Some Like It Rock ‘N’ Cold: Speleomycology of Ravništarka Cave (Serbia)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Ecological Parameters Measurement and Organic Matter Analysis
2.3. Sampling of Rock Surface Associated Mycobiota
2.4. Fungal Isolation
2.5. Fungal Identification
2.6. Phylogenetic Analysis
2.7. Ecological Function Assessment of Fungal Isolates
2.8. Multivariate Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poulson, T.L.; White, W.B. The cave environment. Science 1969, 165, 971–981. [Google Scholar] [CrossRef]
- Raji, R.O.; Oyewole, O.A.; Ibrahim, O.H.; Tijani, Y.N.; Gana, M. Microbial communities and activities in caves. Braz. J. Biol. Sci. 2019, 6, 557–564. [Google Scholar] [CrossRef]
- Vanderwolf, K.J.; Malloch, D.; McAlpine, D.F.F.; Forbes, G.J. A world review of fungi, yeasts, and slime molds in caves. Int. J. Speleol. 2013, 42, 77–96. [Google Scholar] [CrossRef]
- Savković, Ž.; Popović, S.; Stupar, M. Unveiling the Subterranean Symphony: A Comprehensive Study of Cave Fungi Revealed Through National Center for Biotechnology Sequences. J. Fungi 2025, 11, 286. [Google Scholar] [CrossRef]
- Pusz, W.; Ogórek, R.; Uklańska-Pusz, C.; Zagożdżon, P. Speleomycological research in underground Osówka complex in Sowie Mountains (Lower Silesia, Poland). Int. J. Speleol. 2014, 43, 27–34. [Google Scholar] [CrossRef]
- Popović, S.; Subakov Simić, G.; Stupar, M.; Unković, N.; Krunić, O.; Savić, N.; Grbić, M. Cave biofilms: Characterization of phototrophic cyanobacteria and algae and chemotrophic fungi from three caves in Serbia. J. Cave Karst Stud. 2017, 79, 10–23. [Google Scholar] [CrossRef]
- Ogórek, R.; Dyląg, M.; Višňovská, Z.; Tančinová, D.; Zalewski, D. Speleomycology of air and rock surfaces in Driny Cave (Lesser Carpathians, Slovakia). J. Cave Karst Stud. 2016, 78, 119–127. [Google Scholar] [CrossRef]
- Barbosa, R.N.; Felipe, M.T.C.; Silva, L.F.; Silva, E.A.; Silva, S.A.; Herculano, P.N.; Prazeres, J.F.S.A.; Lima, J.M.S.; Bezerra, J.D.P.; Moreira, K.A.; et al. A review of the biotechnological potential of cave fungi: A toolbox for the future. J. Fungi 2025, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Gadd, G.M. Geomycology: Fungi as agents of biogeochemical change. Biol. Environ. 2018, 113B, 139–153. [Google Scholar] [CrossRef]
- Ogórek, R.; Spychała, K.; Cal, M.; Lejman, A.; Suchodolski, J. Speleomycological and chemical assessment of sediments in Demänovská Slobody Cave (Slovakia). Int. Biodeterior. Biodegrad. 2024, 192, 105828. [Google Scholar] [CrossRef]
- Hassan, N.; Rafiq, M.; Hayat, M.; Shah, A.A.; Hasan, F. Psychrophilic and psychrotrophic fungi: A comprehensive review. Rev. Environ. Sci. Biotechnol. 2016, 15, 147–172. [Google Scholar] [CrossRef]
- Ingram, M. Psychrophilic and psychrotrophic microorganisms. Ann. Inst. Pasteur Paris 1965, 16, 111–118. [Google Scholar]
- Margesin, R.; Miteva, V. Diversity and ecology of psychrophilic microorganisms. Res. Microbiol. 2011, 162, 346–361. [Google Scholar] [CrossRef]
