A Model of the Current Geographic Distribution and Predictions of Future Range Shifts of Lentinula edodes in China Under Multiple Climate Change Scenarios
Abstract
1. Introduction
2. Materials and Methods
2.1. Occurrence Data
2.2. Environmental Variables
2.3. Model Evaluation
3. Results
3.1. Geographical Distribution of Wild L. edodes in China
3.2. Model Accuracy
3.3. Main Environmental Variables
3.4. The Distribution of Highly Suitable Habitats for L. edodes
3.5. Future Changes in the Geographical Distribution of L. edodes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pegler, D.N. The genus Lentinula (Tricholomataceae tribe Collybieae). Sydowia 1983, 36, 227–239. [Google Scholar]
- Mata, J.L.; Petersen, R.H.; Hughes, K.W. The genus Lentinula in the Americas. Mycologia 2001, 93, 1102–1112. [Google Scholar] [CrossRef]
- Liu, Q.; Niu, S.; Hu, S.; Cui, X.; Shi, Z.; Wu, J.; Zhang, Y.; Kong, W. Lignocellulose degradation pattern and structural change of the sawdust substrate and enzyme secretion by Lentinula edodes during its production. Wood Sci. Technol. 2023, 57, 389–405. [Google Scholar] [CrossRef]
- Xu, S.; Wang, F.; Fu, Y.; Li, D.; Sun, X.; Li, C.; Song, B.; Li, Y. Effects of mixed agro-residues (corn crop waste) on lignin-degrading enzyme activities, growth, and quality of Lentinula edodes. RSC Adv. 2020, 10, 9798–9807. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Patev, S.; Min, B.; Naranjo-Ortiz, M.; Looney, B.; Konkel, Z.; Slot, J.C.; Sakamoto, Y.; Steenwyk, J.L.; Rokas, A.; Carro, J.; et al. A global phylogenomic analysis of the shiitake genus Lentinula. Proc. Natl. Acad. Sci. USA 2023, 120, e2214076120. [Google Scholar] [CrossRef]
- Song, X.; Shang, X.; Zhang, M.; Yu, H.; Zhang, D.; Tan, Q.; Song, C. Cultivation methods and biology of Lentinula edodes. Appl. Microbiol. Biotechnol. 2025, 109, 63. [Google Scholar] [CrossRef]
- Bugajewski, M.; Angerhoefer, N.; Pączek, L.; Kaleta, B. Lentinula edodes as a source of bioactive compounds with therapeutical potential in intestinal inflammation and colorectal cancer. Int. J. Mol. Sci. 2025, 26, 3320. [Google Scholar] [CrossRef]
- Roszczyk, A.; Turło, J.; Zagożdżon, R.; Kaleta, B. Immunomodulatory properties of polysaccharides from Lentinula edodes. Int. J. Mol. Sci. 2022, 23, 8980. [Google Scholar] [CrossRef]
- Singh, A.; Saini, R.K.; Kumar, A.; Chawla, P.; Kaushik, R. Mushrooms as nutritional powerhouses: A review of their bioactive compounds, health benefits, and value-added products. Foods 2025, 14, 741. [Google Scholar] [CrossRef]
- Chang, S.T.; Miles, P.G. Historical record of the early cultivation of Lentinus in China. Mushroom J. Trop. 1987, 7, 31–37. [Google Scholar]
- Yang, R.H.; Wu, Y.Y.; Song, C.Y.; Guo, T.; Li, C.H.; Tang, L.H.; Bao, D.P. Reanalysis of geographical distribution of wild Lentinula edodes in China based on the information from public databases. Mycosystema 2018, 3, 335–351. [Google Scholar] [CrossRef]
- Yang, R.H.; Wu, Y.Y.; Tang, L.H.; Li, C.H.; Shang, J.J.; Li, Y.; Song, Y.; Huang, W.H.; Tao, X.S.; Tan, Q.; et al. The reliability of DNA Sequences in public databases belonging to the most economically important shiitake culinary-medicinal mushroom Lentinus edodes (Agaricomycetes) in Asia. Int. J. Med. Mushrooms 2019, 21, 1223–1239. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Z.R.; Li, C.; Bian, Y.B.; Xiao, Y. Evaluating genetic diversity and constructing core collections of Chinese Lentinula edodes cultivars using ISSR and SRAP markers. J. Basic. Microbiol. 2015, 55, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Ying, Z.H.; Liu, F.; Liu, X.R.; Xie, B.G. Evaluation of the use of SCAR markers for screening genetic diversity of Lentinula edodes strains. Curr. Microbiol. 2012, 64, 317–325. [Google Scholar] [CrossRef]
