Genome Analysis of Alternaria alstroemeriae L6 Associated with Black Spot of Strawberry: Secondary Metabolite Biosynthesis and Virulence
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain Isolation and Cultivation
2.2. Phylogenetic Analysis
2.3. Genome Sequencing and Assembly Methodology
2.4. Gene Prediction and Annotation
2.5. Prediction of Carbohydrate-Active enZymes (CAZymes)
2.6. Analysis of Secondary Metabolite Biosynthetic Gene Clusters
2.7. Secreted Protein Annotation and Prediction
2.8. Prediction of Proteins with a RxLx [EDQ]
3. Results
3.1. Morphology and Pathogen Verification of Strain L6
3.2. Phylogenetic Analysis of Strain L6
3.3. Results of Genome Sequencing and Assembly
3.4. Genome Annotation
3.5. CAZyme Analysis
3.6. Analysis of Secondary Metabolite Biosynthetic Potential
3.7. Metabolism of Terpenoids and Polyketides in L6
3.8. Prediction of Secreted Proteins and RxLx [EDQ] Effector Candidates
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.F.; Jiang, H.B.; Jeewon, R.; Hongsanan, S.; Bhat, S.M.; Tang, S.; Lumyong, P.E.; Mortimer, J.C.; Xu, E.; Camporesi, T.S.; et al. Alternaria: Update on species limits, evolution, multi-locus phylogeny, and classification. Stud. Fungi 2023, 8, 1. [Google Scholar] [CrossRef]
- Demers, M. Alternaria alternata as endophyte and pathogen. Microbiology 2022, 168, 001153. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gan, Y.; Xu, W.; Huang, Y.; Xin, T.; Tan, R.; Song, J. Analysis of whole-genome for Alternaria species identification. J. Fungi 2025, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhang, X.F.; Liu, S.H.; Hu, K.L.; Wu, X.H. Characterization of Alternaria species associated with black spot of strawberry in Beijing municipality of China. Can. J. Plant. Pathol. 2020, 42, 235–242. [Google Scholar] [CrossRef]
- Kim, N.E.; Dettman, J.R. Genome mining reveals the distribution of biosynthetic gene clusters in Alternaria and related fungal taxa within the family Pleosporaceae. BMC Genom. 2025, 26, 678. [Google Scholar] [CrossRef]
- Saxena, S. Biologically Active Secondary Metabolites from Endophytic Alternaria Species. In Endophytes: Potential Source of Compounds of Commercial and Therapeutic Applications; Patil, R.H., Maheshwari, V.L., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Liu, J.; Xiao, S.; Yang, S.; Mei, J.; Ren, M.; Wu, S.; Zhang, H.; Yang, X. Secondary metabolites of Alternaria: A comprehensive review of chemical diversity and pharmacological properties. Front. Microbiol. 2022, 13, 1085666. [Google Scholar] [CrossRef]
- Nivina, A.; Yuet, K.P.; Hsu, J.; Khosla, C. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 2019, 119, 12524–12547. [Google Scholar] [CrossRef]
- Singh, M.; Chaudhary, S.; Sareen, D. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product. J. Biosci. 2017, 42, 175–187. [Google Scholar] [CrossRef]
- Korres, N.E.; Burgos, N.R.; Duke, S.O. (Eds.) Weed Control: Sustainability, Hazards, and Risks in Cropping Systems Worldwide, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Dall’asta, C.; Cirlini, M.; Falavigna. Chapter Three—Mycotoxins from Alternaria: Toxicological Implications. In Advances in Molecular Toxicology; Fishbein, J.C., Heilman, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 107–121. [Google Scholar]
