The Antifungal Activity of a Polygalacturonic and Caprylic Acid Ointment in an In Vitro, Three-Dimensional Wound Biofilm Model
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sen, C.K. Human wound and its burden: Updated 2022 compendium of estimates. Adv. Wound Care 2023, 12, 657–670. [Google Scholar] [CrossRef]
- Nussbaum, S.R.; Carter, M.J.; Fife, C.E.; DaVanzo, J.; Haught, R.; Nusgart, M.; Cartwright, D. An economic evaluation of the impact, cost, and Medicare policy implications of chronic nonhealing wounds. Value Health 2018, 21, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, R.A.; Hsieh, J.-C.; Galiano, R.D. The impact of biofilm formation on wound healing. In Wound Healing—Current Perspectives; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Malone, M.; Bjarnsholt, T.; McBain, A.J.; James, G.A.; Stoodley, P.; Leaper, D.; Tachi, M.; Schultz, G.; Swanson, T.; Wolcott, R.D. The prevalence of biofilms in chronic wounds: A systematic review and meta-analysis of published data. J. Wound Care 2017, 26, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Dowd, S.E.; Delton Hanson, J.; Rees, E.; Wolcott, R.D.; Zischau, A.M.; Sun, Y.; White, J.; Smith, D.M.; Kennedy, J.; Jones, C.E. Survey of fungi and yeast in polymicrobial infections in chronic wounds. J. Wound Care 2011, 20, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Lyman, M.; Forsberg, K.; Sexton, D.J.; Chow, N.A.; Lockhart, S.R.; Jackson, B.R.; Chiller, T. Worsening spread of Candida auris in the United States, 2019 to 2021. Ann. Intern. Med. 2023, 176, 489–495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alvarez-Moreno, C.A.; Morales-López, S.; Rodriguez, G.J.; Rodriguez, J.Y.; Robert, E.; Picot, C.; Ceballos-Garzon, A.; Parra-Giraldo, C.M.; Le Pape, P. The mortality attributable to candidemia in C. auris is higher than that in other Candida species: Myth or reality? J. Fungi 2023, 9, 430. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trofa, D.; Gàcser, A.; Nosanchuk, J.D. Candida parapsilosis, an Emerging Fungal Pathogen. Clin. Microbiol. Rev. 2008, 21, 606–625. [Google Scholar] [CrossRef]
- Castanheira, M.; Deshpande, L.M.; Davis, A.P.; Carvalhaes, C.G.; Pfaller, M.A. Azole resistance in Candida glabrata clinical isolates from global surveillance is associated with efflux overexpression. Glob. Antimicrob. Resist. 2022, 29, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Uppuluri, P. Candida auris biofilm colonization on skin niche conditions. mSphere 2020, 5, e00972-19. [Google Scholar] [CrossRef] [PubMed Central]
- Seiser, S.; Arzani, H.; Ayub, T.; Phan-Canh, T.; Staud, C.; Worda, C.; Kuchler, K.; Elbe-Bürger, A. Native human, and mouse skin infection models to study Candida auris-host interactions. Microbes Infect. 2023, 26, 105234. [Google Scholar] [CrossRef] [PubMed]
- Falanga, V. Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen. 2000, 8, 347–352. [Google Scholar] [CrossRef]
- Daeschlein, G. Antimicrobial and antiseptic strategies in wound management. Int. Wound J. 2013, 10, 9–14. [Google Scholar] [CrossRef]
- Miquel, S.; Lagrafeuille, R.; Souweine, B.; Forestier, C. Antibiofilm activity as a health issue. Front. Microbiol. 2016, 7, 592. [Google Scholar] [CrossRef]
- Rosenblatt, J.; Reitzel, R.A.; Vargas-Cruz, N.; Chaftari, A.M.; Hachem, R.; Raad, I. Caprylic and polygalacturonic acid combinations for eradication of microbial organisms embedded in biofilm. Front. Microbiol. 2017, 8, 1999. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.A.; Rhee, M.S. Marked synergistic bactericidal effects and mode of action of medium-chain fatty acids in combination with organic acids against Escherichia coli O157:H7. Appl. Environ. Microbiol. 2013, 79, 6552–6560. [Google Scholar] [CrossRef] [PubMed Central]