- Zalar, P.; Gunde-Cimerman, N. Cold-adapted yeasts in Arctic habitats. In Cold-adapted Yeasts: Biodiversity, Adaptation Strategies and Biotechnological Significance; Buzzini, P., Margesin, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 49–74. [Google Scholar] [CrossRef]
- Turchetti, B.; Buzzini, P.; Goretti, M.; Branda, E.; Diolaiuti, G.; D’Agata, C.; Smiraglia, C.; Vaughan-Martini, A. Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol. Ecol. 2008, 63, 73–83. [Google Scholar] [CrossRef]
- Dix, N.J.; Webster, J. Fungi of extreme environments. In Fungal Ecology; Springer: Dordrecht, The Netherlands, 1995; pp. 322–340. [Google Scholar] [CrossRef]
- Russell, N.J. Cold adaptation of microorganisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1990, 326, 595–611. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.J. Antarctic microorganisms: Coming in from the cold. Art Newsp. 2006, 8, 247–248. [Google Scholar]
- Wang, M.; Tian, J.; Xiang, M.; Liu, X. Living strategy of cold-adapted fungi with the reference to several representative species. Mycology 2017, 8, 178–188. [Google Scholar] [CrossRef]
- Ogórek, R.; Speruda, M.; Borzęcka, J.; Piecuch, A.; Cal, M. First speleomycological study on the occurrence of psychrophilic and psychrotolerant aeromycota in the Brestovská Cave (Western Tatras Mts., Slovakia) and first reports for some species at underground sites. Biology 2021, 10, 497. [Google Scholar] [CrossRef]
- Popović, S.; Pećić, M.; Stupar, M.; Savković, Ž.; Ljaljević Grbić, M.; Unković, N.; Jakovljević, O. Life Under Artificial Light in a Unique Habitat: Exploring Lampenflora in Ravništarka Cave, Serbia. Geomicrobiol. J. 2025, 1, 782–794. [Google Scholar] [CrossRef]
- Watanabe, T. Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species, 3rd ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2010. [Google Scholar]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi, 2nd ed.; Westerdijk Fungal Biodiversity Institute: Utrecht, The Netherlands, 2019. [Google Scholar]
- Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef]
- Varga, J.; Frisvad, J.C.; Kocsubé, S.; Brankovics, B.; Tóth, B.; Szigeti, G.; Samson, R.A. New and revisited species in Aspergillus section Nigri. Stud. Mycol. 2011, 69, 1–17. [Google Scholar] [CrossRef]
- Bensch, K.; Braun, U.; Groenewald, J.Z.; Crous, P.W. The genus Cladosporium. Stud. Mycol. 2012, 72, 1–401. [Google Scholar] [CrossRef]
- Shao, D.; Xu, Y.; Zhang, C.; Lai, Z.; Song, L.; Su, J.; Yang, R.; Jing, X.; Felix, A.; Abubakar, Y.S.; et al. Identification and Biological Characteristics of Mortierella alpina Associated with Chinese Flowering Cherry (Cerasus serrulata) Leaf Blight in China. J. Fungi 2024, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.B.; Nováková, A.; Chen, A.J.; Arzanlou, M.; Larsen, T.O.; Sklenář, F.; Mahakarnchanakul, W.; et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019, 93, 1–63. [Google Scholar] [CrossRef]
