Metabolic Engineering of Yeasts: A Key Cell Factory Platform for Advanced Biomanufacturing
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Liu, Z.; Yu, Y.; Wang, S.; Zou, L. Calcium-Induced Regulation of Sanghuangporus baumii Growth and the Biosynthesis of Its Triterpenoids. J. Fungi 2025, 11, 238.
- Maloshenok, L.G.; Panina, Y.S.; Bruskin, S.A.; Zherdeva, V.V.; Gessler, N.N.; Rozumiy, A.V.; Antonov, E.V.; Deryabina, Y.I.; Isakova, E.P. Assessment of Recombinant β-Propeller Phytase of the Bacillus Species Expressed Intracellularly in Yarrowia lipolityca. J. Fungi 2025, 11, 186.
- An, H.; Li, G.; Yang, Z.; Xiong, M.; Wang, N.; Cao, X.; Yu, A. Denovo Production of Resveratrol by Engineered Rice Wine Strain Saccharomyces cerevisiae HJ08 and Its Application in Rice Wine Brewing. J. Fungi 2024, 10, 513.
- Zhang, Y.; Cai, H.; Chen, R.; Feng, J. DNA Damage Checkpoints Govern Global Gene Transcription and Exhibit Species-Specific Regulation on HOF1 in Candida albicans. J. Fungi 2024, 10, 387.
- Huang, X.; Fan, J.; Guo, C.; Chen, Y.; Qiu, J.; Zhang, Q. Integrated Transcriptomics and Metabolomics Analysis Reveal the Regulatory Mechanisms Underlying Sodium Butyrate-Induced Carotenoid Biosynthesis in Rhodotorula glutinis. J. Fungi 2024, 10, 320.
- Wang, Y.; Xiao, Z.; Zhang, S.; Tan, X.; Zhao, Y.; Liu, J.; Jiang, N.; Shan, Y. Systematic Engineering of Saccharomyces cerevisiae for the De Novo Biosynthesis of Genistein and Glycosylation Derivatives. J. Fungi 2024, 10, 176.
- Zhang, S.; Liu, J.; Xiao, Z.; Tan, X.; Wang, Y.; Zhao, Y.; Jiang, N.; Shan, Y. Systems Metabolic Engineering of Saccharomyces cerevisiae for the High-Level Production of (2S)-Eriodictyol. J. Fungi 2024, 10, 119.
- Deng, Y.; Zhu, H.; Wang, Y.; Dong, Y.; Du, J.; Yu, Q.; Li, M. The Endoplasmic Reticulum-Plasma Membrane Tethering Protein Ice2 Controls Lipid Droplet Size via the Regulation of Phosphatidylcholine in Candida albicans. J. Fungi 2024, 10, 87.
- Du, J.; Dong, Y.; Zuo, W.; Deng, Y.; Zhu, H.; Yu, Q.; Li, M. Mec1-Rad53 Signaling Regulates DNA Damage-Induced Autophagy and Pathogenicity in Candida albicans. J. Fungi 2023, 9, 1181.
