The Inevitable Fate of Tetranychus urticae on Tomato Plants Treated with Entomopathogenic Fungi and Spinosad
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tetranychus urticae
2.2. Isolates of Metarhizium robertsii and Beauveria bassiana
2.3. Insecticide
2.4. Effects of Entomopathogenic Fungal Isolates and Spinosad Alone and in Combination Against T. urticae Under Laboratory Conditions
2.5. Effects of Entomopathogenic Fungal Isolates and Insecticide Against T. urticae Under Greenhouse Conditions
2.6. Statistical Analysis
3. Results
3.1. Subsection Mortality of Tetranychus urticae Life Stages in the Laboratory Tests
3.2. Tetranychus urticae Populations on Tomato Plants in the Greenhouse
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adesanya, A.W.; Lavine, M.D.; Moural, T.W.; Lavine, L.C.; Zhu, F.; Walsh, D.B. Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. J. Pest Sci. 2021, 94, 639–663. [Google Scholar] [CrossRef]
- Leppla, N.C.; Johnson, M.W.; Merritt, J.L.; Zalom, F.G. Applications and trends in commercial biological control for arthropod pests of tomato. In Sustainable Management of Arthropod Pests of Tomato; Wakil, W., Brust, G.E., Perring, T.M., Eds.; Academic Press: London, UK, 2018; pp. 283–303. [Google Scholar]
- Pekár, S.; Raspotnig, G. Defences of Arachnids: Diversified arsenal used against range of enemies. Entomol. Gen. 2022, 42, 663–679. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, Q.; Dai, X.; Lv, B.; Wang, R.; Yin, Z.; Zhang, F.; Liu, Y.; Su, L.; Chen, H.; et al. Control of two-spotted spider mite, Tetranychus urticae, on strawberry by integrating with cyetpyrafen and Phytoseiulus persimilis. CABI Agric Biosci. 2023, 4, 54. [Google Scholar] [CrossRef]
- Migeon, A.; Dorkled, F. Spider Mites Web: A Comprehensive Database for the Tetranychidae. Available online: https://www1.montpellier.inrae.fr/CBGP/spmweb (accessed on 14 November 2024).
- Rioja, C.; Zhurov, V.; Bruinsma, K.; Grbic, M.; Grcic, V. Plant-herbivore interactions: A case of an extreme generalist, the two-spotted spider mite Tetranychus urticae. Mol. Plant Microbe Interact 2017, 30, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Namin, H.H.; Zhurov, V.; Spenler, J.; Grbic, M.; Grbic, V.; Scott, I.M. Resistance to pyridaben in Canadian greenhouse populations of two-spotted spider mites, Tetranychus urticae (Koch). Pestic. Biochem. Physiol. 2020, 170, 104677. [Google Scholar] [CrossRef]
- Assouguem, A.; Kara, M.; Mechchate, H.; Korkmaz, Y.B.; Benmessaoud, S.; Ramzi, A.; Abdullah, K.R.; Noman, O.M.; Farah, A.; Lazraq, A. Current situation of Tetranychus urticae (Acari: Tetranychidae) in Northern Africa: The sustainable control methods and priorities for future research. Sustainability 2022, 14, 2395. [Google Scholar] [CrossRef]
- Tabary, L.; Navia, D.; Auger, P.; Migeon, A.; Navajas, M.; Tixier, M.S. Plant, pest and predator interplay: Tomato trichomes effects on Tetranychus urticae (Koch) and the predatory mite Typhlodromus (Anthoseius) recki Wainstein. Exp. Appl. Acarol. 2024, 93, 169–195. [Google Scholar] [CrossRef]
- Al-Zahrani, J.K.; Al-Abdalall, A.H.; Osman, M.A.; Aldakheel, L.A.; AlAhmady, N.F.; Aldakeel, S.A.; AbdulAzeez, S.; Borgio, J.F.; ElNaggar, M.A.; Alabdallah, N.M.; et al. Entomopathogenic fungi and their biological control of Tetranychus urticae: Two-spotted spider mites. J. King Saud Univ. Sci. 2023, 35, 102910. [Google Scholar] [CrossRef]
- Nieberding, C.M.; Kaiser, A.; Visser, B. Inbreeding and learning affect fitness and colonization of new host plants, a behavioral innovation in the spider mite Tetranychus urticae. Entomol. Gen. 2022, 42, 531–538. [Google Scholar] [CrossRef]