- Savković, Ž.; Stupar, M.; Unković, N.; Ivanović, Ž.; Blagojević, J.; Vukojević, J.; Ljaljević Grbić, M. In vitro biodegradation potential of airborne Aspergilli and Penicillia. Sci. Nat. 2019, 106, 8. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Wani, Z.A.; Kumar, A.; Sultan, P.; Bindu, K.; Riyaz-Ul-Hassan, S.; Ashraf, N. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant. Sci. Rep. 2017, 7, 8598. [Google Scholar] [CrossRef] [PubMed]
- Ozimek, E.; Hanaka, A. Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture 2020, 11, 7. [Google Scholar] [CrossRef]
- Kim, W.K.; Sang, H.K.; Woo, S.K.; Park, M.S.; Paul, N.C.; Yu, S.H. Six species of Penicillium associated with blue mold of grape. Mycobiology 2007, 35, 180–185. [Google Scholar] [CrossRef]
- Houbraken, J.; Wang, L.; Lee, H.B.; Frisvad, J.C. New sections in Penicillium containing novel species producing patulin, pyripyropens or other bioactive compounds. Persoonia 2016, 36, 299–314. [Google Scholar] [CrossRef]
- Xiao, R.F.; Chen, Y.P.; Chen, M.C.; Liu, X.; Wang, J.P.; Liu, B. First report of green mold disease caused by Penicillium ochrochloron on medicinal plant Pseudostellaria heterophylla in China. Plant Dis. 2022, 107, 1946. [Google Scholar] [CrossRef]
- Houbraken, J.A.M.P.; Frisvad, J.C.; Samson, R.A. Taxonomy of Penicillium section Citrina. Stud. Mycol. 2011, 70, 53–138. [Google Scholar] [CrossRef]
- Guevara-Suarez, M.; García, D.; Cano-Lira, J.F.; Guarro, J.; Gené, J. Species diversity in Penicillium and Talaromyces from herbivore dung, and the proposal of two new genera of Penicillium-like fungi in Aspergillaceae. Fungal Syst. Evol. 2020, 5, 39–76. [Google Scholar] [CrossRef]
- García-Cela, E.; Crespo-Sempere, A.; Ramos, A.J.; Sanchis, V.; Marin, S. Ecophysiological characterization of Aspergillus carbonarius, Aspergillus tubingensis, and Aspergillus niger isolated from grapes in Spanish vineyards. Int. J. Food Microbiol. 2014, 173, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Lucev, M.; Stepanović, J.; Nikolić, A.; Camdzija, Z.; Obradović, A.; Stanković, G.; Stanković, S. First report of Aspergillus tubingensis causing maize ear rot in Serbia. Plant Dis. 2025, 109, 1791. [Google Scholar] [CrossRef]
- ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012; p. 496. [Google Scholar]
- Bontemps, Z.; Alonso, L.; Pommier, T.; Hugoni, M.; Moënne-Loccoz, Y. Microbial ecology of tourist Paleolithic caves. Sci. Total Environ. 2022, 816, 151492. [Google Scholar] [CrossRef]
- Murgia, M.; Fiamma, M.; Barac, A.; Deligios, M.; Mazzarello, V.; Paglietti, B.; Cappuccinelli, B.; Al-Qahtani, A.; Squartini, A.; Rubino, S.; et al. Biodiversity of fungi in hot desert sands. MicrobiologyOpen 2019, 8, e00595. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Song, Q.; Jiang, Q.; Li, Z. The horizontal and vertical distribution of deep-sea sediments fungal community in the South China Sea. Front. Mar. Sci. 2021, 8, 592784. [Google Scholar] [CrossRef]
- Durán, P.; Barra, P.J.; Jorquera, M.A.; Viscardi, S.; Fernandez, C.; Paz, C.; de la Luz Mora, M.; Bol, R. Occurrence of soil fungi in Antarctic pristine environments. Front. Bioeng. Biotechnol. 2019, 7, 28. [Google Scholar] [CrossRef]
