Airborne Alternaria Spores: 70 Annual Records in Northwestern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics and Location of the Study Area
2.2. Sample Collection, Identification and Spore Counting
2.3. Meteorological Data and Statistical Analysis
3. Results
3.1. Global Analysis of Spore Concentration
3.2. Spore Concentration at Each Location
3.3. Relationship with Meteorological Parameters
4. Discussion
4.1. Temporal Variation of Alternaria Atmospheric Concentrations
4.2. Factors Related to Alternaria Concentrations in the Air
4.3. Health Effects of Exposure to Alternaria Spores
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morales, J. Estudio aerobiológico de las esporas de hongos en la atmósfera de Sevilla y su relación con las variables climáticas. Ph.D. Dissertation, University of Seville, Seville, Spain, 2004. [Google Scholar]
- Hu, W.; Wang, Z.; Huang, S.; Ren, L.; Yue, S.; Li, P.; Fu, P. Biological aerosol particles in polluted regions. Curr. Pollut. Rep. 2020, 6, 65–89. [Google Scholar] [CrossRef]
- Olsen, Y.; Arildskov, E.; Hansen, S.N.; Pedersen, M.; Dharmage, S.C.; Kloster, M.; Sigsgaard, T. Outdoor Alternaria and Cladosporium spores and acute asthma. Clin. Exp. Allergy 2023, 53, 1256–1267. [Google Scholar] [CrossRef]
- Mycobank, Fungal Databases, Nomenclature & Species Banks. 2024. Available online: https://www.mycobank.org/page/Name%20details%20page/name/Alternaria%20alternata (accessed on 18 April 2024).
- Wijayawardene, N.N.; Hyde, K.D.; Al-Ani, L.K.; Tedersoo, L.; Haelewaters, D.; Rajeshkumar, K.C.; Zhao, R.L.; Aptroot, A.; Leontyev, D.V.; Saxena, R.K.; et al. Outline of Fungi and fungus-like taxa. Mycosphere Online Fungal Biol. 2020, 11, 1060–1456. [Google Scholar] [CrossRef]
- Dąbrowska-Zapart, K.; Chłopek, K.; Lipiec, A.; Puc, M.; Szczygielski, K.; Ziemianin, M.; Rapiejko, P. Alternaria spores in the air of selected Polish cities in 2020. Alergoprofil 2021, 17, 21–24. [Google Scholar] [CrossRef]
- Havrylenko, K.V.; Prykhodko, O.B.; Liakh, V.O.; Yemets, T.I. Aeromonitoring of Alternaria spores in the air of Zaporizhzhia city. Zaporozhye Med. J. 2022, 24, 338–342. [Google Scholar] [CrossRef]
- Picornell, A.; Rojo, J.; Trigo, M.M.; Ruiz-Mata, R.; Lara, B.; Romero-Morte, J.; Recio, M. Environmental drivers of the seasonal exposure to airborne Alternaria spores in Spain. Sci. Total Environ. 2022, 823, 153596. [Google Scholar] [CrossRef]
- Karozy, A.; Ducloux, D.; Reboux, G.; Blanc, D.; Faivre, B.; Halopin, J.M.; Piarroux, R. Cutaneous Alternaria infection in renal transplant recipients: A report of two cases with an inusual mode of transmisión. Transpl. Infect. Dis. 2004, 6, 46–49. [Google Scholar] [CrossRef]
- Leite, J.; Romano, J.; Lopes, V.; Neves, M.M.; Gomes, M.; Oliveira, L. Case report: Alternaria alternata keratitis. Int. Med. Case Rep. J. 2023, 16, 59–64. [Google Scholar] [CrossRef]
- Sundararaj, R.; Mathimaran, A.; Prabhu, D.; Ramachandran, B.; Jeyaraman, J.; Muthupandian, S.; Asmelash, T. In silico approaches for the identification of potential allergens among hypothetical proteins from Alternaria alternata and its functional annotation. Sci. Rep. 2024, 14, 6696. [Google Scholar] [CrossRef]
- Kilic, M.; Altintas, D.U.; Yilmaz, M.; Kendirli, S.G.; Karakoc, G.B.; Taskin, E.; Pinar, N.M. The effects of meteorological factors and Alternaria spore concentrations on children sensitised to Alternaria. Allergol. Immunopathol. 2010, 38, 122–128. [Google Scholar] [CrossRef]
