Application of Culture-Independent Rapid Diagnostic Tests in the Management of Invasive Candidiasis and Cryptococcosis
Abstract
:1. Introduction
Organism Group | Examples of Specific Pathogens | |
---|---|---|
Candida | C. albicans | C. krusei |
C. glabrata | C. lusitaniae | |
C. parapsilosis | C. guilliermondii | |
C. tropicalis | C. rugosa | |
Cryptococcus | C. neoformans C. gattii | - |
Other yeasts | Saccharomyces species | Rhodotorula species |
Trichosporon species | Malassezia species | |
Blastoschizomyces capitatus | - | |
Aspergillus | A. fumigatus | A. versicolor |
A. flavus | A. terreus | |
A. niger | A. calidoustus | |
Mucormycetes | Rhizopus species | Apophysomyces species |
Rhizomucor species | Cunninghamella bertholletiae | |
Mucor species | Saksenaea species | |
Lichtheimia (Absidia) species | - | |
Other hyaline | Fusarium species | Trichoderma species |
Molds | Sarocladium (Acremonium) species | Purpureocilium (Paecilomyces) lilacinus |
Scedosporium species | Chrysosporium species | |
Dematiaceous | Alternaria species | Cladophialophora species |
Molds | Bipolaris species | Phialophora species |
Exophiala species | Dactylaria species | |
Ramichloridium species | Wangiella species | |
Dimorphic | Histoplasma capsulatum | Sporothrix schenckii |
PLMolds | Coccidioides immitis/posadasii | Talaromyces (Penicillium) marneffei |
Blastomyces dermatitidis | - | |
Paracoccidioides brasiliensis | - | |
Other | Pneumocystis jirovecii | - |
Microsporidia species |
Method | Specific Examples |
---|---|
A. Conventional Microbiologic |
|
B. Histopathologic |
|
C. Immunologic |
|
D. Molecular and Proteomic Methods |
|
E. Biochemical |
|
2. Laboratory Diagnosis
3. Culture
4. New Approaches to the Identification of Candida and Cryptococcus Species
Diagnostic test b | No. samples | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|
CRAG LFA | 666 | 99.3 | 99.1 | 99.5 | 98.7 |
CRAG latex (Meridian) | 279 | 97.8 | 85.9 | 92.6 | 95.5 |
CRAG latex (Immy) | 749 | 97.0 | 100.0 | 100.0 | 75.8 |
India Ink microscopy | 805 | 86.1 | 97.3 | 98.2 | 80.2 |
CSF culture | 806 | 90.0 | 100.0 | 100.0 | 85.3 |
—100 µL volume | 524 | 94.2 | 100.0 | 100.0 | 91.2 |
—10 µL volume | 282 | 82.4 | 100.0 | 100.0 | 75.8 |
5. Phenotypic Methods
6. Proteomic Methods
Assay | Manufacturer | Method | Detectable Pathogens | Detection limit (CFU/ mL) | Turnaround time (h) |
---|---|---|---|---|---|
Performed On Positive Blood Culture Bottles | |||||
Luminex xTAG Fungal ASR Assay | Luminex Corp. Austin, TX, USA | Multiplex PCR and bead-based flow cytometry | Identification of 23 different fungi including Candida and Cryptococcus | NA | 5–6 |
PNA-FISH | AdvanDX, Woburn, MA, USA | Fluorescence-based hybridization with PNA probes | Identification of 5 Candida species | NA | <1 |
FilmArray | Idaho Technology, Salt Lake City, UT, USA | Multiplex PCR | Identification of 5 Candida spp. | NA | 1 |
Prove-it Sepsis | Mobidiag, Helinski, Finland | Multiplex PCR with hybridization on a microarray | Identification of 13 fungi including Candida and Cryptococcus | NA | 3–5 |
MALDI-TOF MS | Brucker Daltonics, Bremer, Germany bioMerieux, Marcy l’Etoile, France | Mass spectroscopy | Identification of many fungi including Candida and Cryptococcus | NA | <1 |
Performed Directly On Whole Blood | |||||
SepsiTest | Molzym, Breman, Germany | Broad-range PCR with sequencing | Identification and detection of 5 species of Candida and Cryptococcus | 20–40 | 8–12 |
Vyoo | SIRS- Lab, Jena, Germany | Multiplex PCR with gel electrophoresis | Identification and detection of 6 species of Candida | 3–10 | 6–8 |
Plex-ID | Abbott, Carlsbad, CA, USA | Multiplex PCR detected by electrospray ionization mass spectroscopy | Identification and detection of many fungi including Candida and Cryptococcus | 3–16 | 6–8 |
Magicplex Sepsis Real-Time Test | Seegene Inc., Seoul, South Korea | Multiplex real-time PCR | Identification and detection of 6 species of Candida | NA | 3–4 |
Real-Time PCR Panel | Quest Diagnostics, Madison, NJ, USA | Multiplex real-time PCR | Identification and detection of 5 species of Candida | 1–350 | 6 |