- Stoppiello, G.A.; Muggia, L.; De Carolis, R.; Coleine, C.; Selbmann, L. Ecological niche drives fungal and bacterial diversity in endolithic and epilithic communities inhabiting granites in Victoria Land, Antarctica. Polar Biol. 2025, 48, 16. [Google Scholar] [CrossRef]
- Villa, F.; Cappitelli, F. The ecology of subaerial biofilms in dry and inhospitable terrestrial environments. Microorganisms 2019, 7, 380. [Google Scholar] [CrossRef] [PubMed]
- Raudabaugh, D.B.; Rivera, N.A.; Anchor, G.C.; Bach, E.; Miller, A.N.; Mateus-Pinilla, N.E. Preliminary study of cave sample storage conditions on fungal community diversity. Diversity 2021, 13, 188. [Google Scholar] [CrossRef]
- Kujović, A.; Gostinčar, C.; Kavkler, K.; Govedić, N.; Gunde-Cimerman, N.; Zalar, P. Degradation potential of xerophilic and xerotolerant fungi contaminating historic canvas paintings. J. Fungi 2024, 10, 76. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi as geologic agents. Geomicrobiol. J. 2000, 17, 97–124. [Google Scholar] [CrossRef]
- Burford, E.P.; Kierans, M.; Gadd, G.M. Geomycology: Fungi in mineral substrata. Mycologist 2003, 17, 98–107. [Google Scholar] [CrossRef]
- Pusz, W.; Ogórek, R.; Knapik, R.; Kozak, B.; Bujak, H. The occurrence of fungi in the recently discovered Jarkowicka Cave in the Karkonosze Mts. (Poland). Geomicrobiol. J. 2015, 32, 59–67. [Google Scholar] [CrossRef]
- Chen, Z.; Ao, J.; Yang, W.; Jiao, L.; Zheng, T.; Chen, X. Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment. Appl. Microbiol. Biotechnol. 2013, 97, 10381–10390. [Google Scholar] [CrossRef]
- Roshka, Y.A.; Markelova, N.N.; Mashkova, S.D.; Malysheva, K.V.; Georgieva, M.L.; Levshin, I.B.; Sadykova, V.S. Antimicrobial potential of secalonic acids from Arctic-derived Penicillium chrysogenum INA 01369. Antibiotics 2025, 14, 88. [Google Scholar] [CrossRef]
- Glodowsky, A.P.; Ruberto, L.A.; Martorell, M.M.; Mac Cormack, W.P.; Levin, G.J. Cold active transglutaminase from Antarctic Penicillium chrysogenum: Partial purification, characterization and potential application in food technology. Biocatal. Agric. Biotechnol. 2020, 29, 101807. [Google Scholar] [CrossRef]
- Kozlovskii, A.G.; Antipova, T.V.; Zhelifonova, V.P.; Baskunov, B.P.; Kochkina, G.A.; Ozerskaya, S.M. Exometabolites of the fungal isolates (Genus Penicillium, Section Chrysogena) from low-temperature ecotopes. Microbiology 2016, 85, 157–164. [Google Scholar] [CrossRef]
- Ogórek, R.; Dyląg, M.; Kozak, B. Dark stains on rock surfaces in Driny Cave (Little Carpathian Mountains, Slovakia). Extremophiles 2016, 20, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Mitova, M.M.; Iliev, M.; Nováková, A.; Gorbushina, A.A.; Groudeva, V.I.; Martin-Sanchez, P.M. Diversity and biocide susceptibility of fungal assemblages dwelling in the Art Gallery of Magura Cave, Bulgaria. Int. J. Speleol. 2017, 46, 8. [Google Scholar] [CrossRef]
- Vanderwolf, K.J.; McAlpine, D.F.; Malloch, D.; Forbes, G.J. Ectomycota associated with hibernating bats in eastern Canadian caves prior to the emergence of white-nose syndrome. Northeast. Nat. 2013, 20, 115–130. [Google Scholar] [CrossRef]