References
- Singh, R.; Gaur, A.; Soni, P.; Jain, R.; Pant, G.; Kumar, D.; Kumar, G.; Shamshuddin, S.; Mubarak, N.M.; Dehghani, M.H.; et al. A review of biofuels and bioenergy production as a sustainable alternative: Opportunities, challenges and future perspectives. J. Environ. Health Sci. Eng. 2025, 23, 23. [Google Scholar]
- Winegar, P.H.; Astolfi, M.C.; Holm, S.F.; Hudson, G.A.; Keasling, J.D. Advances in the microbial biosynthesis of therapeutic terpenoids. Curr. Opin. Biotechnol. 2025, 96, 103374. [Google Scholar] [CrossRef]
- Yan, W.; Cao, Z.; Ding, M.; Yuan, Y. Design and construction of microbial cell factories based on systems biology. Synth. Syst. Biotechnol. 2022, 8, 176–185. [Google Scholar] [PubMed]
- Sharma, A.; Yazdani, S.S. Microbial engineering to produce fatty alcohols and alkanes. J. Ind. Microbiol. Biotechnol. 2021, 48, kuab011. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, L.; Nikel, P.I. Breaking the state-of-the-art in the chemical industry with new-to-Nature products via synthetic microbiology. Microb. Biotechnol. 2019, 12, 187–190. [Google Scholar] [PubMed]
- Jiang, T.; Tan, T.; Zong, Z.; Fan, D.; Wang, J.; Qiu, Y.; Teng, X.; Zhang, H.M.; Rao, C. Enhancing oil feedstock utilization for high-yield low-carbon polyhydroxyalkanoates industrial bioproduction. Metab. Eng. 2025, 91, 44–58. [Google Scholar]
- Liu, Y.; Zhang, J.; Li, Q.; Wang, Z.; Cui, Z.; Su, T.; Lu, X.; Qi, Q.; Hou, J. Engineering Yarrowia lipolytica for the sustainable production of β-farnesene from waste oil feedstock. Biotechnol. Biofuels Bioprod. 2022, 15, 101. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.; Markham, K.A.; Palmer, C.M.; Liu, N.; Stephanopoulos, G.; Alper, H.S. Metabolic engineering in the host Yarrowia lipolytica. Metab. Eng. 2018, 50, 192–208. [Google Scholar] [CrossRef]
- Li, D.; Wang, F.; Zheng, X.; Zheng, Y.; Pan, X.; Li, J.; Ma, X.; Yin, F.; Wang, Q. Lignocellulosic biomass as promising substrate for polyhydroxyalkanoate production: Advances and perspectives. Biotechnol. Adv. 2025, 79, 108512. [Google Scholar]
- Park, J.; Park, S.; Evelina, G.; Kim, S.; Jin, Y.S.; Chi, W.J.; Kim, I.J.; Kim, S.R. Metabolic engineering of Komagataella phaffii for xylose utilization from cellulosic biomass. Molecules 2024, 29, 5695. [Google Scholar] [CrossRef]
- Jayakody, L.N.; Chinmoy, B.; Turner, T.L. Trends in valorization of highly-toxic lignocellulosic biomass derived-compounds via engineered microbes. Bioresour. Technol. 2022, 346, 126614. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Yuan, Z.; Tang, H.; Ren, P.; Han, S. Metabolic engineering of Pichia pastoris as an industrial chassis enables biosynthesis of dopamine from methanol. Bioresour. Technol. 2025, 436, 132915. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yu, H.E.; Lee, S.Y. Metabolic engineering of microorganisms for carbon dioxide utilization. Curr. Opin. Biotechnol. 2025, 91, 103244. [Google Scholar] [CrossRef]
- Antonovsky, N.; Gleizer, S.; Noor, E.; Zohar, Y.; Herz, E.; Barenholz, U.; Zelcbuch, L.; Amram, S.; Wides, A.; Tepper, N.; et al. Sugar synthesis from CO2 in Escherichia coli. Cell 2016, 166, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Yook, S.; Alper, H.S. Recent advances in genetic engineering and chemical production in yeast species. FEMS Yeast Res. 2025, 25, foaf009. [Google Scholar] [CrossRef]
- Dmytruk, K.; Semkiv, M.; Sibirny, A. Glycerol bioconversion to biofuel and value-added products by yeasts. FEMS Yeast Res. 2025, 25, foaf038. [Google Scholar] [CrossRef]