- Lou, J.; Fu, L.; Peng, Y.; Zhou, L. Metabolites from Alternaria fungi and their bioactivities. Molecules 2013, 18, 5891–5935. [Google Scholar] [CrossRef]
- Takaoka, S.; Kurata, M.; Harimoto, Y.; Hatta, R.; Yamamoto, M.; Akimitsu, K.; Tsuge, T. Complex regulation of secondary metabolism controlling pathogenicity in the phytopathogenic fungus Alternaria alternata. New Phytol. 2014, 202, 1297–1309. [Google Scholar] [CrossRef]
- Howlett, B.J. Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr. Opin. Plant Biol. 2006, 9, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Tsuge, T.; Harimoto, Y.; Akimitsu, K.; Ohtani, K.; Kodama, M.; Akagi, Y.; Egusa, M.; Yamamoto, M.; Otani, H. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol. Rev. 2013, 37, 44–66. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Ng, P.C.; Kirkness, E.F. Whole genome sequencing. Methods Mol. Bio 2010, 628, 215–226. [Google Scholar] [CrossRef]
- Waterhouse, R.M.; Seppey, M.; Simão, F.A.; Manni, M.; Ioannidis, P.; Klioutchnikov, G.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol. Evol. 2018, 35, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Majoros, W.H.; Pertea, M.; Salzberg, S.L. TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. Bioinformatics 2004, 20, 2878–2879. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Morgenstern, B. AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005, 33, W465–W467. [Google Scholar] [CrossRef]
- Korf, I. Gene finding in novel genomes. BMC Bioinform. 2004, 5, 59. [Google Scholar] [CrossRef]
- Haas, B.J.; Salzberg, S.L.; Zhu, W.; Pertea, M.; Allen, J.E.; Orvis, J.; White, O.; Buell, C.R.; Wortman, J.R. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008, 9, R7. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012, 40, D302–D305. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Tang, X.; Hu, S.; Zhu, W.; Wu, X.; Sang, W.J.; Peng, L.; Ding, H. First report of grey spot on tobacco caused by Alternaria alstroemeriae in China. Plant Dis. 2023, 107, 2546. [Google Scholar] [CrossRef]
- Yamagishi, N.; Nishikawa, J.; Oshima, Y.; Eguchi, N. Black spot disease of alstroemeria caused by Alternaria alstroemeriae in Japan. J. Gen. Plant Pathol. 2009, 75, 401–403. [Google Scholar] [CrossRef]
- Tao, J.; Bai, X.; Zeng, M.; Li, M.; Hu, Z.; Hua, Y.; Zhang, H. Whole-Genome Sequence Analysis of an Endophytic Fungus Alternaria sp. SPS-2 and Its Biosynthetic Potential of Bioactive Secondary Metabolites. Microorganisms 2022, 10, 1789. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, H.; Wang, C.; Xu, J.R. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom. 2013, 14, 274. [Google Scholar] [CrossRef]
- Wenderoth, M.; Garganese, F.; Schmidt-Heydt, M.; Soukup, S.T.; Ippolito, A.; Sanzani, S.M.; Fischer, R. Alternariol as virulence and colonization factor of Alternaria alternata during plant infection. Mol. Microbiol. 2019, 112, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Martorell, M.; González-Contreras, C.; Villagran, M.; Mardones, L.; Tynybekov, B.; Docea, A.O.; Abdull Razis, A.F.; Modu, B.; Calina, D.; et al. An updated overview of anticancer effects of alternariol and its derivatives: Underlying molecular mechanisms. Front. Pharmacol. 2023, 14, 1099380. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hu, J.; Wei, H.; Solomon, P.S.; Vuong, D.; Lacey, E.; Stubbs, K.A.; Piggott, A.M.; Chooi, Y.H. Chemical Ecogenomics-Guided Discovery of Phytotoxic α-Pyrones from the Fungal Wheat Pathogen Parastagonospora nodorum. Org. Lett. 2018, 20, 6148–6152. [Google Scholar] [CrossRef]