- Poli, A.; Zanellati, A.; Piano, E.; Biagioli, F.; Coleine, C.; Nicolosi, G.; Varese, G.C. Cultivable fungal diversity in two karstic caves in Italy: Under-investigated habitats as source of putative novel taxa. Sci. Rep. 2024, 14, 4164. [Google Scholar] [CrossRef]
- Maggi, O.; Tosi, S.; Angelova, M.; Lagostina, E.; Fabbri, A.A.; Pecoraro, L.; Altobelli, E.; Picco, A.M.; Savino, E.; Branda, E.; et al. Adaptation of fungi, including yeasts, to cold environments. Plant Biosyst. 2013, 147, 247–258. [Google Scholar] [CrossRef]
- Man, B.; Wang, H.; Xiang, X.; Wang, R.; Yun, Y.; Gong, L. Phylogenetic diversity of culturable fungi in the Heshang Cave, Central China. Front. Microbiol. 2015, 6, 1158. [Google Scholar] [CrossRef]
- Dyląg, M.; Sawicki, A.; Ogórek, R. Diversity of species and susceptibility phenotypes toward commercially available fungicides of cultivable fungi colonizing bones of Ursus spelaeus on display in Niedźwiedzia Cave (Kletno, Poland). Diversity 2019, 11, 224. [Google Scholar] [CrossRef]
- Jurado, V.; Porca, E.; Cuezva, S.; Fernandez-Cortes, A.; Sánchez-Moral, S.; Sáiz-Jiménez, C. Fungal outbreak in a show cave. Sci. Total Environ. 2010, 408, 3632–3638. [Google Scholar] [CrossRef]
- Straatsma, G.; Samson, R.A.; Olijnsma, T.W.; Op Den Camp, H.J.; Gerrits, J.P.; van Griensven, L.J. Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl. Environ. Microbiol. 1994, 60, 454–458. [Google Scholar] [CrossRef]
- de Oliveira, M.M.E.; Lemos, A.S.; Gonçalves, M.L.C.; Almeida-Paes, R.; Valviesse, V.R.G.d.A.; Moreira, J.A.; Lima, M.A.S.d.; Carregal, E.; Gutierrez Galhardo, M.C.; Lamas, C.d.C.; et al. Fungemia associated with Schizophyllum commune in Brazil. PLoS Negl. Trop. Dis. 2017, 11, e0005549. [Google Scholar] [CrossRef]
- Won, E.J.; Shin, J.H.; Lim, S.C.; Shin, M.G.; Suh, S.P.; Ryang, D.W. Molecular identification of Schizophyllum commune as a cause of allergic fungal sinusitis. Ann. Lab. Med. 2012, 32, 375–378. [Google Scholar] [CrossRef]
- Domínguez-Moñino, I.; Jurado, V.; Rogerio-Candelera, M.Á.; Hermosín, B.; Saiz-Jiménez, C. Airborne fungi in show caves from Southern Spain. Appl. Sci. 2021, 11, 5027. [Google Scholar] [CrossRef]
- Suetrong, S.; Preedanon, S.; Kobmoo, N.; Srihom, C.; Somrithipol, S.; Saengkaewsuk, S.; Srikitikulchai, P.; Klaysuban, A.; Nuankaew, S.; Chuaseeharonnachai, C.; et al. Unravelling the hidden diversity of cave mycobiota in Thailand’s Satun Geopark. Sci. Rep. 2023, 13, 19162. [Google Scholar] [CrossRef] [PubMed]
- Stupar, M.; Savković, Ž.; Popović, S.; Subakov Simić, G.; Ljaljević Grbić, M. Speleomycology of Air in Stopića Cave (Serbia). Microb. Ecol. 2023, 86, 2021–2031. [Google Scholar] [CrossRef] [PubMed]
- Badalyan, S.M.; Khonsuntia, W.; Subba, S.; Lakkireddy, K.; Kües, U. Morphological features of dikaryons of Coprinellus species. In Proceedings of the ISMS 2021 e-Congress, Vancouver, BC, Canada, 14–17 September 2021. [Google Scholar]