- Korka, V.; Petropoulos, A.; Ioannidou, S.M.; Lin, C.S.K.; Koutinas, A.; Fickers, P. Harnessing yeasts for sustainable succinic acid production: Advances in metabolic engineering and biorefinery integration. FEMS Yeast Res. 2025, 25, foaf052. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Cui, J.; Wu, C.; Yu, B.; Wang, L. Non-conventional yeasts: Promising cell factories for organic acid bioproduction. Trends Biotechnol. 2025, 43, 1609–1626. [Google Scholar] [CrossRef]
- Celińska, E.; Zhou, Y.J. Global transcription machinery engineering in Yarrowia lipolytica. FEMS Yeast Res. 2025, 25, foaf023. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, J.; Gao, N.; Zhao, Y.; Zhou, Y.J. Engineering chronological lifespan toward a robust yeast cell factory. Proc. Natl. Acad. Sci. USA 2025, 122, e2515324122. [Google Scholar] [CrossRef]
- Ye, C.; Li, X.; Liu, T.; Li, S.; Zhang, M.; Zhao, Y.; Cheng, J.; Yang, G.; Li, P. Peroxisome engineering in yeast: Advances, challenges, and prospects. Biotechnol. Adv. 2026, 86, 108747. [Google Scholar] [CrossRef]
- Liu, L.; Ding, D.; Wang, H.; Ren, X.; Lee, S.Y.; Zhang, D. Balancing cell growth and product synthesis for efficient microbial cell factories. Adv. Sci. 2025, 12, e10649. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Zhou, J.; Pang, A.; Huang, L.; Liu, Z.; Zheng, Y. Microbial dynamic regulatory tools: Design, applications, and prospects. ACS Synth. Biol. 2025, 14, 2418–2432. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Sha, Y.; Kumar, V.; Xu, Z.; Zhai, R.; Jin, M. Transcription factor-based biosensor: A molecular-guided approach for advanced biofuel synthesis. Biotechnol. Adv. 2024, 72, 108339. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Chen, Y.; Nielsen, J. Metabolic engineering of yeast. Annu. Rev. Biophys. 2025, 54, 101–120. [Google Scholar] [CrossRef]
- Lu, H.; Xiao, L.; Liao, W.; Yan, X.; Nielsen, J. Cell factory design with advanced metabolic modelling empowered by artificial intelligence. Metab. Eng. 2024, 85, 61–72. [Google Scholar] [CrossRef]
- Ryu, G.; Kim, G.B.; Yu, T.; Lee, S.Y. Deep learning for metabolic pathway design. Metab. Eng. 2023, 80, 130–141. [Google Scholar] [CrossRef]
- Glitz, C.; Dyekjær, J.D.; Solimando, G.M.C.; Avila Neto, P.M.; Rago, D.; Babaei, M.; Borodina, I. Recombinant production of amaranthin and other betalain variants with yeast cell factories. Synth. Syst. Biotechnol. 2025, 10, 1127–1139. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, W.; Xue, Y.; Geng, C.; Jin, Z.; Li, J.; Guo, Q.; Huang, X.; Lu, X. Microbial production of the plant-derived fungicide physcion. Metab. Eng. 2022, 74, 130–138. [Google Scholar] [CrossRef]
- Leibetseder, L.; Bindics, J.; Buyel, J.F. Benzylisoquinoline alkaloid production: Moving from crop farming to chemical and biosynthesis. Biotechnol. Adv. 2025, 85, 108700. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, A.; Mao, J.; Xu, N. Metabolic Engineering of Yeasts: A Key Cell Factory Platform for Advanced Biomanufacturing. J. Fungi 2025, 11, 863. https://doi.org/10.3390/jof11120863
Yu A, Mao J, Xu N. Metabolic Engineering of Yeasts: A Key Cell Factory Platform for Advanced Biomanufacturing. Journal of Fungi. 2025; 11(12):863. https://doi.org/10.3390/jof11120863
Chicago/Turabian StyleYu, Aiqun, Jiwei Mao, and Ning Xu. 2025. "Metabolic Engineering of Yeasts: A Key Cell Factory Platform for Advanced Biomanufacturing" Journal of Fungi 11, no. 12: 863. https://doi.org/10.3390/jof11120863
APA StyleYu, A., Mao, J., & Xu, N. (2025). Metabolic Engineering of Yeasts: A Key Cell Factory Platform for Advanced Biomanufacturing. Journal of Fungi, 11(12), 863. https://doi.org/10.3390/jof11120863

