, M.; Pullman, J.; Chayakulkeeree, M.; et al. Rezafungin versus Caspofungin for Treatment of Candidaemia and Invasive Candidiasis (ReSTORE): A Multicentre, Double-Blind, Double-Dummy, Randomised Phase 3 Trial. Lancet 2023, 401, 49–59. [Google Scholar] [CrossRef]
- Pappas, P.G.; Vazquez, J.A.; Oren, I.; Rahav, G.; Aoun, M.; Bulpa, P.; Ben-Ami, R.; Ferrer, R.; Mccarty, T.; Thompson, G.R.; et al. Clinical Safety and Efficacy of Novel Antifungal, Fosmanogepix, for the Treatment of Candidaemia: Results from a Phase 2 Trial. J. Antimicrob. Chemother. 2023, 78, 2471–2480. [Google Scholar] [CrossRef]
- Fujita, K.I.; Irie, M.; Ping, X.; Taniguchi, M. Antifungal Activity of Radicicol against Mucor Flavus IFO 9560. J. Biosci. Bioeng. 1999, 88, 380–386. [Google Scholar] [CrossRef]
- Escalante, A.; Gattuso, M.; Pérez, P.; Zacchino, S. Evidence for the Mechanism of Action of the Antifungal Phytolaccoside B Isolated from Phytolacca Tetramera Hauman. J. Nat. Prod. 2008, 71, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banda-Flores, I.A.; Torres-Tirado, D.; Mora-Montes, H.M.; Pérez-Flores, G.; Pérez-García, L.A. Resilience in Resistance: The Role of Cell Wall Integrity in Multidrug-Resistant Candida. J. Fungi 2025, 11, 271. https://doi.org/10.3390/jof11040271
Banda-Flores IA, Torres-Tirado D, Mora-Montes HM, Pérez-Flores G, Pérez-García LA. Resilience in Resistance: The Role of Cell Wall Integrity in Multidrug-Resistant Candida. Journal of Fungi. 2025; 11(4):271. https://doi.org/10.3390/jof11040271
Chicago/Turabian StyleBanda-Flores, Iván A., David Torres-Tirado, Héctor M. Mora-Montes, Gabriela Pérez-Flores, and Luis A. Pérez-García. 2025. "Resilience in Resistance: The Role of Cell Wall Integrity in Multidrug-Resistant Candida" Journal of Fungi 11, no. 4: 271. https://doi.org/10.3390/jof11040271
APA StyleBanda-Flores, I. A., Torres-Tirado, D., Mora-Montes, H. M., Pérez-Flores, G., & Pérez-García, L. A. (2025). Resilience in Resistance: The Role of Cell Wall Integrity in Multidrug-Resistant Candida. Journal of Fungi, 11(4), 271. https://doi.org/10.3390/jof11040271