Real-Time PCR Panel | Viracor-IBT Laboratories, Lee’s Summit, MO, USA | Real-time PCR | Identification and detection of 5 species of Candida | <1 | 6 |
LightCycler SeptiFast Test | Roche Molecular Systems, Branchburg, NJ, USA | Multiplex real-time PCR | Identification and detection of 5 species of Candida | 30–100 | 6 |
T2Candida Panel | T2 Biosystems, Lexington, MA, USA | PCR with nanoparticle capture and T2 magnetic resonance detection | Identification and detection of 5 species of Candida | 1–3 | 3–5 |
7. Molecular Methods
8. Immunologic, Biochemical and Nucleic Acid-Based Methods of Diagnosis
9. Antibody Detection
10. Immunologic and Biochemical Antigen Detection Methods
11. Nucleic Acid Detection
12. Clinical and Economic Impact of Rapid Diagnostic Tests in Candidasis and Cryptococcosis
13. Summary and Conclusions
References
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed]
- Diekema, D.J.; Pfaller, M.A. Nosocomial candidemia: An ounce of prevention is better than a pound of cure. Infect. Control Hosp. Epidemiol. 2004, 25, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Fridkin, S.K. The changing face of fungal infections in healthcare settings. Clin. Infect. Dis. 2005, 41, 1455–1460. [Google Scholar] [PubMed]
- Hajjeh, R.A.; Sofair, A.N.; Harrison, I.H.; Lyon, G.; Arthington-Skaggs, B.A.; Mirza, S.A.; Phelan, M.; Morgan, J.; Lee-Yang, W.; Ciblak, M.A.; et al. Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J. Clin. Microbiol. 2004, 42, 1519–1527. [Google Scholar] [CrossRef] [PubMed]
- McNeil, M.M.; Nash, S.L.; Hajjeh, R.A.; Phelan, M.A.; Conn, L.A.; Plikaytis, B.D.; Warnock, D.W. Trends in mortality due to invasive mycotic diseases in the United States, 1988–1997. Clin. Infect. Dis. 2001, 33, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.; Marr, K.A. Emerging fungal diseases. Clin. Infect. Dis. 2005, 41, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Rare and emerging opportunistic fungal pathogens: Concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 2004, 42, 4419–4431. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Twelve years of fluconazole in clinical practice: Global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin. Microbiol. Infect. 2004, 10 (Suppl. S1), 11–23. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. The epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.R.; Pinner, R.W.; Hajjeh, R.A.; Brandt, M.E.; Reingold, A.L. The epidemiological features of invasive mycotic infections in the San Francisco Bay Area, 1992–1993: Results of a population-based laboratory active surveillance. Clin. Infect. Dis. 1998, 27, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Trick, W.E.; Fridkin, S.K.; Edwards, J.R.; Hajjeh, R.A.; Gaynes, R.P. National Nosocomial Infections Surveillance System Hospitals. Secular trend of hospital-acquired candidemia among intensive care unit patients in the United States during 1989–1999. Clin. Infect. Dis. 2002, 35, 622–630. [Google Scholar]
- Walsh, T.J.; Groll, A.; Hiemenz, J.; Flemming, R.; Roilides, E.; Anaissie, E. Infections due to emerging and uncommon medically important fungal pathogens. Clin. Microbiol. Infect. 2004, 10 (Suppl. S1), 48–66. [Google Scholar] [CrossRef] [PubMed]
- Apisarnthanarak, A.; Powderly, W.G. Epidemiology of fungal infection in patients with Human Immunodeficiency Virus. In Fungal Infections in the Immunocompromised Patient; Wingard, J.R., Anaissie, E.J., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 129–148. [Google Scholar]
- Baddley, J.W.; Stroud, T.P.; Salzman, D.; Pappas, P.G. Invasive mold infections in allogeneic bone marrow transplant recipients. Clin. Infect. Dis. 2001, 32, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, H.M.; Jarvis, W.R.; Soucie, J.M.; Edwards, J.E.; Patterson, J.E.; Pfaller, M.A.; Rangel-Frausto, M.S.; Rinaldi, M.G.; Saiman, L.; Wiblin, R.T.; et al. Risk factors for candidal bloodstream infections in surgical intensive care unit patients: The NEMIS prospective multicenter study. Clin. Infect. Dis. 2001, 33, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Bow, E.J. Assessment of the risk for invasive fungal infection among oncology patients. In Fungal Infections in the Immunocompromised Patient; Wingard, J.R., Anaissie, E.J., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 97–128. [Google Scholar]