- Simmons, E.G. Alternaria themes and variations (244–286) species on Solanaceae. Mycotaxon 2000, 75, 1–115. [Google Scholar]
- Hong, S.G.; Cramer, R.A.; Lawrence, C.B.; Pryor, B.M. Alt a1 allergen homologs from Alternaria and related taxa: Analysis of phylogenetic content and secondary structure. Fungal Genet. Biol. 2005, 42, 119–129. [Google Scholar] [CrossRef]
- Abel-Fernández, E.; Martínez, M.J.; Galán, T.; Pineda, F. Going over fungal allergy: Alternaria alternata and its allergens. J. Fungi 2023, 9, 582. [Google Scholar] [CrossRef]
- Hernández-Ramírez, G.; Barber, D.; Tome-Amat, J.; Garrido-Arandia, M.; Díaz-Perales, A. Alternaria as an inducer of allergic sensitization. J. Fungi 2021, 7, 838. [Google Scholar] [CrossRef]
- Schmey, T.; Tomiello-Ramirez, C.S.; Brune, C.; Stand, R. Alternaria diseases on potato and tomato. Mol. Plant Pathol. 2024, 25, e13435. [Google Scholar] [CrossRef] [PubMed]
- Smiri, M.; Kheireddine, A.; Hammami, R.; Rouissi, M.; Espeso, E.A.; Sadfi-Zouaoui, N. An assessment of the air quality in apple warehouses: New records of Aspergillus europaeus, Aspergillus pulverulentus, Penicillium allii and Penicillium sumatraense as decay agents. Arch. Microbiol. 2021, 203, 5975–5992. [Google Scholar] [CrossRef]
- Aparecido, L.E.D.O.; Torsoni, G.B.; Lima, R.F.D.; Baratti, A.C.C.; Rossi, M.F.D.M.; Dos Santos, A.F.; Peche, P.M. Climate zoning: Identifying suitable regions for the occurrence of Alternaria brown spot in tangerine trees in Brazil. Pest Manag. Sci. 2024, 80, 1615–1631. [Google Scholar] [CrossRef]
- Kahramanoğlu, İ. Postharvest Challenges, Chemical Control of postharvest diseases and concerns over agrochemicals. In Postharvest Physiology and Handling of Horticultural Crops; CRC Press: Boca Raton, FL, USA, 2024; pp. 85–101. [Google Scholar]
- Escuredo, O.; Seijo, M.C.; Fernández-González, M.; Iglesias, M.I. Effects of meteorological factors on the levels of Alternaria spores on a potato crop. Int. J. Biometeorol. 2011, 55, 243–252. [Google Scholar] [CrossRef]
- Meno, L.; Escuredo, O.; Rodríguez-Flores, M.S.; Seijo, M.C. Prevalence of airborne fungal spores in two potato warehouses with different storage conditions. Aerobiologia 2021, 37, 309–320. [Google Scholar] [CrossRef]
- Qiao, S.; Gu, H.; Ma, G.; Xu, J.; Shi, J.; Lee, Y.W.; Qiu, J. Phylogenetic, metabolic and pathogenic characteristics of Alternaria alternata strains from wheat in China. Plant Pathol. 2023, 73, 1169–1179. [Google Scholar] [CrossRef]
- Ahmad, T.; Xing, F.; Cao, C.; Liu, Y. Characterization and toxicological potential of Alternaria alternata associated with post-harvest fruit rot of Prunus avium in China. Front. Microbiol. 2024, 15, 1273076. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pruitt, R.N.; Nürnberger, T.; Wang, Y. Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 2022, 20, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.F.; Villas, P.D.M.G.D.; Henriques, D.D.G.C.; dos Santos Neto, E.R.; Pereira, J.V.F.; da Silva Lanna, M.C. Isolamento, identificação e possível ação deteriógena de fungos no Chafariz da Glória, Ouro Preto, Minas Gerais, Brasil. Rev. De Arqueol. 2023, 36, 140–151. [Google Scholar] [CrossRef]
- Gámez Espinosa, E.J.; Barberia Roque, L.; López, G.P.; Igal, K.; Bellotti, N. Biodeterioro en los entornos edilicios 2024. REC nº55, 2024; pp. 4–14. Available online: https://sedici.unlp.edu.ar/handle/10915/164958 (accessed on 19 June 2024).