- Suekane, R.; Degrande, P.E.; De Melo, E.P.; Bertoncello, T.F.; Junior, I.D.S.L.; Kodama, C. Damage level of the two-spotted spider mite Tetranychus urticae Koch (acari: Tetranychidae) in soybeans. Rev. Ceres 2012, 59, 77–81. [Google Scholar] [CrossRef]
- Attia, S.; Grissa, K.L.; Lognay, G.; Bitume, E.; Hance, T.; Mailleux, A.C. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. J. Pest Sci. 2013, 86, 361–386. [Google Scholar] [CrossRef]
- Estrella Santamaria, M.; Arnaiz, A.; Rosa-Diaz, I.; González-Melendi, P.; Romero-Hernandez, G.; Ojeda-Martinez, D.A.; Garcia, A.; Contreras, E.; Martinez, M.; Diaz, I. Plant Defenses against Tetranychus urticae: Mind the Gaps. Plants 2020, 9, 464. [Google Scholar] [CrossRef] [PubMed]
- Bensoussan, N.; Santamaria, M.E.; Zhurov, V.; Diaz, I.; Grbic, M.; Grbic, V. Plant-herbivore interaction: Dissection of the cellular pattern of Tetranychus urticae feeding on the host plant. Front. Plant Sci. 2016, 7, 1105. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Tirry, L.; Yamamoto, A.; Nauen, R.; Dermauw, W. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic. Biochem. Physiol. 2015, 121, 12–21. [Google Scholar] [CrossRef]
- İnak, E.; Demirci, B.; Vandenhole, M.; Söylemezoğlu, G.; Van Leeuwen, T.; Toprak, U. Molecular mechanisms of resistance to spirodiclofen and spiromesifen in Tetranychus urticae. Crop Prot. 2023, 172, 106343. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Vontas, J.; Tsagkarakou, A.; Tirry, L. Acaricide resistance mechanism in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 2010, 40, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wu, M.M.; Zhang, Y.; Xu, D.D.; Wu, M.Y.; Xie, W.; Su, Q.; Wang, S.L. Pesticide Resistance and Related Mutation Frequencies of Tetranychus urticae in Hainan, China. Horticulturae 2022, 8, 590. [Google Scholar] [CrossRef]
- De Rouck, S.; İnak, E.; Dermauw, W.; Van Leeuwen, T. A Review of the Molecular Mechanisms of Acaricide Resistance in Mites and Ticks. Insect Biochem. Mol. Biol. 2023, 159, 103981. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wu, T.; Hu, Q.; He, W.; Zheng, Y.; Xie, Y.; Rao, Q.; Liu, X. Plant essential oils: Dual action of toxicity and egg-laying inhibition on Tetranychus urticae (Acari: Tetranychidae), unveiling their potential as botanical pesticides. Plants 2024, 13, 763. [Google Scholar] [CrossRef]
- Riga, M.; Tsakireli, D.; Ilias, A.; Morou, E.; Myridakis, A.; Stephanou, E.G.; Nauen, R.; Dermauw, W.; Van Leeuwen, T.; Paine, M.; et al. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect Biochem. Mol. Biol. 2014, 46, 43–53. [Google Scholar] [CrossRef]
- Tehri, K.; Gulati, R.; Geroh, M.; Dhankhar, S.K. Dry weather: A crucial constraint in the field efficacy of entomopathogenic fungus Beauveria bassiana against Tetranychus urticae Koch (Acari: Tetranychidae). J. Entomol. Zool. Stud. 2015, 3, 287–291. [Google Scholar]
- Gámez-Guzmán, A.; Torres-Rojas, E.; Gaigl, A. Potential of a Cladosporium cladosporioides strain for the control of Tetranychus urticae Koch (Acari: Tetranychidae) under laboratory conditions. Agron. Colomb. 2019, 37, 84–89. [Google Scholar] [CrossRef]
- Wakil, W.; Boukouvala, M.C.; Kavallieratos, N.G.; Naeem, A.; Ghazanfar, M.U.; Alhewairini, S.S. Impact of three entomopathogenic fungal isolates on the growth of tomato plants—Ectoapplication to explore their effect on Tetranychus urticae. Agronomy 2024, 14, 665. [Google Scholar] [CrossRef]
- Wakil, W.; Boukouvala, M.C.; Kavallieratos, N.G.; Riasat, T.; Ghazanfar, M.U.; Avery, P.B. Acaricidal efficacy of abamectin against Tetranychus urticae populations when combined with entomopathogenic fungi. Horticulturae 2024, 10, 1019. [Google Scholar] [CrossRef]
- Elhakim, E.; Mohamed, O.; Elazouni, I. Virulence and proteolytic activity of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Egypt. J. Biol. Pest Control 2020, 30, 30. [Google Scholar] [CrossRef]