- Trovão, J.; Portugal, A.; Soares, F.; Paiva, D.S.; Mesquita, N.; Coelho, C.; Pinheiro, A.C.; Catarino, L.; Gil, F.; Tiago, I. Fungal diversity and distribution across distinct biodeterioration phenomena in limestone walls of the old cathedral of Coimbra, UNESCO World Heritage Site. Int. Biodeterior. Biodegrad. 2019, 142, 91–102. [Google Scholar] [CrossRef]
- Wang, X.W.; Han, P.J.; Bai, F.Y.; Luo, A.; Bensch, K.; Meijer, M.; Kraak, B.; Han, D.Y.; Sun, B.D.; Crous, P.W.; et al. Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Stud. Mycol. 2022, 101, 121–243. [Google Scholar] [CrossRef]
- Belli, N.; Marín, S.; Sanchis, V.; Ramos, A.J. Influence of water activity and temperature on growth of isolates of Aspergillus section Nigri obtained from grapes. Int. J. Food Microbiol. 2004, 96, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Jurado, V.; Del Rosal, Y.; Liñán, C.; Martín-Pozas, T.; González-Pimentel, J.L.; Saiz-Jiménez, C. Diversity and seasonal dynamics of airborne fungi in Nerja Cave, Spain. Appl. Sci. 2021, 11, 6236. [Google Scholar] [CrossRef]
- Jiang, J.R.; Cai, L.; Liu, F. Oligotrophic fungi from a carbonate cave, with three new species of Cephalotrichum. Mycology 2017, 8, 164–177. [Google Scholar] [CrossRef]
Species | Isolate Number | ITS Gene Bank Acc. No. (Query, E Value, Homology) | BenA Gene Bank Acc. No. (Query, E Value, Homology) | Guild | Trophic Mode |
---|---|---|---|---|---|
Apiotrichum laibachii | BEOFB1050000 | PV871536 (100%, 0.0, 100.00%) | - | ap, us | P, S |
Aspergillus flavus | BEOFB0030111 | PV871564 (100%, 0.0, 99.82%) | - | ap, ws, pp | P, S |
Aspergillus tubingiensis * | BEOFB0033001 | PV871567 (97%, 0.0, 99.47%) | PV893141 (100%, 0.0, 100.00%) | pp, ss | P, S |
Bjerkandera adusta | BEOFB0160010 | PV871552 (100%, 0.0, 99.83%) | - | pp, en, ws | P, S, Sy |
Brunneochlamydosporium nepalense | BEOFB1100000 | PV871549 (100%, 0.0, 99.80%) | - | en | Sy |
Cerioporus squamosus * | BEOFB1040000 | PV871532 (100%, 0.0, 100.00%) | - | ws | S |
BEOFB1040001 | PV871545 (100%, 0.0, 100.00%) | - | ws | S | |
Cladosporium cladosporioides | BEOFB0180226 | PV871537 (100%, 0.0, 100.00%) | - | ep, en, pp | P, Sy |
Coprinellus domesticus * | BEOFB0210302 | PV871529 (100%, 0.0, 100.00%) | - | us | S |
Coprinellus xanthothrix * | BEOFB0210400 | PV871528 (100%, 0.0, 100.00%) | - | us | S |
Coprinopsis phaeospora * | BEOFB1080000 | PV871558 (100%, 0.0, 98.91%) | - | us | S |
BEOFB1080001 | PV871559 (100%, 0.0, 98.91%) | - | us | S | |
Dichotomopilus erectus | BEOFB1090000 | PV871546 (100%, 0.0, 99.02%) | - | us | S |
Metapochonia bulbillosa * | BEOFB1070000 | PV871550 (100%, 7 × 10−128 97.13%) | - | ap, us | P, S |
Mortierella alpina | BEOFB0600009 | PV871534 (100%, 0.0, 99.84%) | - | ss, en | S, Sy |
Penicillium bialowiezense | BEOFB0112202 | PV871538 (100%, 0.0, 99.81%) | - | pp, ss | P, S |
Penicillium brevicompactum | BEOFB0110014 | PV871544 (100%, 0.0, 100.00%) | - | en | Sy |
BEOFB0110015 | PV871547 (100%, 0.0, 99.01%) | - | en | Sy | |
Penicillium chrysogenum | BEOFB0111207 | PV871535 (100%, 0.0, 100.00%) | - | pp | P, S |