- Branysova, T.; Demnerova, K.; Durovic, M.; Stiborova, H. Microbial biodeterioration of cultural heritage and identification of the active agents over the last two decades. J. Cult. Herit. 2022, 55, 245–260. [Google Scholar] [CrossRef]
- Ventorino, V.; La Storia, A.; Robertiello, A.; Corsi, S.; Romano, I.; Sannino, L.; Pepe, O. Fungal niodeterioration and preservation of miniature artworks. J. Fungi 2023, 9, 1054. [Google Scholar] [CrossRef]
- Filali Ben Sidel, F.; Bouziane, H.; Trigo, M.M.; El Haskouri, F.; Bardei, F.; Redouane, A.; Kazzaz, M. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables. Int. J. Biometeorol. 2015, 59, 339–346. [Google Scholar] [CrossRef]
- De Linares, C.; Navarro, D.; Puigdemunt, R.; Belmonte, J. Airborne Alt a 1 dynamic and its relationship with the airborne dynamics of Alternaria conidia and Pleosporales spores. J. Fungi 2022, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, D.; Mobayed, H.M.; Ali, R.M.; Tuffaha, A.; Dason, B.R.; Ibrahim, T.; Al-Nesf, M.A. First volumetric records of airborne Cladosporium and Alternaria spores in the atmosphere of Al Khor (northern Qatar): A preliminary survey. Aerobiologia 2022, 38, 329–342. [Google Scholar] [CrossRef]
- Damialis, A.; Mohammad, A.B.; Halley, J.M.; Gange, A.C. Fungi in a changing world: Growth rates will be elevated, but spore production may decrease in future climates. Int. J. Biometeorol. 2015, 59, 1157–1167. [Google Scholar] [CrossRef]
- Skjøth, C.A.; Damialis, A.; Belmonte, J.; De Linares, C.; Fernández-Rodríguez, S.; Grinn-Gofroń, A.; Jędryczka, M.; Kasprzyk, I.; Magyar, D.; Myszkowska, D.; et al. Alternaria spores in the air across Europe: Abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia 2016, 32, 3–22. [Google Scholar] [CrossRef]
- Grinn-Gofroń, A.; Nowosad, J.; Bosiacka, B.; Camacho, I.; Pashley, C.; Belmonte, J.; De Linares, C.; Ianovici, N.; Manzano, J.M.M.; Sadyś, M.; et al. Airborne Alternaria and Cladosporium fungal spores in Europe: Forecasting possibilities and relationships with meteorological parameters. Sci. Total Environ. 2019, 653, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Guitián, M.A.; Ramil-Rego, P. Clasificaciones climáticas aplicadas a Galicia: Revisión desde una perspectiva biogeográfica. Recursos Rurais 2007, 1, 31–53. Available online: http://hdl.handle.net/10347/3805 (accessed on 19 June 2024). [CrossRef]
- Rodríguez Guitián, M.A.; Ramil-Rego, P. Fitogeografía de Galicia (NW Ibérico): Análisis histórico y nueva propuesta corológica. Recursos Rurais 2018, 4, 19–50. [Google Scholar] [CrossRef]
- Galán, C.; Cariñanos, P.; Alcázar, P.; Domínguez-Vilches, E. Spanish Aerobiology Network (REA): Management and Quality Manual; Publications Services of the University of Córdoba: Córdoba, Spain, 2007; Available online: http://www.uco.es/raa/infor_raa/manual_eng.pdf (accessed on 18 April 2024).
- Woudenberg, J.H.C.; Groenewald, J.Z.; Binder, M.; Crous, P.W. Alternaria redefined. Stud. Mycol. 2013, 75, 171–212. [Google Scholar] [CrossRef]
- Nilsson, S.; Persson, S. Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana 1981, 20, 179–182. [Google Scholar] [CrossRef]
- METEOGALICIA, Reports from the Galician Meteorological Observation and Prediction Unit. Available online: https://www.meteogalicia.gal (accessed on 18 April 2024).