- Song, X.; Zhao, Y.; Song, C.; Chen, M.; Huang, J.; Bao, D.; Tan, Q.; Yang, R. Mitogenome types of two Lentinula edodes sensu lato populations in China. Sci. Rep. 2019, 9, 9421. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, L.; Shang, X.; Peng, B.; Li, Y.; Xiao, S.; Tan, Q.; Fu, Y. Chromosomal genome and population genetic analyses to reveal genetic architecture, breeding history and genes related to cadmium accumulation in Lentinula edodes. BMC Genom. 2022, 23, 120. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, N.; Li, C.; Xiang, X.; Liu, G.; Gui, Y.; Patev, S.; Hibbett, D.S.; Barry, K.; Andreopoulos, W.; et al. Population genomics provides insights into the genetic basis of adaptive evolution in the mushroom-forming fungus Lentinula edodes. J. Adv. Res. 2022, 38, 91–106. [Google Scholar] [CrossRef]
- Grimm, N.B.; Chapin Iii, F.S.; Bierwagen, B.; Gonzalez, P.; Groffman, P.M.; Luo, Y.; Melton, F.; Nadelhoffer, K.; Pairis, A.; Raymond, P.A.; et al. The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 2013, 11, 474–482. [Google Scholar] [CrossRef]
- Coelho, M.T.P.; Barreto, E.; Rangel, T.F.; Diniz-Filho, J.A.F.; Wüest, R.O.; Bach, W.; Skeels, A.; McFadden, I.R.; Roberts, D.W.; Pellissier, L.; et al. The geography of climate and the global patterns of species diversity. Nature 2023, 622, 537–544. [Google Scholar] [CrossRef]
- Zu, K.; Wang, Z.; Zhu, X.; Lenoir, J.; Shrestha, N.; Lyu, T.; Luo, A.; Li, Y.; Ji, C.; Peng, S.; et al. Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Sci. Total Environ. 2021, 783, 146896. [Google Scholar] [CrossRef]
- Lenoir, J.; Svenning, J.C. Latitudinal and elevational range shifts under contemporary climate change. In Encyclopedia of Biodiversity, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 599–611. [Google Scholar] [CrossRef]
- Brodie, J.F.; Freeman, B.G.; Mannion, P.D.; Hargreaves, A.L. Shifting, expanding, or contracting? Range movement consequences for biodiversity. Trends Ecol. Evol. 2025, 40, 439–448. [Google Scholar] [CrossRef]
- Yesuf, G.U.; Brown, K.A.; Walford, N.S.; Rakotoarisoa, S.E.; Rufino, M.C. Predicting range shifts for critically endangered plants: Is habitat connectivity irrelevant or necessary? Biol. Conserv. 2021, 256, 109033. [Google Scholar] [CrossRef]
- Liu, B.; Gao, X.; Ma, J.; Jiao, Z.; Xiao, J.; Hayat, M.A.; Wang, H. Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Sci. Total Environ. 2019, 664, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, J.; Hu, X.; Feng, J. Land-use change drives present and future distributions of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Sci. Total Environ. 2020, 706, 135872. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Jacquemyn, H.; Burgess, K.S.; Zhang, L.G.; Zhou, Y.D.; Yang, B.Y.; Tan, S.L. Contrasting range changes of terrestrial orchids under future climate change in China. Sci. Total Environ. 2023, 895, 165128. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.; Lu, Y.; Hu, X.; Lou, L.; Tong, Z.; Zhang, J. Assessing the current genetic structure of 21 remnant populations and predicting the impacts of climate change on the geographic distribution of Phoebe sheareri in southern China. Sci. Total Environ. 2022, 846, 157391. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, L.; Wang, J.; Wang, W.; Niyati, N.; Guo, Y.; Wang, X. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation. Sci. Total Environ. 2021, 755, 142548. [Google Scholar] [CrossRef]