- Hai, Y.; Huang, A.M.; Tang, Y. Structure-guided function discovery of an NRPS-like glycine betaine reductase for choline biosynthesis in fungi. Proc. Natl. Acad. Sci. USA 2019, 116, 10348–10353. [Google Scholar] [CrossRef] [PubMed]
- Kenny, T.C.; Scharenberg, S.; Abu-Remaileh, M.; Birsoy, K. Cellular and organismal function of choline metabolism. Nat. Metab. 2025, 7, 35–52. [Google Scholar] [CrossRef]
- Markham, P.; Robson, G.D.; Bainbridge, B.W.; Trinci, A.P. Choline: Its role in the growth of filamentous fungi and the regulation of mycelial morphology. FEMS Microbiol. Rev. 1993, 10, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Nian, Y.; Lin, H.; Li, J.; Lin, X.; Li, T.; Wang, R.; Wang, L.; Beattie, G.A.; Zhang, J.; et al. Structure and mechanism of the osmoregulated choline transporter BetT. Sci. Adv. 2024, 10, eado6229. [Google Scholar] [CrossRef] [PubMed]
- Lingham, R.B.; Silverman, K.C.; Jayasuriya, H.; Kim, B.M.; Amo, S.E.; Wilson, F.R.; Rew, D.J.; Schaber, M.D.; Bergstrom, J.D.; Koblan, K.S.; et al. Clavaric acid and steroidal analogues as Ras- and FPP-directed inhibitors of human farnesyl-protein transferase. J. Med. Chem. 1998, 41, 4492–4501. [Google Scholar] [CrossRef]
- Godio, R.P.; Fouces, R.; Martín, J.F. A squalene epoxidase is involved in biosynthesis of both the antitumor compound clavaric acid and sterols in the basidiomycete H. sublateritium. Chem. Biol. 2007, 14, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Shim, J.S.; Lee, J.; Song, Y.M.; Park, K.C.; Choi, S.H.; Kim, N.D.; Yoon, J.H.; Mungai, P.T.; Schumacker, P.T.; et al. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. J. Biol. Chem. 2010, 285, 11584–11595. [Google Scholar] [CrossRef]
- Ćeranić, A.; Svoboda, T.; Berthiller, F.; Sulyok, M.; Samson, J.M.; Güldener, U.; Schuhmacher, R.; Adam, G. Identification and Functional Characterization of the Gene Cluster Responsible for Fusaproliferin Biosynthesis in Fusarium proliferatum. Toxins 2021, 13, 468. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Zhong, B.; Lu, J.; Lu, J.J.; Li, S.; Lu, Y. Pharmacological activities of dihydrotanshinone I, a natural product from Salvia miltiorrhiza Bunge. Pharmacol. Res. 2019, 145, 104254. [Google Scholar] [CrossRef]
- Manulis, S.; Kashman, Y.; Netzert, D.; Barash, I. Phytotoxins from Stemphylium botryosum: Structural determination of stemphyloxin II, production in culture, and interaction with iron. Phytochemistry 1984, 23, 2193–2198. [Google Scholar] [CrossRef]
- Oikawa, H.; Ichihara, A.; Sakamura, S. Simple, efficient method for studying biosynthetic oxidation using P-450 inhibitors: Late oxidative modification in betaenone B biosynthesis. J. Chem. Soc. Chem. Commun. 1990, 13, 908–909. [Google Scholar] [CrossRef]
- Lippincott-Schwartz, J.; Roberts, T.H.; Hirschberg, K. Secretory protein trafficking and organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 2000, 16, 557–589. [Google Scholar] [CrossRef]
- Abbas, K.A.; Lichtman, H.A.; Pillai, S. Cellular and Molecular Immunilogy; Saunders: Philadelphia, PA, USA, 2006; p. 6. [Google Scholar]