- Yucel, C. Effects of local isolates of Beauveria bassiana (Balsamo) Vuillemin on the two-spotted spider mite, Tetranychus urticae (Koch) (Acari: Tetranychidae). Egypt. J. Biol. Pest Control 2021, 31, 63. [Google Scholar] [CrossRef]
- Jaronski, S.T. Ecological factors in the inundative use of fungal entomopathogens. BioControl 2020, 55, 159–185. [Google Scholar] [CrossRef]
- Leao, M.P.; Tiago, P.V.; Andreote, F.D.; de Araujo, W.L.; de Oliveira, N.T. Differential expression of the pr1A gene in Metarhizium anisopliae and Metarhizium acridum across different culture conditions and during pathogenesis. Genet. Mol. Biol. 2015, 38, 86–92. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A.; Keyhani, N.O. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Santi, L.; Beys da Silva, W.O.; Berger, M.; Guimarães, J.A.; Schrank, A.; Vainstein, M.H. Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis. Toxicon 2010, 55, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Gabarty, A.; Salem, H.; Fouda, M.; Abas, A.; Ibrahim, A. Pathogencity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotis ipsilon (Hufn.). J. Radiat. Res. Appl. Sci. 2014, 7, 95–100. [Google Scholar] [CrossRef]
- Butt, T.M.; Coates, C.J.; Dubovskiy, I.M.; Ratcliffe, N.A. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. In Advances in Genetics, 1st ed.; Lovett, B., St. Leger, R., Eds.; Elsevier: Cambridge, MA, USA, 2016; Volume 94, pp. 307–364. [Google Scholar]
- Islam, W.; Adnan, M.; Shabbir, A.; Naveed, H.; Abubakar, Y.S.; Qasim, M.; Tayyab, M.; Noman, A.; Nisar, M.S.; Khan, K.A.; et al. Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb. Pathog. 2021, 159, 105122. [Google Scholar] [CrossRef]
- Francis, F.; Fingu-Mabola, J.C.; Ben Fekih, I. Direct and endophytic effects of fungal entomopathogens for sustainable aphid control: A review. Agriculture 2022, 12, 2081. [Google Scholar] [CrossRef]
- Jaber, L.R.; Ownley, B.H. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol. Control 2018, 116, 36–45. [Google Scholar] [CrossRef]
- Copping, G.L.; Menn, J.J. Biopesticides: A review of their action, applications and efficacy. Pest Manag. Sci. 2000, 56, 651–676. [Google Scholar] [CrossRef]
- Santos, V.S.V.; Pereira, B.B. Properties, toxicity and current applications of the biolarvicide spinosad. J. Toxicol. Environ. Health—B Crit. 2020, 23, 13–26. [Google Scholar] [CrossRef]
- Salgado, V.L. Studies on the Mode of Action of Spinosad: Insect Symptoms and Physiological Correlates. Pestic. Biochem. Physiol. 1998, 60, 91–102. [Google Scholar] [CrossRef]
- Biondi, A.; Mommaerts, V.; Smagghe, G.; Vinuela, E.; Zappala, L.; Desneux, N. The non-target impact of spinosyns on beneficial arthropods. Pest Manag. Sci. 2012, 68, 1523–1536. [Google Scholar] [CrossRef]
- Abd El-Samei, E.M.; Hamama, H.M.; El-Enien, M.G.; Awad, H.H. Interaction of spinosad and Bacillus thuringiensis on certain toxicological, biochemical and molecular aspects in the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Afr. Entomol. 2019, 27, 508–522. [Google Scholar] [CrossRef]
- Khan, H.A.A. Variation in susceptibility to insecticides and synergistic effect of enzyme inhibitors in Pakistani strains of Trogoderma granarium. J. Stored Prod. Res. 2021, 91, 101775. [Google Scholar] [CrossRef]
- Ishadi, N.A.M.; Norida, M.; Oma, D.; Hong, L.W. Resistance against spinosad in a lab-rearing Plutella xylostella population and its impact on fitness cost. J. Anim. Plant Sci. 2022, 32, 479–488. [Google Scholar]
- Darriet, F.; Duchon, S.; Hougard, J.M. Spinosad: A New Larvicide against Insecticide-Resistant Mosquito Larvae. J. Am. Mosq. Control Assoc. 2005, 21, 495–496. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Hasan, M.; Sagheer, M.; Rasul, A.; Ali, R.A.; Rehman, H. Evaluation of spinosad applied to grain commodities for the control of stored product insect pests. Sarhad J. Agric. 2021, 37, 24–31. [Google Scholar] [CrossRef]