- Xu, L.; Fan, Y.; Zheng, J.; Guan, J.; Lin, J.; Wu, J.; Liu, L.; Wu, R.; Liu, Y. Impacts of climate change and human activity on the potential distribution of Aconitum leucostomum in China. Sci. Total Environ. 2024, 912, 168829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yao, L.; Meng, J.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef]
- Ke, C.; Gong, L.X.; Geng, Y.; Wang, Z.Q.; Zhang, W.J.; Feng, J.; Jiang, T.L. Patterns and correlates of potential range shifts of bat species in China in the context of climate change. Conserv. Biol. 2025, 39, e14310. [Google Scholar] [CrossRef]
- Chen, J.; He, D. Potential geographical distribution of Cordyceps cicadae and its two hosts in China under climate change. Front. Microbiol. 2024, 15, 1519560. [Google Scholar] [CrossRef]
- Alkhalifah, D.H.M.; Damra, E.; Melhem, M.B.; Hozzein, W.N. Fungus under a changing climate: Modeling the current and future global distribution of Fusarium oxysporum using geographical information system data. Microorganisms 2023, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, X.; Zhao, Z.; Wei, H.; Gao, B.; Gu, W. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci. Rep. 2017, 7, 46221. [Google Scholar] [CrossRef]
- Pradhan, P. Biogeography and impacts of climate change on the distribution of Ophiocordyceps sinensis. In Cordyceps and Allied Species; Deshmukh, S.K., Sridhar, K.R., Eds.; Springer Nature: Singapore, 2024; pp. 3–26. [Google Scholar] [CrossRef]
- Yan, Y.; Li, Y.; Wang, W.-J.; He, J.-S.; Yang, R.-H.; Wu, H.-J.; Wang, X.-L.; Jiao, L.; Tang, Z.; Yao, Y.-J. Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biol. Conserv. 2017, 206, 143–150. [Google Scholar] [CrossRef]
- Chen, J.H.; Shen, S.; Zhou, L.W. Modeling current geographic distribution and future range shifts of Sanghuangporus under multiple climate change scenarios in China. Front. Microbiol. 2022, 13, 1064451. [Google Scholar] [CrossRef]
- Cohen, S.D. Estimating the climate niche of sclerotinia sclerotiorum using maximum entropy modeling. J. Fungi 2023, 9, 892. [Google Scholar] [CrossRef]
- Schunko, C.; Li, X.; Klappoth, B.; Lesi, F.; Porcher, V.; Porcuna-Ferrer, A.; Reyes-García, V. Local communities’ perceptions of wild edible plant and mushroom change: A systematic review. Glob. Food Secur. 2022, 32, 100601. [Google Scholar] [CrossRef]
- Menolli Jr, N.; Sánchez-Ramírez, S.; Sánchez-García, M.; Wang, C.; Patev, S.; Ishikawa, N.K.; Mata, J.L.; Lenz, A.R.; Vargas-Isla, R.; Liderman, L. Global phylogeny of the Shiitake mushroom and related Lentinula species uncovers novel diversity and suggests an origin in the Neotropics. Mol. Phylogenet. Evol. 2022, 173, 107494. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Halvorsen, R.; Mazzoni, S.; Dirksen, J.W.; Næsset, E.; Gobakken, T.; Ohlson, M. How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt? Ecol. Model. 2016, 328, 108–118. [Google Scholar] [CrossRef]
- Zhu, J.; Ji, C.; Zhang, H.; Ran, Q.; Tao, S.; Wang, Z.; Xu, X.; Cai, Q.; Fang, J. Possible refugia for Fagaceae species in China under climate change. J. Plant Ecol. 2025, 18, rtae111. [Google Scholar] [CrossRef]
- Wang, X.; Duan, Y.; Jin, L.; Wang, C.; Peng, M.; Li, Y.; Wang, X.; Ma, Y. Prediction of historical, present and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China. Acta Ecol. Sin. 2023, 43, 6590–6604. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Zhao, Z.; Nawaz, Z. Predicting the impacts of climate change, soils and vegetation types on the geographic distribution of Polyporus umbellatus in China. Sci. Total Environ. 2019, 648, 1–11. [Google Scholar] [CrossRef]