Penicillium citreonigrum | BEOFB0111905 | PV871557 (93%, 0.0, 99.81%) | PX099057 (100%, 0.0, 100.00%) | ap | P |
Penicillium concentricum | BEOFB0113700 | PV871539 (na) | PV893142 (99%, 0.0, 100.00%) | us | S |
BEOFB0113701 | PV871543 (na) | PV936450 (100%, 0.0, 100.00%) | us | S | |
BEOFB0113702 | PV871551 (na) | PV936451 (100%, 0.0, 100.00%) | us | S | |
Penicillium dierckxii | BEOFB0114000 | PV871562 (na) | PX099060 (90%, 0.0, 100.00%) | ss | S |
Penicillium expansum | BEOFB0113303 | - | PX061017 (97%, 0.0, 100.00%) | pp | P |
Penicillium glandicola | BEOFB0113800 | PV871540 (100%, 0.0, 99.63%) | PV936448 (100%, 0.0, 99.76%) | ss | S |
BEOFB0113801 | PV871542 (94%, 0.0, 99.81%) | PV936449 (100%, 0.0, 99.76%) | ss | S | |
BEOFB0113802 | PV871553 (100%, 0.0, 99.82%) | - | ss | S | |
Penicillium griseofulvum | BEOFB0110505 | PV871563 (100%, 0.0, 99.63%) | - | ap | P |
Penicillium manginii * | BEOFB0110702 | PV871560 (100%, 0.0, 99.52%) | PX099058 (100%, 0.0, 100.00%) | ss | S |
Penicillium ochrochloron | BEOFB0112601 | PV871554 (100%, 0.0, 99.11%) | PX060351 (100%, 0.0, 95.15%) | pp, us | P, S |
Penicillium pancosmium | BEOFB0114000 | PV871566 (100%, 0.0, 99.63%) | PV936452 (99%, 0.0, 100.00%) | us | S |
Penicillium solitum | BEOFB0110903 | PV871533 (100%, 0.0, 99.80%) | PV936447 (99%, 0.0, 100.00%) | en | Sy |
Penicillium vulpinum | BEOFB0113900 | PV871561 (100%, 0.0, 100.00%) | PX099059 (100%, 0.0, 100.00%) | us | S |
Prillingera fragicola * | BEOFB1060000 | PV871548 (100%, 0.0, 99.79%) | - | ep, us | S, Sy |
Schizophyllum commune | BEOFB0660005 | PV871530 (100%, 0.0, 99.83%) | - | ap, ws, en | P, S |
BEOFB0660006 | PV871531 (100%, 0.0, 99.30%) | - | ap, ws, en | P, S | |
Sporobolomyces roseus * | BEOFB0410001 | PV871541 (100%, 0.0, 100.00%) | - | fp, ps | P, S |
Thanatephorus cucumeris * | BEOFB0240003 | PV871556 (100%, 0.0, 100.00%) | - | pp, en | P, Sy |
Trametes hirsuta | BEOFB0840103 | PV871565 (100%, 0.0, 99.66%) | - | pp, ws | P, S |
Trichotecium roseum | BEOFB0150101 | PV871555 (100%, 0.0, 99.82%) | - | pp | P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stupar, M.; Savković, Ž.; Pećić, M.; Jerinkić, D.; Jakovljević, O.; Popović, S. Some Like It Rock ‘N’ Cold: Speleomycology of Ravništarka Cave (Serbia). J. Fungi 2025, 11, 706. https://doi.org/10.3390/jof11100706
Stupar M, Savković Ž, Pećić M, Jerinkić D, Jakovljević O, Popović S. Some Like It Rock ‘N’ Cold: Speleomycology of Ravništarka Cave (Serbia). Journal of Fungi. 2025; 11(10):706. https://doi.org/10.3390/jof11100706
Chicago/Turabian StyleStupar, Miloš, Željko Savković, Marija Pećić, Dragana Jerinkić, Olga Jakovljević, and Slađana Popović. 2025. "Some Like It Rock ‘N’ Cold: Speleomycology of Ravništarka Cave (Serbia)" Journal of Fungi 11, no. 10: 706. https://doi.org/10.3390/jof11100706
APA StyleStupar, M., Savković, Ž., Pećić, M., Jerinkić, D., Jakovljević, O., & Popović, S. (2025). Some Like It Rock ‘N’ Cold: Speleomycology of Ravništarka Cave (Serbia). Journal of Fungi, 11(10), 706. https://doi.org/10.3390/jof11100706