- Foster, C.B.; Chanock, S.J. Fungal infections in immunocompromised hosts: Host defenses, risks and epidemiology in special patient groups-pediatrics. In Fungal Infections in the Immunocompromised Patient; Wingard, J.R., Anaissie, E.J., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 185–197. [Google Scholar]
- Grazziatti, M.; Anaissie, E.J.; Wingard, J.R. Overview of host defenses: Innate and acquired immunity. In Fungal infections in the Immunocompromised Patient; Wingard, J.R., Anaissie, E.J., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 1–44. [Google Scholar]
- Kauffman, C.A. Fungal infections in older adults. Clin. Infect. Dis. 2001, 33, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.; Fairchild, K.K. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin. Microbiol. Rev. 2004, 17, 638–680. [Google Scholar] [CrossRef] [PubMed]
- Marr, K.A. Fungal infections in blood and marrow transplant recipients. In Fungal Infections in the Immunocompromised Patient; Wingard, J.R., Anaissie, E.J., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 75–95. [Google Scholar]
- Marr, K.A.; Carter, R.A.; Crippa, F.; Wald, A.; Corey, L. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 2002, 34, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Marty, F.M.; Baden, L.R.; Rubin, R.H. Impact of invasive fungal infection on patients undergoing solid organ transplantation. In Fungal Infections in the Immunocompromised Patient; Wingard, J.R., Anaissie, E.J., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 45–74. [Google Scholar]
- Patterson, T.F.; Kirkpatrick, W.R.; White, M. Invasive aspergillosis: Disease spectrum, treatment practices, and outcomes. Medicine 2000, 79, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Roilides, E.; Farmaki, E.; Evdoridou, J.; Hatziioannidis, E.; Tsivitanidou, M.; Bibashi, E.; Filioti, I.; Sofianou, D.; Gil-Lamaignere, C.; Mueller, F.-M.; et al. Neonatal candidiasis: Analysis of epidemiology, drug susceptibility, and molecular typing of causative isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Saiman, L.; Ludington, E.; Pfaller, M.; Rangel-Frauso, S.; Wiblin, R.T.; Dawson, J.; Blumberg, H.M.; Patterson, J.E.; Rinaldi, M.; Edwards, J.E.; et al. Risk factors for candidemia in neonatal intensive care unit patients. Pediatr. Infect. Dis. J. 2000, 19, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Singh, N. Fungal infections in recipients of solid organ transplantation. Infect. Dis. Clin. North Am. 2003, 17, 113–134. [Google Scholar] [CrossRef]
- Walsh, T.J.; Groll, A.H. Emerging fungal pathogens: Evolving challenges to immunocompromised patients for the twenty-first century. Transpl. Infect. Dis. 1999, 1, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Sifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Zaoutis, T.E.; Argon, J.; Chu, J.; Berlin, J.A.; Walsh, T.J.; Feudtner, C. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: A propensity analysis. Clin. Infect. Dis. 2005, 41, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Mirza, S.A.; Phelan, M.; Rimland, D.; Graviss, E.; Hamill, R.; Brandt, M.E.; Gardner, T.; Sattah, M.; Ponce de Leon, G.; Baughman, W.; Hajjeh, R.A. The changing epidemiology of cryptococcosis: An update from population-based active surveillance in 2 large metropolitan areas, 1992–2000. Clin. Infect. Dis. 2003, 36, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A. The fungal pathogen shift in the United States. J. Crit. Illness 2001, 16 (Supp. l), 35–42. [Google Scholar]
- Perfect, J.R.; Bicanic, T. Cryptococcosis diagnosis and treatment: What do we know now? Fungal Genet. Biol. 2015, 78, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.D.; Pfaller, M.A. Contemporary tools for the diagnosis and management of invasive mycoses. Clin. Infect. Dis. 2006, 43, S15–S27. [Google Scholar] [CrossRef]