- Ganjisaffar, F.; Gress, B.E.; Demkovich, M.R.; Nicola, N.L.; Chiu, J.C.; Zalom, F.G. Spatio-temporal variation of spinosad susceptibility in Drosophila suzukii (Diptera: Drosophilidae), a three-year study in California’s Monterey Bay Region. J. Econ. Entomol. 2022, 115, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.; Scott-Dupree, C.; Harris, R.; Shipp, L.; Harris, B. The efficacy of spinosad against the western flower thrips, Frankliniella occidentalis, and its impact on associated biological control agents on greenhouse cucumbers in southern Ontario. Pest Manag. Sci. 2005, 61, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Dripps, J.E.; Boucher, R.E.; Chloridis, A.; Cleveland, C.B.; DeAmicis, C.V.; Gomez, L.E.; Paroonagian, D.L.; Pavan, L.A.; Sparks, T.C.; Watson, G.B. The spinosyn insecticides. In Green Trends in Insect Control; López, O., Fernández-Bolaños, J.G., Eds.; Royal Society of Chemistry: London, UK, 2011; pp. 163–212. [Google Scholar]
- van der Linden, A.; van der Staaij, M. Effectiviness of pesticides and potential for biological control of the tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Europe. IOBC/wprs Bull. 2011, 68, 97–100. [Google Scholar]
- Santis, E.L.; Hernandez, L.A.; Martinez, A.M.; Campos, J.; Figueroa, J.I.; Lobit, P.; Chavarrieta, J.M.; Vinuela, E.; Smagghe, G.; Pineda, S. Long-term foliar persistence and efficacy of spinosad against beet armyworm under greenhouse conditions. Pest Manag. Sci. 2012, 68, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Međo, I.; Stojnić, B.; Marčić, D. Acaricidal activity and sublethal effects of the microbial pesticide spinosad on Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 2017, 22, 1748–1762. [Google Scholar] [CrossRef]
- Hernández, M.M.; Martínez-Villar, E.; Peace, C.; Pérez-Moreno, I.; Marco, V. Compatibility of the entomopathogenic fungus Beauveria bassiana with flufenoxuron and azadirachtin against Tetranychus urticae. Exp. Appl. Acarol. 2012, 58, 395–405. [Google Scholar] [CrossRef]
- Seyed-Talebi, F.-S.; Kheradmand, K.; Talaei-Hassanloui, R.; Talebi-Jahromi, K. Synergistic effect of Beauveria bassiana and spirodiclofen on the two-spotted spider mite (Tetranychus urticae). Phytoparasitica 2014, 3, 405–412. [Google Scholar] [CrossRef]
- Nawaz, A.; Razzaq, F.; Razzaq, A.; Gogi, M.D.; Fernández-Grandon, G.M.; Tayib, M.; Ayub, M.A.; Sufyan, M.; Shahid, M.R.; Qayyum, M.A.; et al. Compatibility and synergistic interactions of fungi, Metarhizium anisopliae, and insecticide combinations against the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Sci. Rep. 2022, 12, 4843. [Google Scholar] [CrossRef] [PubMed]
- Dearlove, E.L.; Chandler, D.; Edgington, S.; Berry, S.D.; Martin, G.; Svendsen, C.; Hesketh, H. Improved control of Trialeurodes vaporariorum using mixture combinations of entomopathogenic fungi and the chemical insecticide spiromesifen. Sci. Rep. 2024, 14, 15259. [Google Scholar] [CrossRef]
- Abidin, A.F.; Ekowati, N.; Ratnaningtyas, N.I. Insecticide compatibility to the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Scr. Biol. 2017, 4, 273–279. [Google Scholar] [CrossRef]
- Al-Ani, L.K.T.; Aguilar-Marcelino, L.; Salazar-Vidal, V.E.; Becerra, A.G.; Raza, W. Role of Useful Fungi in Agriculture Sustainability. In Recent Trends in Mycological Research; Yadav, A.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–44. [Google Scholar]
- Golizadeh, A.; Ghavidel, S.; Razmjou, J.; Fathi, S.A.A.; Hassanpour, M. Comparative life table analysis of Tetranychus urticae Koch (Acari: Tetranychidae) on ten rose cultivars. Acarologia 2017, 57, 607–616. [Google Scholar] [CrossRef]