- Wilgan, R.; Dyderski, M.K.; Pietras, M.; Walas, Ł.; Kolanowska, M.; Leski, T. Northward shifting in the distribution of optimal niches for Tuber aestivum, Tuber melanosporum, and their ectomycorrhizal tree partners in Europe. Acta Oecologica 2025, 1126, 104057. [Google Scholar] [CrossRef]
- Salam, N.; Sidhu, H.K.; Shaban, S.; Reshi, Z.A.; Shah, M.A. Climate change scenarios predict reduction in suitable habitats and range shifts for Ophiocordyceps sinensis (Berk.) in Hindu Kush Himalaya. J. Asia-Pac. Biodivers. 2025, 18, 144–156. [Google Scholar] [CrossRef]
- Banasiak, Ł.; Pietras, M.; Wrzosek, M.; Okrasińska, A.; Gorczak, M.; Kolanowska, M.; Pawłowska, J. Aureoboletus projectellus (Fungi, Boletales)—Occurrence data, environmental layers and habitat suitability models for North America and Europe. Data Brief 2019, 23, 103779. [Google Scholar] [CrossRef] [PubMed]
- Pietras, M.; Kolanowska, M. Predicted potential occurrence of the North American false truffle Rhizopogon salebrosus in Europe. Fungal Ecol. 2019, 39, 225–230. [Google Scholar] [CrossRef]
- Kujawska, M.B.; Rudawska, M.; Stasińska, M.; Pietras, M.; Leski, T. Distribution and ecological traits of a rare and threatened fungus Hericium flagellum in Poland with the prediction of its potential occurrence in Europe. Fungal Ecol. 2021, 50, 101035. [Google Scholar] [CrossRef]
- Berthon, K.; Esperon-Rodriguez, M.; Beaumont, L.J.; Carnegie, A.J.; Leishman, M.R. Assessment and prioritisation of plant species at risk from myrtle rust (Austropuccinia psidii) under current and future climates in Australia Biological Conservation. Biol. Conserv. 2018, 218, 154–162. [Google Scholar] [CrossRef]
- Větrovský, T.; Kohout, P.; Kopecký, M.; Macháč, A.; Man, M.; Bahmann, B.D.; Brabcová, V.; Choi, J.; Meszárošová, L.; Human, Z.R.; et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019, 10, 5142. [Google Scholar] [CrossRef]
Variable | Description | Unit | Six Host Plants Percent Contribution (%) | Without Host Plant Percent Contribution (%) |
---|---|---|---|---|
hostplant | hostplant | - | 51.5 | 0 |
Bio12 | Annual precipitation | mm | 4.8 | 24.6 |
Bio17 | Precipitation in the driest quarter | mm | 5.6 | 15 |
Bio14 | Precipitation in the driest month | mm | 3 | 19.1 |
Bio10 | Mean temperature of the warmest quarter | °C | 5.7 | 4.7 |
Bio19 | Precipitation in the coldest quarter | mm | 9.7 | 8.1 |
Bio7 | Annual temperature range | °C | 3.5 | 3.7 |
Bio4 | Temperature seasonality | °C | 3.8 | 3.9 |
Bio13 | Precipitation in the wettest month | mm | 1.1 | 2.9 |
Bio15 | Precipitation seasonality | % | 1.8 | 2.5 |
Bio3 | Isothermality | % | 1.5 | 2.7 |
Bio9 | Mean temperature of the driest quarter | °C | 2.1 | 2.4 |
Bio5 | Max temperature of warmest month | °C | 1.5 | 0.6 |
Bio8 | Mean temperature of the wettest quarter | °C | 0.7 | 1.8 |
Bio2 | Mean diurnal range | °C | 1.4 | 2.1 |
Bio16 | Precipitation in the wettest quarter | mm | 0.5 | 0.5 |
Bio6 | Min temperature of the coldest month | °C | 0.2 | 4.2 |
Bio11 | Mean temperature of the coldest quarter | °C | 0.8 | 0.7 |
Bio1 | Annual mean temperature | °C | 0.4 | 0.3 |
Bio18 | Precipitation in the warmest quarter | mm | 0.4 | 0.1 |
elev | Elevation | m | 0 | 0 |
Environmental Variable | All Host Plants | No Host Plants |
---|---|---|
Bio4 | 340.929–810.569 °C | - |
Bio10 | 16.306–30.871 °C | 18.600–36.787 °C |
Bio12 | 790.275–4590.100 mm | 844.773–3840.746 mm |
Bio14 | - | 11.563–217.800 mm |
Bio17 | 42.022–295.282 mm | 44.702–375.208 mm |
Bio19 | 44.620–390.910 mm | 47.244–389.230 mm |