- Jacoby, W.G. Loess: A nonparametric, graphical tool for depicting relationships between variables. Elect. Stud. 2000, 19, 577–613. [Google Scholar] [CrossRef]
- Dopazo Martínez, A.; Hervés, M.; Aira, M.J. Concentración de esporas de Alternaria, Cladosporium y Fusarium en la atmósfera de Santiago de Compostela (1996). Botánica Complut. 1996, 25, 83–91. [Google Scholar]
- Méndez, J.; Iglesias, M.I.; Jato, M.V.; Aira, M.J. Variación estacional de esporas de Alternaria, Cladosporium y Fusarium en la atmósfera de la ciudad de Ourense (años 1993–1994). Polen 1997, 8, 79–88. [Google Scholar]
- Aira, M.J.; Hervés, M.; Jato, M.V. Comportamiento temporal de mitosporas de Alternaria en la atmósfera de Santiago de Compostela (Galicia, España). Bol. Micológico 2004, 19, 71–80. [Google Scholar] [CrossRef]
- Rodríguez-Rajo, F.J.; Iglesias, M.I.; Jato, M.V. Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycol. Res. 2005, 109, 497–507. [Google Scholar] [CrossRef]
- Aira, M.J.; Rodríguez-Rajo, F.J.; Fernández-González, M.; Seijo, C.; Elvira-Rendueles, B.; Abreu, I.; Gutiérrez-Bustillo, M.; Pérez-Sánchez, E.; Oliveira, M.; Recio, M.; et al. Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993–2009. Int. J. Biometeorol. 2013, 57, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Infante, F.; Alba, F.; Caño, M.; Castro, A.; Domínguez, E.; Méndez, J.; Vega, A. A comparative study of the incidence of Alternaria conidia in the atmosphere of five spanish cities. Polen 1999, 10, 7–15. [Google Scholar]
- Recio, M.; Trigo, M.M.; Docampo, S.; Melgar, M.; García-Sánchez, J.; Bootello, L.; Cabezudo, B. Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium. Int. J. Biometeorol. 2012, 56, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Maya-Manzano, J.M.; Fernández-Rodríguez, S.; Hernández-Trejo, F.; Díaz-Pérez, G.; Gonzalo-Garijo, Á.; Silva-Palacios, I.; Muñoz-Rodríguez, A.F.; Tormo-Molina, R. Seasonal Mediterranean pattern for airborne spores of Alternaria. Aerobiologia 2012, 28, 515–525. [Google Scholar] [CrossRef]
- Marchesi, S. Alternaria spores in Emilia-Romagna, northern Italy: Current diffusion and trends. Aerobiologia 2019, 36, 31–36. [Google Scholar] [CrossRef]
- Picornell, A.; Recio, M.; Trigo, M.M.; Cabezudo, B. Preliminary study of the atmospheric pollen in Sierra de las Nieves Natural Park (Southern Spain). Aerobiologia 2019, 35, 571–576. [Google Scholar] [CrossRef]
- Sabariego, S.; Bouso, V.; Perez-Badia, R. Comparative study of airborne Alternaria conidia levels in two cities in Castilla-La Mancha (central Spain), and correlations with weather-related variables. Ann. Agric. Environ. Med. 2012, 19, 227–232. Available online: https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-e6c80d10-da78-4cbb-bf3a-cd304b810f51 (accessed on 19 June 2024).
- Neeson, F. Saclay: Pollen and Fungal Spore Monitoring. Ph.D. Dissertation, Dublin City University, Dublin, Ireland, 2024. [Google Scholar]
- Stȩpalska, D.; Wołek, J. Variation in fungal spore concentrations of selected taxa associated to weather conditions in Cracow, Poland, in 1997. Aerobiologia 2005, 21, 43–52. [Google Scholar] [CrossRef]
- Corden, J.M.; Millington, W.M. The long-term trends and seasonal variation of the aeroallergen Alternaria in Derby, UK. Aerobiologia 2001, 17, 127–136. [Google Scholar] [CrossRef]
- Olsen, Y.; Skjøth, C.A.; Hertel, O.; Rasmussen, K.; Sigsgaard, T.; Gosewinkel, U. Airborne Cladosporium and Alternaria spore concentrations through 26 years in Copenhagen, Denmark. Aerobiologia 2020, 36, 141–157. [Google Scholar] [CrossRef]
