Decoding the Bioluminescent and Non-Bioluminescent Traits of Panellus stipticus: A Genomic and Phenotypic Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain and Culture Conditions
2.2. Bioluminescence and Colony Growth of P. stipticus
- 2.5% BCA;
- 2.5% BCA supplemented with 0.1% activated charcoal;
- 10% BCA.
- •
- Standard Malt Agar (SMA): 2% malt extract (Fisher Scientific, Massachusetts, MA, USA), 0.2% yeast extract (Fisher Scientific, Massachusetts, MA, USA), 2% agar (Fisher Scientific, Massachusetts, MA, USA) (as per Nussbaum et al. [17]);
- •
- Low Malt Agar (LMA): 0.4% malt extract, 0.2% yeast extract, 2% agar;
- •
- High Malt Agar (HMA): 5% malt extract, 0.2% yeast extract, 2% agar;
- •
- Molasses Yeast Agar (MSY): 2.5% molasses (Fisher Scientific, Massachusetts, MA, USA), 0.5% yeast extract, 1.5% agar (adapted from Bermudes et al. [18]);
- •
- Breadcrumb Agar (BCA): 10% breadcrumb (Walmart, AR, USA), 2% agar (based on Wassink and Kuwabara [19]).
2.3. Anaerobic Suppression of Bioluminescence
2.4. Biochemical Assay for Bioluminescence Restoration in Non-Bioluminescent Strain
2.5. Phylogenetic Analysis
2.6. In Silico Analysis of Genomes of Bioluminescent (Panst LUM) and Non-Bioluminescent (KUC8344) Strains of P. stipticus
3. Results
3.1. Effect of Culture Media on Bioluminescence and Colony Growth of P. stipticus
3.2. Bioluminescence of P. stipticus Under Anaerobic Condition
3.3. Biochemical Assay for Bioluminescence Restoration in Non-Bioluminescent Strain
3.4. Phylogenetic Analysis of P. stipticus
3.5. Comparative Genomic Analysis of Bioluminescent and Non-Bioluminescent Strains of P. stipticus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| luz | luciferase |
| hisps | Hispidin synthase |
| h3h | Hispidin 3-hydroxylase |
| cph | caffeoyl pyruvate hydrolase |
| BCA | Breadcrumb Agar |
| SMA | Standard Malt Agar |
| LMA | Low Malt Agar |
| HMA | High Malt Agar |
| MSY | Molasses Yeast Agar |
| CA | Caffeic Acid |
| CouA | p-coumaric acid |
| CinA | Cinnamic Acid |
| NADPH | Nicotinamide Adenine Dinucleotide Phosphate |
| DMSO | Dimethyl Sulfoxide |
| ITS | Internal Transcribed Spacer |
| NCBI | National Center for Biotechnology Information |
References
- Schramm, S.; Weib, D. Bioluminescence—The vibrant glow of nature and its chemical mechanisms. ChemBioChem 2024, 25, e202400106. [Google Scholar] [CrossRef] [PubMed]
- Ke, H.-M.; Lee, H.-H.; Lin, C.-Y.I.; Liu, Y.-C.; Lu, M.R.; Hsieh, J.-W.A.; Chang, C.-C.; Wu, P.-H.; Lu, M.J.; Li, J.-Y.; et al. Mycena Genomes Resolve the Evolution of Fungal Bioluminescence. Proc. Natl. Acad. Sci. USA 2020, 117, 31267–31277. [Google Scholar] [CrossRef] [PubMed]
- Stevani, C.V.; Oliveira, A.G.; Mendes, L.F.; Ventura, F.F.; Waldenmaier, H.E.; Carvalho, R.P.; Pereira, T.A. Current Status of Research on Fungal Bioluminescence: Biochemistry and Prospects for Ecotoxicological Application. Photochem. Photobiol. 2013, 89, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Perry, B.A.; Desjardin, D.E.; Stevani, C.V. Diversity, Distribution, and Evolution of Bioluminescent Fungi. J. Fungi 2025, 11, 19. [Google Scholar] [CrossRef]