Model | Habitat Area (×104 km2)/Variation Compared with the Current Area (%) | Mass Center Longitude | Mass Center Latitude | Mass Center Migration Distance (km) | |||
---|---|---|---|---|---|---|---|
Unsuitable | Marginally Suitable | Suitable | Highly Suitable | ||||
without host plants | 734.182 | 93.368 | 51.315 | 80.155 | 110.438 | 27.559 | - |
with host plants | 703.375/−4.196% | 111.767/19.705% | 55.386/7.933% | 88.493/10.403% | 109.936 | 28.482 | 106.224 |
ssp1-2.6 2030s | 736.101/0.261% | 130.356/39.615% | 41.922/−18.305% | 51.253/−36.057% | 105.162 | 28.908 | 584.085 |
ssp1-2.6 2050s | 816.304/11.185% | 69.285/−25.794% | 34.717/−32.345% | 39.326/−50.937% | 105.126 | 28.147 | 591.631 |
ssp1-2.6 2070s | 561.745/−23.487% | 256.917/175.165% | 77.773/51.560% | 63.198/−21.155% | 104.739 | 29.677 | 654.677 |
ssp1-2.6 2090s | 590.161/−19.617% | 258.401/176.754% | 57.925/12.882% | 53.144/−33.698% | 105.450 | 29.269 | 604.258 |
ssp2-4.5 2030s | 536.941/−26.865% | 299.597/220.876% | 60.002/16.929% | 63.092/−21.287% | 105.246 | 29.024 | 634.026 |
ssp2-4.5 2050s | 772.865/5.269% | 114.245/22.359% | 41.073/−19.959% | 31.450/−60.764% | 105.530 | 28.595 | 528.733 |
ssp2-4.5 2070s | 830.630/13.137% | 70.759/−24.216% | 35.490/−30.840% | 22.753/−71.613% | 107.068 | 27.318 | 239.533 |
ssp2-4.5 2090s | 700.193/−4.630% | 170.736/82.863% | 55.828/8.795% | 32.875/−58.986% | 104.140 | 29.916 | 730.958 |
ssp3-7.5 2030s | 649.719/−11.504% | 166.498/78.324% | 82.109/60.011% | 61.306/−23.516% | 105.521 | 28.716 | 580.412 |
ssp3-7.5 2050s | 815.912/11.132% | 99.813/6.902% | 36.311/−29.239% | 7.597/−90.522% | 105.867 | 29.228 | 542.587 |
ssp3-7.5 2070s | 741.993/1.064% | 121.247/29.858% | 40.542/−20.994% | 55.851/−30.322% | 108.000 | 27.861 | 266.533 |
ssp3-7.5 2090s | 843.566/14.899% | 76.783/−17.763% | 29.139/−43.215% | 10.144/−87.344% | 104.430 | 27.834 | 320.134 |
ssp5-8.5 2030s | 518.653/−29.356% | 282.844/202.933% | 82.979/61.706% | 75.156/−6.236% | 105.647 | 28.932 | 578.737 |
ssp5-8.5 2050s | 696.969/−5.069% | 164.559/76.247% | 72.667/41.609% | 25.438/−68.265% | 107.225 | 28.550 | 248.502 |
ssp5-8.5 2070s | 655.629/−10.700% | 160.722/72.138% | 78.160/52.314% | 65.122/−18.755% | 106.410 | 28.435 | 430.323 |
ssp5-8.5 2090s | 745.882/1.594% | 135.865/45.515% | 66.483/29.558% | 11.403/−85.774% | 103.404 | 29.655 | 787.553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.-J.; Yang, R.-H.; Guo, T.; Wu, S.-J.; Li, Y.; Bao, D.-P. A Model of the Current Geographic Distribution and Predictions of Future Range Shifts of Lentinula edodes in China Under Multiple Climate Change Scenarios. J. Fungi 2025, 11, 730. https://doi.org/10.3390/jof11100730
Li W-J, Yang R-H, Guo T, Wu S-J, Li Y, Bao D-P. A Model of the Current Geographic Distribution and Predictions of Future Range Shifts of Lentinula edodes in China Under Multiple Climate Change Scenarios. Journal of Fungi. 2025; 11(10):730. https://doi.org/10.3390/jof11100730
Chicago/Turabian StyleLi, Wei-Jun, Rui-Heng Yang, Ting Guo, Sheng-Jin Wu, Yu Li, and Da-Peng Bao. 2025. "A Model of the Current Geographic Distribution and Predictions of Future Range Shifts of Lentinula edodes in China Under Multiple Climate Change Scenarios" Journal of Fungi 11, no. 10: 730. https://doi.org/10.3390/jof11100730
APA StyleLi, W.-J., Yang, R.-H., Guo, T., Wu, S.-J., Li, Y., & Bao, D.-P. (2025). A Model of the Current Geographic Distribution and Predictions of Future Range Shifts of Lentinula edodes in China Under Multiple Climate Change Scenarios. Journal of Fungi, 11(10), 730. https://doi.org/10.3390/jof11100730