- Cho, W.J.; Jeremic, A.; Rognlien, K.T.; Zhvania, M.G.; Lazrishvili, I.; Tamar, B.; Jena, B.P. Structure, isolation, composition and reconstitution of the neuronal fusion pore. Cell Biol. Int. 2004, 28, 699–708. [Google Scholar] [CrossRef]
- Cho, S.J.; Jeftinija, K.; Glavaski, A.; Jeftinija, S.; Jena, B.P.; Anderson, L.L. Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology 2002, 143, 1144–1148. [Google Scholar] [CrossRef]
- Suárez, M.B.; Sanz, L.; Chamorro, M.I.; Rey, M.; González, F.J.; Llobell, A.; Monte, E. Proteomic analysis of secreted proteins from Trichoderma harzianum. Identification of a fungal cell wall-induced aspartic protease. Fungal Genet. Biol. 2005, 42, 924–934. [Google Scholar] [CrossRef]
- Vanden Wymelenberg, A.; Minges, P.; Sabat, G.; Martinez, D.; Aerts, A.; Salamov, A.; Grigoriev, I.; Shapiro, H.; Putnam, N.; Belinky, P.; et al. Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet. Biol. 2006, 43, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Vinzant, T.B.; Adney, W.S.; Decker, S.R.; Baker, J.O.; Kinter, M.T.; Sherman, N.E.; Fox, J.W.; Himmel, M.E. Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation. Appl. Biochem. Biotechnol. 2001, 91–93, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Lesage, G.; Bussey, H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2006, 70, 317–343. [Google Scholar] [CrossRef]
- Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef]
- Cornelis, G.R.; Van Gijsegem, F. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 2000, 54, 735–774. [Google Scholar] [CrossRef]
- Kamoun, S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 2006, 44, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Hiller, N.L.; Bhattacharjee, S.; van Ooij, C.; Liolios, K.; Harrison, T.; Lopez-Estraño, C.; Haldar, K. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 2004, 306, 1934–1937. [Google Scholar] [CrossRef] [PubMed]
- Marti, M.; Good, R.T.; Rug, M.; Knuepfer, E.; Cowman, A.F. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 2004, 306, 1930–1933. [Google Scholar] [CrossRef]
- Zhang, D.; He, J.Y.; Haddadi, P.; Zhu, J.H.; Yang, Z.H.; Ma, L. Genome sequence of the potato pathogenic fungus Alternaria solani HWC-168 reveals clues for its conidiation and virulence. BMC Microbiol. 2018, 18, 176. [Google Scholar] [CrossRef]
- Khan, M.F.R.; Haque, M.E.; Bloomquist, M.; Bhuiyan, M.Z.R.; Brueggeman, R.; Zhong, S.; Poudel, R.S.; Gross, T.; Hakk, P.; Leng, Y.; et al. First report of Alternaria leaf spot caused by Alternaria tenuissima on sugar beet (Beta vulgaris) in Minnesota, USA. Plant Dis. 2019, 104, 580. [Google Scholar] [CrossRef]
- Al-Lami, H.F.D.; You, M.P.; Barbetti, J. Incidence, pathogenicity, and diversity of Alternaria spp. associated with alternaria leaf spot of canola (Brassica napus) in Australia. Plant Pathol. 2019, 68, 492–503. [Google Scholar] [CrossRef]
- Toome-Heller, M.; Jeyaseelan, B.; Graham, B.; Alexander, B. First report of apple leaf blotch caused by Alternaria arborescens complex in New Zealand. N. Z. J. Crop Hortic. Sci. 2018, 46, 354–359. [Google Scholar] [CrossRef]
- Luo, M.; Jia, W.; Zeng, Y.; Guo, Q.; Liu, J.; Zhang, H.; Jiang, Y. First report of Alternaria arborescens causing white spot disease on Chinese chive in China. Crop. Prot. 2024, 177, 106554. [Google Scholar] [CrossRef]
- Lang, P.A.; de Munnik, M.; Oluwole, A.O.; Claridge, T.D.W.; Robinson, C.V.; Brem, J.; Schofield, C.J. How clavulanic acid inhibits serine β-lactamases. Chembiochem 2024, 25, e202400280. [Google Scholar] [CrossRef] [PubMed]