- Guarner, J.; Brandt, M.E. Histopathologic diagnosis of fungal infections in the 21st century. Clin. Microbiol. Rev. 2011, 24, 247–280. [Google Scholar] [CrossRef] [PubMed]
- Marcos, J.Y.; Pincus, D.H. Fungal diagnostics: Review of commercially available methods. Methods Mol. Biol. 2013, 968, 24–45. [Google Scholar]
- Pfaller, M.A.; McGinnis, M.R. The laboratory and clinical mycology. In Clinical Mycology, 2nd ed.; Anaissie, E.J., McGinnis, M.R., Pfaller, M.A., Eds.; Elsevier, Inc.: New York, NY, USA, 2009; pp. 55–77. [Google Scholar]
- Howell, S.A.; Hazen, K.C. Candida, Cryptococcus and other yeasts of medical importance. In Manual of Clinical Microbiology, 10th ed.; Versalovic, J., Carroll, K.C., Funke, G., Jorgensen, J.H., Landry, M.L., Warnock, D.W., Eds.; ASM Press: Washington DC, WA, USA, 2011; pp. 1793–1821. [Google Scholar]
- Arvanitis, M.; Anagnostou, T.; Fuchs, B.B.; Caliendo, A.M.; Mylonakis, E. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin. Microbiol. Rev. 2014, 27, 490–526. [Google Scholar] [CrossRef] [PubMed]
- Garey, K.W.; Rege, M.; Pai, M.P.; Mingo, D.E.; Sude, K.J.; Turpin, R.S.; Bearden, D.T. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: A multi-institutional study. Clin. Infect. Dis. 2006, 43, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Morrel, M.; Fraser, V.J.; Kollef, M.H. Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: A potential risk factor for hospital mortality. Antimicrob. Agents Chemother. 2005, 49, 3640–3645. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.A.; Holliday, C.L.; Meyer, W. A review of nucleic acid-based diagnostic tests for systemic mycoses with an emphasis on polymerase chain reaction-based assays. Med. Mycol. 2002, 40, 333–357. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.F.; Wong, B. Current status of nonculture methods for diagnosis of invasive fungal infections. Clin. Microbiol. Rev. 2002, 15, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Avni, T.; Leibovici, L.; Paul, M. PCR diagnosis of invasive candidiasis: Systematic review and meta-analysis. J. Clin. Microbiol. 2011, 49, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.H. Finding the “missing 50%” of invasive candidiasis: How nonculture diagnostics will improve the understanding of disease spectrum and transform patient care. Clin. Infect. Dis. 2013, 56, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Boekhout, T.; Akova, M.; Meis, J.F.; Cornely, O.A.; Lortholary, O. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin. Microbiol. Infect. 2014, 20 (Suppl. S3), 76–78. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, E.M.; Shea, Y.M.; Witebsky, F.G. Laboratory diagnosis of invasive mycoses. Infect. Dis. Clin. North Am. 2003, 17, 135–158. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Sulim, S.; Holm, A.; Nielsen, L.; Nielsen, S.D.; Knudsen, J.D.; Drenck, N.E.; Christensen, J.J.; Johansen, H.K. Diagnostic issues, clinical characteristics, and outcomes for patients with fungemia. J. Clin. Microbiol. 2011, 49, 3300–3308. [Google Scholar] [CrossRef] [PubMed]
- Magadia, R.; Weinstein, M.P. Laboratory diagnosis of bacteremia and fungemia. Infect. Dis. Clin. North Am. 2001, 15, 1009–1024. [Google Scholar] [CrossRef]
- Riedel, S.; Carroll, K.C. Blood cultures: Key elements for best practices and future directions. J. Infect. Chemother. 2010, 16, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Reimer, L.G.; Wilson, M.L.; Weinstein, M.P. Update on bacteremia and fungemia. Clin. Microbiol. Rev. 1997, 10, 444–465. [Google Scholar] [PubMed]
- Horvath, L.L.; George, B.J.; Murray, C.K.; Harrison, L.S.; Hospenthal, D.R. Direct comparison of the BACTEC 9240 and BacT/ALERT 3D automated blood culture systems for Candida growth detection. J. Clin. Microbiol. 2004, 42, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.H.; Letscher-Bru, V.; Jaulhac, B.; Waller, J.; Candolfi, E. Comparison of Mycosis IC/F and Plus Aerobic/F media for diagnosis of fungemia by the Bactec 9240 system. J. Clin. Microbiol. 2004, 42, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Sandven, P.; Beranager, L.; Digranes, A.; Haukland, H.H.; Mannsaker, T.; Gausted, P.; The Norwegian Yeast Study Group. Candidemia in Norway, 1991 to 2003: Results from a nationwide study. J. Clin. Microbiol. 2006, 44, 1977–1981. [Google Scholar] [CrossRef] [PubMed]