- Bae, Y.S.; Rhee, M.S. Short-term antifungal treatments of caprylic acid with Carvacrol or Thymol induce synergistic 6-log reduction of pathogenic Candida albicans by cell membrane disruption and efflux pump inhibition. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2019, 53, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Akula, S.T.; Nagaraja, A.; Ravikanth, M.; Kumar, N.G.; Kalyan, Y.; Divya, D. Antifungal efficacy of lauric acid and caprylic acid–derivatives of virgin coconut oil against Candida albicans. Biomed. Biotechnol. Res. J. 2021, 5, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Hachem, R.Y.; Hakim, C.; Dagher, H.; Samaha, R.; Hammoudeh, D.; Hamerschlak, N.; Nasr, J.; Rosenblatt, J.; Jiang, Y.; Chaftari, A.-M.; et al. Novel Polygalacturonic and Caprylic Acid (PG+CAP) Antimicrobial Wound Ointment is Effective in Managing Microbially Contaminated Chronic Wounds in a Pilot Prospective Randomized Clinical Study. Open Forum Infect. Dis. 2023, 10 (Suppl. 2), ofad500.434. [Google Scholar] [CrossRef] [PubMed Central]
- Gerges, B.Z.; Rosenblatt, J.; Truong, Y.L.; Reitzel, R.A.; Hachem, R.; Raad, I. Enhanced Biofilm Eradication and Reduced Cytotoxicity of a Novel Polygalacturonic and Caprylic Acid Wound Ointment Compared with Common Antiseptic Ointments. BioMed Res. Int. 2021, 2021, 2710484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerges, B.Z.; Rosenblatt, J.; Truong, Y.L.; Raad, I. Polygalacturonic acid partially inhibits matrix metalloproteinases and dehydration in wounds. Wounds 2024, 36, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Joachim, D. Wound cleansing: Benefits of hypochlorous acid. J. Wound Care 2020, 29 (Suppl. S10a), S4–S8. [Google Scholar] [CrossRef] [PubMed]
- Cutting, K.F. Wound exudate: Composition and functions. Br. J. Community Nurs. 2003, 8 (Suppl. S3), S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Besser, M.; Stuermer, E.K. Efficiency of antiseptics in a novel 3-dimensional human plasma biofilm model (hpBIOM). NPJ Biofilms Microbiomes 2019, 10, 4792. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Truong, Y.L.L.; Rosenblatt, J.S.; Raad, I. Nitroglycerin inhibition of thrombin-catalyzed gelation of fibrinogen. J. Pharmacol. Clin. Toxicol. 2022, 10, 1168. [Google Scholar]
- Thaarup, I.C.; Bjarnsholt, T. Current In Vitro Biofilm-Infected Chronic Wound Models for Developing New Treatment Possibilities. Adv. Wound Care 2021, 10, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Casanova, M.; Lopez-Ribot, J.L.; Monteagudo, C.; Llombart-Bosch, A.; Sentandreu, R.; Martinez, J.P. Identification of a 58-kilodalton cell surface fibrinogen-binding mannoprotein from Candida albicans. Infect. Immun. 1992, 60, 4221–4229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Willaert, R.G. Adhesins of yeasts: Protein structure and interactions. J. Fungi 2018, 4, 119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kozik, A.; Karkowska-Kuleta, J.; Zajac, D.; Bochenska, O.; Kedracka-Krok, S.; Jankowska, U.; Rapala-Kozik, M. Fibronectin-, vitronectin- and laminin-binding proteins at the cell walls of Candida parapsilosis and Candida tropicalis pathogenic yeasts. BMC Microbiol. 2015, 15, 197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dos Santos, M.M.; Ishida, K. We need to talk about Candida tropicalis: Virulence factors and survival mechanisms. Med. Mycol. 2023, 61, myad075. [Google Scholar] [CrossRef] [PubMed]