- Scevková, J.; Dusicka, J.; Micieta, K.; Somorcík, J. The effects of recent changes in air temperature on trends in airborne Alternaria, Epicoccum and Stemphylium spore seasons in Bratislava (Slovakia). Aerobiologia 2016, 32, 69–81. [Google Scholar] [CrossRef]
- Ahrens, C.D. Meteorology Today: An Introduction to Weather, Climate, and the Environment, 9th ed.; Cengage Learning: Boston, MA, USA, 2015. [Google Scholar]
- Kousari, M.R.; Ekhtesasi, M.R.; Tazeh, M.; Saremi Naeini, M.A.; Asadi Zarch, M.A. An investigation of the Iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theor. Appl. Climatol. 2011, 103, 321–335. [Google Scholar] [CrossRef]
- Seidel, D.; Wurster, S.; Jenks, J.D.; Sati, H.; Gangneux, J.P.; Egger, M.; Kontoyiannis, D.P. Impact of climate change and natural disasters on fungal infections. Lancet Microbe 2024, 5, e594–e605. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rajo, F.J.; Aira, M.J.; Fernández-González, M.; Seijo, C.; Jato, M.V. Recent trends in airborne pollen for tree species in Galicia (NW Spain). Clim. Res. 2011, 48, 281–291. [Google Scholar] [CrossRef]
- Galán, C.; Alcázar, P.; Oteros, J.; García-Mozo, H.; Aira, M.J.; Belmonte, J.; Díaz de la Guardia, C.; Fernández-González, D.; Gutierrez-Bustillo, M.; Moreno-Grau, S.; et al. Airborne pollen trends in the Iberian Peninsula. Sci. Total Environ. 2016, 550, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Apangu, G.P.; Frisk, C.A.; Adams-Groom, B.; Satchwell, J.; Pashley, C.H.; Skjøth, C.A. Air mass trajectories and land cover map reveal cereals and oilseed rape as major local sources of Alternaria spores in the Midlands, UK. Atmos. Pollut. Res. 2020, 11, 1668–1679. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, A.; Blanco-Alegre, C.; Vega-Maray, A.M.; Valencia-Barrera, R.M.; Molnár, T.; Fernández-González, D. Effect of prevailing winds and land use on Alternaria airborne spore load. J. Environ. Manag. 2023, 332, 117414. [Google Scholar] [CrossRef]
- Magyar, D.; Strażyński, P.; Grewling, Ł.; Pashley, C.H.; Satchwell, J.; Bobvos, J.; Ladányi, M. The contribution of aphids (Aphidoidea) to atmospheric concentrations of Alternaria and Cladosporium spores. Aerobiologia 2023, 39, 345–361. [Google Scholar] [CrossRef]
- Sánchez, P.; Vélez del Burgo, A.; Suñen, E.; Martínez, J.; Postigo, I. Fungal allergen and mold diagnosis: Role and relevance of Alternaria alternata Alt a1 Protein Family. J. Fungi 2022, 8, 277. [Google Scholar] [CrossRef] [PubMed]
- Brehler, R.; Rabe, U. Allergen-specific immunotherapy for mold allergies. Allergo J. Int. 2024, 33, 101–105. [Google Scholar] [CrossRef]
- Feliu, A.; González-de-Olano, D.; González, E.; Rodríguez, B.; Ruiz-Hornillos, J.; Jimeno, L.; de la Torre, F. A multicenter study of sensitization profiles in an allergic pediatric population in an area with high allergen exposure. J. Investig. Allergol. Clin. Immunol. 2013, 23, 337–344. Available online: https://acortar.link/jvfUXf (accessed on 19 June 2024). [PubMed]
- Bousquet, P.J.; Chinn, S.; Janson, C.; Kogevinas, M.; Burney, P.; Jarvis, D. Geographical variation in the prevalence of positive skin tests to environmental aeroallergens in the European Community respiratory health survey I. Allergy 2007, 62, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, P.J.; Hooper, R.; Kogevinas, M.; Jarvis, D.; Burney, P. Number of allergens to be tested to assess allergenic sensitization in epidemiologic studies: Results of the European Community respiratory health survey I. Clin. Exp. Allergy 2007, 37, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Red Española de Aerobiología (REA). Available online: https://www.uco.es/investiga/grupos/rea/ (accessed on 18 April 2024).