- Keskin, N.; Kumral, N.A. Screening tomato varietal resistance against the two-spotted spider mite [Tetranychus urticae (Koch)]. Int. J. Acarol. 2015, 41, 300–309. [Google Scholar] [CrossRef]
- Kavousi, A.; Chi, H.; Talebi, K.; Bandani, A.; Ashouri, A.; Naveh, V.H. Demographic traits of Tetranychus urticae (Acari: Tetranychidae) on leaf discs and whole leaves. J. Econ. Entomol. 2009, 102, 595–601. [Google Scholar] [CrossRef]
- Puspitarini, R.D.; Fernando, I.; Rachmawati, R.; Hadi, M.S.; Rizali, A. Host plant variability affects the development and reproduction of Tetranychus urticae. Int. J. Acarol. 2021, 47, 381–386. [Google Scholar] [CrossRef]
- Tahir, T.; Wakil, W.; Ali, A.; Sahi, S.T. Pathogenicity of Beauveria bassiana and Metarhizium anisopliae isolates against larvae of the polyphagous pest Helicoverpa armigera. Entomol. Gen. 2019, 38, 225–242. [Google Scholar] [CrossRef]
- Alwaneen, W.S.; Wakil, W.; Kavallieratos, N.G.; Qayyum, M.A.; Tahir, M.; Rasool, K.G.; Husain, M.; Aldawood, A.S.; Shapiro-Ilan, D. Efficacy and persistence of entomopathogenic fungi against Rhynchophorus ferrugineus on date palm: Host to host transmission. Agronomy 2024, 14, 642. [Google Scholar] [CrossRef]
- Rasool, S.; Markou, A.; Hannula, S.E.; Biere, A. Effects of tomato inoculation with the entomopathogenic fungus Metarhizium brunneum on spider mite resistance and the rhizosphere microbial community. Front. Microbiol. 2023, 14, 1197770. [Google Scholar] [CrossRef]
- Ortucu, S.; Algur, O.F. A laboratory assessment of two local strains of the Beauveria bassiana (Bals.) Vuill. against the Tetranychus urticae (Acari: Tetranychidae) and their potential as a mycopesticide. J. Pathog. 2017, 2017, 7628175. [Google Scholar]
- Wakil, W.; Tahir, M.; Al-Sadi, A.M.; Shapiro-Ilan, D. Interactions between two invertebrate pathogens: An endophytic fungus and an externally applied bacterium. Front. Microbiol. 2020, 11, 2624. [Google Scholar] [CrossRef] [PubMed]
- Rasool, S.; Cárdenas, P.D.; Pattison, D.I.; Jensen, B.; Meyling, N.V. Isolate-specific effect of entomopathogenic endophytic fungi on population growth of two-spotted spider mite (Tetranychus Urticae Koch) and levels of steroidal glycoalkaloids in tomato. J. Chem. Ecol. 2021, 47, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Wakil, W.; Kavallieratos, N.G.; Eleftheriadou, N.; Haider, S.A.; Qayyum, M.A.; Tahir, M.; Rasool, K.G.; Husain, M.; Aldawood, A.S. A winning formula: Sustainable control of three stored-product insects through paired combinations of entomopathogenic fungus, diatomaceous earth, and lambda-cyhalothrin. Environ. Sci. Pollut. Res. 2024, 31, 1–15. [Google Scholar] [CrossRef]
- Marcossi, Í.; Francesco, L.S.; Fonseca, M.M.; Pallini, A.; Groot, T.; De Vis, R.; Janssen, A. Predatory mites as potential biological control agents for tomato russet mite and powdery mildew on tomato. J. Pest Sci. 2024. [Google Scholar] [CrossRef]
- Chaudhry, Z.; Abbas, S.; Yasmin, A.; Rashid, H.; Ahmed, H.; Anjum, M.A. Tissue culture studies in tomato (Lycopersicon esculentum) var. Moneymaker. Pak. J. Bot. 2010, 42, 155–163. [Google Scholar]
- Ijaz, A.; Khan, I.; Zareen, S.; Khan, M.I.; Khan, R.; Haroon, M. Yield and yield attributes of tomato (Lycopersicon esculentum Mill) cultivars influenced by weed management techniques. Pak. J. Weed Sci. Res. 2017, 23, 431–438. [Google Scholar]
- Wu, S.; Sarkar, S.C.; Lv, J.; Xu, X.; Lei, Z. Poor infectivity of Beauveria bassiana to eggs and immatures causes the failure of suppression on Tetranychus urticae population. BioControl 2020, 65, 81–90. [Google Scholar] [CrossRef]
- Seiedy, M.; Moezipour, M. The entomopathogenic fungus Beauveria bassiana and its compatibility with Phytoseiulus persimilis (Acari: Phytoseiidae): Effects on Tetranychus urticae (Acari: Tetranychidae). Persian J. Acarol. 2017, 6, 329–338. [Google Scholar]