- Santana, D.J.; Anku, J.A.; Zhao, G.; Zarnowski, R.; Johnson, C.J.; Hautau, H.; Visser, N.D.; Ibrahim, A.S.; Andes, D.; Nett, J.E.; et al. Candida auris–specific adhesin, Scf1, governs surface association, colonization, and virulence. Science 2023, 381, 1461–1467. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balakumar, A.; Bernstein, D.; Thangamani, S. The adhesin SCF1 mediates Candida auris colonization. Trends Microbiol. 2024, 32, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Weisel, J.W. Fibrinogen and fibrin. Adv. Protein Chem. 2005, 70, 247–299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wallace, L.A.; Gwynne, L.; Jenkins, T. Challenges, and opportunities of pH in chronic wounds. Ther. Deliv. 2019, 10, 719–735. [Google Scholar] [CrossRef] [PubMed]
- Rembe, J.D.; Huelsboemer, L.; Plattfaut, I.; Besser, M.; Stuermer, E.K. Antimicrobial hypochlorous wound irrigation solutions demonstrate lower anti-biofilm efficacy against bacterial biofilm in a complex in-vitro human plasma biofilm model (hpBIOM) than common wound antimicrobials. Front. Microbiol. 2020, 11, 564513. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Folkes, L.K.; Candeias, L.P.; Wardman, P. Kinetics, and mechanisms of hypochlorous acid reactions. Arch. Biochem. Biophys. 1995, 323, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rico, M.; Fuentes, L.C.; Pérez-Esteve, É.; Jiménez, A.; Amparo, M.M.; Martínez-Máñez, R.; Barat, J. Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles. Food Control 2015, 56, 77–85. [Google Scholar] [CrossRef]
- Lima, T.M.; Kanunfre, C.C.; Pompeia, C.; Verlengia, R.; Curi, R. Ranking the toxicity of fatty acids on Jurkat and Raji cells by flow cytometric analysis. Toxicol. Vitr. 2002, 16, 741–747. [Google Scholar] [CrossRef] [PubMed]
Tested Organisms | |||||
---|---|---|---|---|---|
C. tropicalis | C. glabrata | C. parapsilosis | C. albicans | C. auris | |
Log10 of median viable colonies for control | 9.75 × 106 | 2.63 × 106 | 1.71 × 107 | 4.33 × 107 | 1.72 × 104 |
Log10 reduction of PG + CAP relative to control | 3.85 | 5.02 | 4.88 | 5.76 | 4.16 |
Log10 reduction of HOCl relative to control | 2.01 | 1.15 | 2.09 | 3.23 | 4.16 |
p-value of PG + CAP versus HOCl | 0.014 | 0.014 | 0.015 | 0.015 | >0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerges, B.Z.; Rosenblatt, J.; Truong, Y.-L.; Jiang, Y.; Raad, I.I. The Antifungal Activity of a Polygalacturonic and Caprylic Acid Ointment in an In Vitro, Three-Dimensional Wound Biofilm Model. J. Fungi 2025, 11, 178. https://doi.org/10.3390/jof11030178
Gerges BZ, Rosenblatt J, Truong Y-L, Jiang Y, Raad II. The Antifungal Activity of a Polygalacturonic and Caprylic Acid Ointment in an In Vitro, Three-Dimensional Wound Biofilm Model. Journal of Fungi. 2025; 11(3):178. https://doi.org/10.3390/jof11030178
Chicago/Turabian StyleGerges, Bahgat Z., Joel Rosenblatt, Y-Lan Truong, Ying Jiang, and Issam I. Raad. 2025. "The Antifungal Activity of a Polygalacturonic and Caprylic Acid Ointment in an In Vitro, Three-Dimensional Wound Biofilm Model" Journal of Fungi 11, no. 3: 178. https://doi.org/10.3390/jof11030178
APA StyleGerges, B. Z., Rosenblatt, J., Truong, Y.-L., Jiang, Y., & Raad, I. I. (2025). The Antifungal Activity of a Polygalacturonic and Caprylic Acid Ointment in an In Vitro, Three-Dimensional Wound Biofilm Model. Journal of Fungi, 11(3), 178. https://doi.org/10.3390/jof11030178