- Oliveira, A.G.; Desjardin, D.E.; Perry, B.A.; Stevani, C.V. Evidence That a Single Bioluminescent System Is Shared by All Known Bioluminescent Fungal Lineages. Photochem. Photobiol. Sci. 2012, 11, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Silva-Filho, A.G.S.; Mombert, A.; Nascimento, C.C.; Nóbrega, B.B.; Soares, D.M.M.; Martins, A.G.S.; Domingos, A.H.R.; Santos, I.; Della-Torre, O.H.P.; Perry, B.A.; et al. Eoscyphella luciurceolata Gen. and Sp. Nov. (Agaricomycetes) Shed Light on Cyphellopsidaceae with a New Lineage of Bioluminescent Fungi. J. Fungi 2023, 9, 1004. [Google Scholar] [CrossRef]
- Kotlobay, A.A.; Sarkisyan, K.S.; Mokrushina, Y.A.; Marcet-Houben, M.; Serebrovskaya, E.O.; Markina, N.M.; Gonzalez Somermeyer, L.; Gorokhovatsky, A.Y.; Vvedensky, A.; Purtov, K.V.; et al. Genetically Encodable Bioluminescent System from Fungi. Proc. Natl. Acad. Sci. USA 2018, 115, 12728–12732. [Google Scholar] [CrossRef]
- Stevani, C.V.; Zamuner, C.K.; Bastos, E.L.; de Nóbrega, B.B.; Soares, D.M.M.; Oliveira, A.G.; Bechara, E.J.H.; Shakhova, E.S.; Sarkisyan, K.S.; Yampolsky, I.V.; et al. The Living Light from Fungi. J. Photochem. Photobiol. C Photochem. Rev. 2024, 58, 100654. [Google Scholar] [CrossRef]
- Macrae, R. Interfertility Phenomena of the American and European Forms of Panus stypticus (Bull.) Fries. Nature 1937, 139, 674. [Google Scholar] [CrossRef]
- Jin, J.; Hughes, K.W.; Petersen, R.H. Biogeographical Patterns in Panellus stypticus. Mycologia 2001, 93, 309–316. [Google Scholar] [CrossRef]
- Buller, A.H.R. The Bioluminescence of Panus stipticus. In Researches on Fungi; Longmans, Green and Company: London, UK, 1924; Volume 3, pp. 357–431. [Google Scholar]
- Macrae, R. Infertility Studies and Inheritance of Luminosity in Panus stypticus. Can. J. Res. 1942, 20c, 411–434. [Google Scholar] [CrossRef]
- Petersen, R.H.; Bermudes, D. Panellus Stypticus: Geographically Separated Interbreeding Populations. Mycologia 1992, 84, 209–213. [Google Scholar] [CrossRef]
- Oba, Y.; Hosaka, K. The Luminous Fungi of Japan. J. Fungi 2023, 9, 615. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.H.; Bermudes, D. Intercontinental Compatibility in Panellus stypticus with a Note on Bioluminescence. Persoonia—Mol. Phylogeny Evol. Fungi 1992, 14, 457–463. [Google Scholar]
- Lingle, W.L.; Porter, D.; O’Kane, D.J. Preliminary Analysis of Genetic Complementation of Bioluminescence in Panellus stypticus Isolated from Pine and Hardwood. Mycologia 1992, 84, 94–104. [Google Scholar] [CrossRef]
- Nussbaum, N.; von Wyl, T.; Gandia, A.; Romanens, E.; Rühs, P.A.; Fischer, P. Impact of Malt Concentration in Solid Substrate on Mycelial Growth and Network Connectivity in Ganoderma Species. Sci. Rep. 2023, 13, 21051. [Google Scholar] [CrossRef]
- Bermudes, D.; Gerlach, V.L.; Nealson, K.H. Effects of Culture Conditions on Mycelial Growth and Luminescence in Panellus stypticus. Mycologia 1990, 82, 295–305. [Google Scholar] [CrossRef]
- Wassink, E.C.; Kuwabara, S. Bioluminescence in Progress; Princeton University Press: Princeton, NJ, USA, 1966; pp. 247–264. ISBN 978-1-4008-7568-9. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for Inferring Very Large Phylogenies by Using the Neighbor-Joining Method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Grigoriev, I.V.; Nikitin, R.; Haridas, S.; Kuo, A.; Ohm, R.; Otillar, R.; Riley, R.; Salamov, A.; Zhao, X.; Korzeniewski, F.; et al. MycoCosm Portal: Gearing up for 1000 Fungal Genomes. Nucleic Acids Res. 2014, 42, D699–D704. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Cabanettes, F.; Klopp, C. D-GENIES: Dot Plot Large Genomes in an Interactive, Efficient and Simple Way. PeerJ 2018, 6, e4958. [Google Scholar] [CrossRef]