- Sharma, P.; Sharma, P.L.; Verma, S.C.; Sharma, N.; Sharma, P.; Thakur, S.; Sharma, S. Effect of fungicides on the functional response of Neoseiulus longispinosus (Phytoseiidae) to Tetranychus urticae (Tetranychidae) eggs. Int. J. Acarol. 2024, 50, 151–158. [Google Scholar] [CrossRef]
- Castillo-Ramírez, O.; Guzmán-Franco, A.W.; Santillán-Galicia, M.; Tamayo-Mejía, F. Interaction between predatory mites (Acari: Phytoseiidae) and entomopathogenic fungi in Tetranychus urticae populations. BioControl 2020, 65, 433–445. [Google Scholar] [CrossRef]
- Golec, J.R.; Hoge, B.; Walgenbach, J.F. Effect of biopesticides on different Tetranychus urticae Koch (Acari: Tetranychidae) life stages. Crop Prot. 2020, 128, 105015. [Google Scholar] [CrossRef]
- Nishi, O.; Sushida, H.; Higashi, Y.; Iida, Y. Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus Beauveria bassiana strain GHA. Mycology 2021, 12, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Amjad, M.; Bashir, M.H.; Afzal, M.; Sabri, M.A.; Javed, N. Synergistic effect of some entomopathogenic fungi and synthetic pesticides, against two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Pak. J. Zool. 2012, 44, 977–984. [Google Scholar]
- Maniania, N.K.; Ekesi, S.; Kungu, M.M.; Salifu, D.; Srinivasan, R. The effect of combined application of the entomopathogenic fungus Metarhizium anisopliae and the release of predatory mite Phytoseiulus longipes for the control of the spider mite Tetranychus evansi on tomato. Crop Prot. 2016, 90, 49–53. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis; Pearson Education Limited: Essex, UK, 2014. [Google Scholar]
- Scheff, D.S.; Arthur, F.H. Fecundity of Tribolium castaneum and Tribolium confusum adults after exposure to deltamethrin packaging. J. Pest Sci. 2018, 91, 717–725. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry; Freeman & Company: New York, NY, USA, 1995. [Google Scholar]
- Minitab, LLC. Available online: https://www.minitab.com (accessed on 4 November 2024).
- Souza, R.K.; Azevedo, R.F.; Lobo, A.O.; Rangel, D.E. Conidial water affinity is an important characteristic for thermotolerance in entomopathogenic fungi. Biocontrol Sci. Technol. 2014, 24, 448–461. [Google Scholar] [CrossRef]
- Dogan, Y.O.; Hazir, S.; Yildiz, A.; Butt, T.M.; Cakmak, I. Evaluation of entomopathogenic fungi for the control of Tetranychus urticae (Acari: Tetranychidae) and the effect of Metarhizium brunneum on the predatory mites (Acari: Phytoseiidae). Biol. Control 2017, 111, 6–12. [Google Scholar] [CrossRef]
- Usman, M.; Gulzar, S.; Wakil, W.; Wu, S.; Piñero, J.C.; Leskey, T.C.; Nixon, L.J.; Oliveira-Hofman, C.; Toews, M.D.; Shapiro-Ilan, D. Virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 2020, 113, 2627–2633. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xie, H.; Li, M.; Xu, X.; Lei, Z. Highly virulent Beauveria bassiana strains against the two-spotted spider mite, Tetranychus urticae, show no pathogenicity against five phytoseiid mite species. Exp. Appl. Acarol. 2016, 70, 421–435. [Google Scholar] [CrossRef] [PubMed]
- Saleem, A.R.; Ibrahim, R.A. Assessment of the virulence proteolytic activity of three native entomopathogenic fungi against the larvae of Oryctes agamemnon (Burmeister) (Coleoptera: Scarabaeidae) Egypt. J. Biol. Pest Control 2019, 29, 1–8. [Google Scholar] [CrossRef]
- Zare, M.; Talaei-Hassanloui, R.; Fotouhifar, K. Relatedness of proteolytic potency and virulence in entomopathogenic fungus Beauveria bassiana isolates. J. Crop Prot. 2014, 3, 425–434. [Google Scholar]