- Oka, K.; Akamatsu, H.; Kodama, M.; Nakajima, H.; Otani, H. Host-specific ab-toxin production by germinating spores of alternaria brassicicola is induced by a host-derived oligosaccharide. Physiol. Mol. Plant Pathol. 2005, 66, 12–19. [Google Scholar] [CrossRef]
- Ul Haq, I.; Ijaz, S.; Faraz, A.; Sarwar, M.K.; Latif, M.Z.; Khan, N.A. First report of leaf spots in Caryota mitis L. caused by Alternaria alstroemeriae in Pakistan. J. Plant Pathol. 2020, 102, 585. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Total length | 38,715,194 |
Max length | 5,489,576 |
GC content | 50.84% |
N50 | 1,029,672 |
Counts of scaffold number | 2165 |
Total genes length | 18,851,088 |
Total genes number | 12,781 |
Total CDSs length (bp) | 17,294,764 |
CDSs percentage of genome | 44.00% |
Total length | 38,715,194 |
Max length | 5,489,576 |
GC content | 50.84% |
N50 | 1,029,672 |
Sequencing depth | 161x |
Type | Number | In Genome (%) |
---|---|---|
tRNA | 222 | 0.05 |
mRNA | 12,559 | 48.64 |
rRNA | 47 | 0.02 |
LTR Gypsy | 53 | 0.20 |
LTR Unknown | 45 | 0.12 |
Transposable Element | 161 | 0.58 |
Term | ID | Gene Number |
---|---|---|
Terpenoid backbone biosynthesis | ko00900 | 31 |
Limonene and pinene degradation | ko00903 | 9 |
Nonribosomal peptide structures | ko01054 | 8 |
Carotenoid biosynthesis | ko00906 | 6 |
Geraniol degradation | ko00281 | 6 |
Name | Size (aa) | Start of Sequence | Annotation |
---|---|---|---|
FUN_005814 | 209 | MRFCSLPTAILALASLVESAALQPRDLLQDLQDQALAALKE | Di-copper centre-containing protein |
FUN_010491 | 233 | MSAIFASLVVVLVAVILSKKNRGSFLDDTSEHIERMD | hypothetical protein |
FUN_004418 | 271 | MFASIAILQVLCAAVASAQLTSKLTEIIPWASLGDEYGFI | hypothetical protein |
FUN_001157 | 292 | MHFSTSVLGSIVAFCATANAALTRVNDFGANPSNLQMNIYV | carbohydrate esterase family 1 protein |
FUN_005760 | 300 | MRFLTAVTSFLSVAAAATLGKRAVTPGTLSQVTSFGAAPTK | uncharacterized protein J4E82_008103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, B.; Shao, L.; Yang, M.; Zhao, X.; Wang, Z.; Zhang, Y.; Li, Y.; Wang, Y.; Hu, Y.; et al. Genome Analysis of Alternaria alstroemeriae L6 Associated with Black Spot of Strawberry: Secondary Metabolite Biosynthesis and Virulence. J. Fungi 2025, 11, 710. https://doi.org/10.3390/jof11100710
Zhang L, Zhang B, Shao L, Yang M, Zhao X, Wang Z, Zhang Y, Li Y, Wang Y, Hu Y, et al. Genome Analysis of Alternaria alstroemeriae L6 Associated with Black Spot of Strawberry: Secondary Metabolite Biosynthesis and Virulence. Journal of Fungi. 2025; 11(10):710. https://doi.org/10.3390/jof11100710
Chicago/Turabian StyleZhang, Li, Boyuan Zhang, Lizhu Shao, Miaomiao Yang, Xueling Zhao, Ziyu Wang, Yingjun Zhang, Yuting Li, Yating Wang, Yuansen Hu, and et al. 2025. "Genome Analysis of Alternaria alstroemeriae L6 Associated with Black Spot of Strawberry: Secondary Metabolite Biosynthesis and Virulence" Journal of Fungi 11, no. 10: 710. https://doi.org/10.3390/jof11100710
APA StyleZhang, L., Zhang, B., Shao, L., Yang, M., Zhao, X., Wang, Z., Zhang, Y., Li, Y., Wang, Y., Hu, Y., & Li, P. (2025). Genome Analysis of Alternaria alstroemeriae L6 Associated with Black Spot of Strawberry: Secondary Metabolite Biosynthesis and Virulence. Journal of Fungi, 11(10), 710. https://doi.org/10.3390/jof11100710