- Campanella, J.J.; Bitincka, L.; Smalley, J. MatGAT: An Application That Generates Similarity/Identity Matrices Using Protein or DNA Sequences. BMC Bioinform. 2003, 4, 29. [Google Scholar] [CrossRef]
- Mendes, L.F.; Bastos, E.L.; Desjardin, D.E.; Stevani, C.V. Influence of Culture Conditions on Mycelial Growth and Bioluminescence of Gerronema viridilucens. FEMS Microbiol. Lett. 2008, 282, 132–139. [Google Scholar] [CrossRef]
- O’kane, D.J.; Lingle, W.L.; Porter, D.; Wampler, J.E. Localization of Bioluminescent Tissues During Basidiocarp Development in Panellus stypticus. Mycologia 1990, 82, 595–606. [Google Scholar] [CrossRef]
- Ivanova, T.S.; Bisko, N.A.; Krupodorova, T.A.; Barshteyn, V.Y. Breadcrumb as a New Substrate for Trametes Versicolor and Schizophyllum Commune Submerged Cultivation. Korean J. Microbiol. Biotechnol. 2014, 42, 67–72. [Google Scholar] [CrossRef]
- Suzuki, T.; Iwahashi, Y. Addition of Carbon to the Culture Medium Improves the Detection Efficiency of Aflatoxin Synthetic Fungi. Toxins 2016, 8, 338. [Google Scholar] [CrossRef] [PubMed]
- Ascough, P.L.; Sturrock, C.J.; Bird, M.I. Investigation of Growth Responses in Saprophytic Fungi to Charred Biomass. Isotopes Environ. Health Stud. 2010, 46, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Bolchacova, E.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; et al. Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Houbraken, J.; Visagie Cobus, M.; Frisvad Jens, C. Recommendations to Prevent Taxonomic Misidentification of Genome-Sequenced Fungal Strains. Microbiol. Resour. Announc. 2021, 10, e01074-20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Y.; Liu, H.-G.; Papp, V.; Zhou, M.; Wu, F.; Dai, Y.-C. Taxonomy and Multi-Gene Phylogeny of Poroid Panellus (Mycenaceae, Agaricales) With the Description of Five New Species From China. Front. Microbiol. 2022, 13, 928941. [Google Scholar] [CrossRef]
- Maizel, J.V.; Lenk, R.P. Enhanced Graphic Matrix Analysis of Nucleic Acid and Protein Sequences. Proc. Natl. Acad. Sci. USA 1981, 78, 7665–7669. [Google Scholar] [CrossRef] [PubMed]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabara, R.C.; Xie, X. Decoding the Bioluminescent and Non-Bioluminescent Traits of Panellus stipticus: A Genomic and Phenotypic Perspective. J. Fungi 2025, 11, 774. https://doi.org/10.3390/jof11110774
Rabara RC, Xie X. Decoding the Bioluminescent and Non-Bioluminescent Traits of Panellus stipticus: A Genomic and Phenotypic Perspective. Journal of Fungi. 2025; 11(11):774. https://doi.org/10.3390/jof11110774
Chicago/Turabian StyleRabara, Roel C., and Xianfa Xie. 2025. "Decoding the Bioluminescent and Non-Bioluminescent Traits of Panellus stipticus: A Genomic and Phenotypic Perspective" Journal of Fungi 11, no. 11: 774. https://doi.org/10.3390/jof11110774
APA StyleRabara, R. C., & Xie, X. (2025). Decoding the Bioluminescent and Non-Bioluminescent Traits of Panellus stipticus: A Genomic and Phenotypic Perspective. Journal of Fungi, 11(11), 774. https://doi.org/10.3390/jof11110774