- Mustafa, U.; Kaur, G. Extracellular enzyme production in Metarhizium anisopliae isolates. Folia Microbiol. 2009, 54, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Baksi, S.; Koris, A.; Vatai, G. Journey of enzymes in entomopathogenic fungi. Pac. Sci. Rev. A Nat. Sci. Eng. 2016, 18, 85–99. [Google Scholar] [CrossRef]
- Petrisor, C.; Stoian, G. The role of hydrolytic enzymes produced by entomopathogenic fungi in pathogenesis of insects mini review. Rom. J. Plant Prot. 2017, 10, 66–72. [Google Scholar]
- Bugeme, D.M.; Knapp, M.; Boga, H.I.; Ekesi, S.; Maniania, N.K. Susceptibility of developmental stages of Tetranychus urticae (Acari: Tetranychidae) to infection by Beauveria bassiana and Metarhizium anisopliae (Hypocreales: Clavicipitaceae). Int. J. Trop. Insect Sci. 2014, 34, 190–196. [Google Scholar]
- Ranout, A.S.; Kaur, R.; Kumar, R.; Nadda, G. Pathogenicity and compatibility studies of native Tolypocladium inflatum and Clonostachys krabiensis against Tetranychus urticae. J. Appl. Entomol. 2024, 148, 1210–1222. [Google Scholar] [CrossRef]
- Kim, J.J.; Roberts, D.W. The relationship between conidial dose, moulting and insect developmental stage on the susceptibility of cotton aphid, Aphis gossypii, to conidia of Lecanicillium attenuatum, an entomopathogenic fungus. Biocontr. Sci. Technol. 2012, 22, 319–331. [Google Scholar] [CrossRef]
- López-Manzanares, B.; Martínez-Villar, E.; Marco-Mancebón, V.S.; Pérez-Moreno, I. Compatibility of the entomopathogenic fungus Beauveria bassiana with etoxazole, spirodiclofen and spiromesifen against Tetranychus urticae. Biol. Control 2022, 169, 104892. [Google Scholar] [CrossRef]
- Salem, H.H.A.; Mohammed, S.H.; Eltaly, R.I.; Moustafa, M.A.M.; Fónagy, A.; Farag, S.M. Co-application of entomopathogenic fungi with chemical insecticides against Culex pipiens. J. Invertebr. Pathol. 2023, 198, 107916. [Google Scholar] [CrossRef]
- Ekesi, S. Pathogenicity and antifeedant activity of entomopathogenic hyphomycetes to the cowpea leaf beetle, Ootheca mutabilis Shalberg. Int. J. Trop. Insect Sci. 2001, 21, 55–60. [Google Scholar] [CrossRef]
- Vivekanandhan, P.; Swathy, K.; Sarayut, P.; Patcharin, K. Classification, biology and entomopathogenic fungi-based management and their mode of action against Drosophila species (Diptera: Drosophilidae): A review. Front. Microbiol. 2024, 15, 1443651. [Google Scholar] [CrossRef]
- Ihara, F.; Toyama, M.; Mishiro, K.; Yaginuma, K. Laboratory studies on the infection of stink bugs with Metarhizium anisopliae strain FRM515. Appl. Entomol. Zool. 2008, 43, 503–509. [Google Scholar] [CrossRef]
- Sparks, T.C.; Crouse, G.D.; Durst, G. Natural products as insecticides: The biology, biochemistry and quantitative structure—Activity relationships of spinosyns and spinosoids. Pest. Manag. Sci. 2001, 57, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Salgado, V.L.; Sparks, T.C.; Gilbert, L.I.; Gill, S.S. The Spinosyns: Chemistry, Biochemistry, Mode of Action, and Resistance. In Insect Control: Biological and Synthetic Agents; Academic Press: Cambridge, MA, USA, 2010; pp. 137–169. [Google Scholar]
- Wakil, W.; Gulzar, S.; Prager, S.M.; Ghazanfar, M.U.; Shapiro-Ilan, D.I. Efficacy of entomopathogenic fungi, nematodes and spinetoram combinations for integrated management of Thrips tabaci: A two-year onion field study. Pest Manag. Sci. 2023, 79, 3227–3238. [Google Scholar] [CrossRef]
- El Aalaoui, M.; Rammali, S.; Bencharki, B.; Sbaghi, M. Efficacy of biorational insecticides and entomopathogenic fungi for controlling Cassida vittata Vill. (Coleoptera: Chrysomelidae) in sugar beet crops. Neotrop. Entomol. 2025, 54, 2. [Google Scholar] [CrossRef]
- Hiromori, H.; Nishigaki, J. Joint action of an entomopathogenic fungus (Metarhizium anisopliae) with synthetic insecticides against the scarab beetle, Anomala cuprea (Coleoptera: Scarabaeidae) larvae. Appl. Entomol. Zool. 1998, 33, 77–84. [Google Scholar] [CrossRef]