- Gravesen, S. Fungi as a cause of allergic disease. Allergy 1979, 34, 135–154. [Google Scholar] [CrossRef] [PubMed]
Santiago | Ourense | Vigo | Lugo | |
---|---|---|---|---|
Study Period | ||||
Years analyzed | 20 | 19 | 18 | 13 |
1996–2013; 2022–2023 | 1993–1996; 1999–2011; 2022–2023 | 1995; 1997–2011; 2022–2023 | 2001–2011; 2022–2023 | |
Total spore count | 19,148 | 41,395 | 35,071 | 16,201 |
Average annual | 957 (723.59) | 2152 (899.81) | 1948 (688.71) | 1246 (623.73) |
Average daily | 3 (12.32) | 6 (11.95) | 6 (12.17) | 4 (7.60) |
Average days equal to 0 | 206 (36.92) | 126 (15.61) | 154 (27.63) | 180 (37.50) |
Days over 100 | 7 | 8 | 6 | 0 |
Peak value | 653 | 332 | 370 | 87 |
Peak date | 9 July 1997 | 27 July 1999 | 10 July 1997 | 26 July 2003 |
Rainfall (mm) | 1838 (431.65) | 856 (197.02) | 1352 (435.11) | 1013 (195.71) |
RH (%) | 80 (11.34) | 73 (11.58) | 74 (13.18) | 80 (9.75) |
Max T (°C) | 18.8 (5.94) | 21.8 (7.50) | 18.8 (5.18) | 18.3 (6.79) |
Min T (°C) | 9.6 (4.54) | 8.7 (5.43) | 11.6 (4.21) | 6.9 (5.33) |
Avg T (°C) | 14.1 (4.81) | 15.2 (6.00) | 15.1 (4.41) | 12.3 (5.48) |
Mean Spore Season–Global | ||||
Total spore count | 17,254 | 37,410 | 31,815 | 14,017 |
Average annual | 863 (656.24) | 1969 (793.22) | 1767 (622.96) | 1078 (574.70) |
Start | 14 May | 1 May | 3 May | 13 May |
End | 18 October | 25 October | 27 October | 8 October |
Lenght (days) | 158 | 178 | 178 | 149 |
Rainfall (mm) | 437 (219.17) | 316 (133.00) | 480 (201.00) | 220 (72.40) |
RH (%) | 78 (2.52) | 67 (1.87) | 74 (5.92) | 76 (3.11) |
Max T (°C) | 23.4 (1.17) | 27.4 (2.04) | 22.1 (2.52) | 24.0 (1.74) |
Min T (°C) | 13.2 (1.02) | 12.6 (1.48) | 14.5 (2.13) | 11.0 (1.19) |
Avg T (°C) | 18.2 (1.06) | 19.9 (1.65) | 18.3 (2.17) | 17.2 (1.48) |
Rainfall | RH | Max T | Min T | Avg T | |||||
---|---|---|---|---|---|---|---|---|---|
Sampling Station | Year | Total | MSS–A | Spores/m3 | (mm) | (%) | (°C) | (°C) | (°C) |
Santiago | 1997 (max) | 3107 | 2 May–7 October | 2822 | 664 | 81 | 23.03 | 13.05 | 18.04 |
2013 (min) | 313 | 6 June–7 October | 284 | 257 | 78 | 24.69 | 14.09 | 18.68 | |
Ourense | 1999 (max) | 4847 | 26 May–28 October | 4398 | 293 | 66 | 28.45 | 13.88 | 21.16 |
2003 (min) | 809 | 16 March–14 November | 734 | 480 | 67 | 25.86 | 11.8 | 18.83 | |
Vigo | 2011 (max) | 3520 | 17 May–28 October | 3175 | 294 | 79 | 24.85 | 17.55 | 20.79 |
2003 (min | 571 | 19 Mar–14 November | 522 | 586 | 69 | 17.06 | 11.10 | 14.10 | |
Lugo | 2002 (max) | 2285 | 4 May–2 October | 2070 | 209 | 73 | 22.13 | 10.20 | 15.53 |
2005 (min) | 638 | 18 April–22 September | 575 | 249 | 76 | 23.08 | 10.02 | 16.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Espinosa, K.C.; Aira, M.J.; Fernández-González, M.; Rodríguez-Rajo, F.J. Airborne Alternaria Spores: 70 Annual Records in Northwestern Spain. J. Fungi 2024, 10, 681. https://doi.org/10.3390/jof10100681
Sánchez Espinosa KC, Aira MJ, Fernández-González M, Rodríguez-Rajo FJ. Airborne Alternaria Spores: 70 Annual Records in Northwestern Spain. Journal of Fungi. 2024; 10(10):681. https://doi.org/10.3390/jof10100681
Chicago/Turabian StyleSánchez Espinosa, Kenia C., María Jesús Aira, María Fernández-González, and Francisco Javier Rodríguez-Rajo. 2024. "Airborne Alternaria Spores: 70 Annual Records in Northwestern Spain" Journal of Fungi 10, no. 10: 681. https://doi.org/10.3390/jof10100681
APA StyleSánchez Espinosa, K. C., Aira, M. J., Fernández-González, M., & Rodríguez-Rajo, F. J. (2024). Airborne Alternaria Spores: 70 Annual Records in Northwestern Spain. Journal of Fungi, 10(10), 681. https://doi.org/10.3390/jof10100681