- Hiromori, H.; Nishigaki, J. Factor analysis of synergistic effect between the entomopathogenic fungus Metarhizium anisopliae and synthetic insecticides. Appl. Entomol. Zool. 2001, 36, 231–236. [Google Scholar] [CrossRef]
- Ericsson, J.D.; Kabaluk, J.T.; Goettel, M.S.; Myers, J.H. Spinosad interacts synergistically with the insect pathogen Metarhizium anisopliae against the exotic wireworms Agriotes Lineatus and Agriotes Obscurus (Coleoptera: Elateridae). J. Econ. Entomol. 2007, 100, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Borja, M.; Guzmán-Franco, A.W.; Rodríguez-Leyva, E.; Santillán-Ortega, C.; Pérez-Panduro, A. Interaction of Beauveria bassiana and Metarhizium anisopliae with chlorpyrifos ethyl and spinosad in Spodoptera frugiperda larvae. Pest Manag. Sci. 2018, 74, 2047–2052. [Google Scholar] [CrossRef] [PubMed]
- Numa, S.; Rodríguez, L.; Rodríguez, D.; Coy-Barrera, E. Susceptibility of Tetranychus urticae Koch to an ethanol extract of Cnidoscolus aconitifolius leaves under laboratory conditions. Springerplus 2015, 4, 338. [Google Scholar] [CrossRef]
- Tsolakis, H.; Ragusa, E.; Sinacori, M.; Lombardo, A. On the perception of leaf morphology and visible light by Tetranychus urticae Koch (Acariformes, Tetranychidae). Acarologia 2022, 62, 404–417. [Google Scholar] [CrossRef]
- Al-Shammery, K.A.; Al-Khalaf, A.A. Effect of host preference and micro habitats on the survival of Tetranychus urticae Koch (Acari: Tetranychidae) in Saudi Arabia. J. King Saud Univ. Sci. 2022, 34, 102030. [Google Scholar] [CrossRef]
- Sanyang, S.; Van Emden, H.F. The combined effects of the fungus Metarhizium flavoviride Gams & Rozsypal and the insecticide cypermethrin on Locusta migratoria migratorioides (Reiche & Fairmaire) in the laboratory. Inter. J. Pest Manag. 1996, 42, 183–187. [Google Scholar]
Source | df | F | p |
---|---|---|---|
Interval | 2 | 687.77 | <0.01 |
Life stage | 1 | 266.74 | <0.01 |
Treatment | 4 | 1550.48 | <0.01 |
Interval × life stage | 2 | 1.81 | 0.16 |
Interval × treatment | 8 | 15.60 | <0.01 |
Life stage × treatment | 4 | 14.13 | <0.01 |
Interval × stage × treatment | 8 | 3.33 | <0.01 |
Source | df | F | p |
---|---|---|---|
Leaf side (abaxial or adaxial) | 1 | 3978.95 | <0.01 |
Life stage | 2 | 852.20 | <0.01 |
Treatment | 5 | 4337.09 | <0.01 |
Leaf side × life stage | 2 | 356.22 | <0.01 |
Leaf side × treatment | 5 | 2439.46 | <0.01 |
Life stage × treatment | 10 | 421.93 | <0.01 |
Leaf side × life stage × treatment | 10 | 207.11 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wakil, W.; Boukouvala, M.C.; Kavallieratos, N.G.; Naeem, A.; Ntinokas, D.; Ghazanfar, M.U.; Avery, P.B. The Inevitable Fate of Tetranychus urticae on Tomato Plants Treated with Entomopathogenic Fungi and Spinosad. J. Fungi 2025, 11, 138. https://doi.org/10.3390/jof11020138
Wakil W, Boukouvala MC, Kavallieratos NG, Naeem A, Ntinokas D, Ghazanfar MU, Avery PB. The Inevitable Fate of Tetranychus urticae on Tomato Plants Treated with Entomopathogenic Fungi and Spinosad. Journal of Fungi. 2025; 11(2):138. https://doi.org/10.3390/jof11020138
Chicago/Turabian StyleWakil, Waqas, Maria C. Boukouvala, Nickolas G. Kavallieratos, Aqsa Naeem, Dionysios Ntinokas, Muhammad Usman Ghazanfar, and Pasco B. Avery. 2025. "The Inevitable Fate of Tetranychus urticae on Tomato Plants Treated with Entomopathogenic Fungi and Spinosad" Journal of Fungi 11, no. 2: 138. https://doi.org/10.3390/jof11020138
APA StyleWakil, W., Boukouvala, M. C., Kavallieratos, N. G., Naeem, A., Ntinokas, D., Ghazanfar, M. U., & Avery, P. B. (2025). The Inevitable Fate of Tetranychus urticae on Tomato Plants Treated with Entomopathogenic Fungi and Spinosad. Journal of Fungi, 11(2), 138. https://doi.org/10.3390/jof11020138