- Geha, D.J.; Roberts, G.D. Laboratory detection of fungemia. Clin. Lab. Med. 1994, 14, 83–97. [Google Scholar] [PubMed]
- Pfaller, M.A. Laboratory aids in the diagnosis of invasive candidiasis. Mycopathologia 1992, 120, 6–72. [Google Scholar] [CrossRef]
- Beyda, N.D.; Alam, M.J.; Garey, K.W. Comparison of the T2DX instrument with T2Candida assay and automated blood culture in the detection of Candida species using seeded blood samples. Diagn. Microbiol. Infect. Dis. 2013, 77, 324–326. [Google Scholar] [CrossRef] [PubMed]
- Riedel, S.; Eisinger, S.W.; Dam, L.; Stamper, P.D.; Carroll, K.C. Comparison of BD Bactec Plus Aerobic/F medium to VersaTREK Redox 1 blood culture medium for detection of Candida spp. in seeded blood culture specimens containing therapeutic levels of antifungal agents. J. Clin. Microbiol. 2011, 49, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Bassetti, M.; Calandra, T.; Garbino, J.; Kullberg, B.J.; Lortholary, O.; Meersseman, W.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; et al. ESCMID guideline for the diagnosis and management of Candida diseases 2012: Non-neutropenic adult patients. Clin. Microbiol. Infect. 2012, 18 (Suppl. S7), 19–37. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Estrella, M.; Verweij, P.E.; Arendrup, M.C.; Arikan-Akdagli, S.; Bille, J.; Donnelly, J.P.; Jensen, H.E.; Lass-Flörl, C.; Richardson, M.D.; Akova, M.; et al. ESCMID guidelines for the diagnosis and management of Candida diseases 2012: Diagnostic procedures. Clin. Microbiol. Infect. 2012, 18, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.; Benjamen, D.K., Jr.; Calandra, T.F.; Edwards, J.E., Jr.; Filler, S.G.; Fisher, J.F.; Kullberg, B.J.; Ostrosky-Zeichner, L.; et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 503–535. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, A.J.; Akova, M.; Herbrecht, R.; Viscoli, C.; Arendrup, M.C.; Arikan- Akdagli, S.; Bassetti, M.; Bille, J.; Calandra, T.; Castagnola, E.; et al. ESCMID guideline for the diagnosis and management of Candida diseases 2012: Adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin. Microbiol. Infect. 2012, 18 (Suppl S7), 53–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X. Enhancing molecular approaches for diagnosis of fungal infections. Future Microbiol. 2013, 8, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Liesenfeld, O.; Lehman, L.; Hunfeld, K.P.; Kost, G. Molecular diagnosis of sepsis: New aspects and recent developments. Eur. J. Microbiol. Immunol. 2014, 4, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Wissel, M.C.; Shields, R.K.; Salomoni, M.A.; Hao, B.; Press, E.G.; Shields, R.M.; Cheng, S.; Mitsani, D.; Vadnerkar, A.; et al. Performance of Candida real-time polymerase chain reaction, β-d-glucan assay, and blood cultures in the diagnosis of invasive candidiasis. Clin. Infect. Dis. 2012, 54, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Taur, Y.; Cohen, N.; Dubnow, S.; Paskovaty, A.; Seo, S.K. Effect of antifungal therapy on mortality in cancer patients with candidemia. Antimicrob. Agents Chemother. 2010, 54, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Boulware, D.R.; Rolfes, M.A.; Rajasingham, R.; von Hohenberg, M.; Qin, Z.; Taseera, K.; Schutz, C.; Kwizera, R.; Butler, E.K.; Meintjes, G.; et al. Mulitisite validation of cryptococcal antigen lateral flow assay and quantification by laser thermal contrast. Emerg. Infect. Dis. 2014, 20, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Day, J.N.; Chau, T.T.; Wolbers, M. Combination antifungal therapy for cryptococcal meningitis. N. Engl. J. Med. 2013, 368, 1291–1302. [Google Scholar] [CrossRef] [PubMed]
- Ostrosky-Zeichner, L.; Casdevall, A.; Galgiani, J.N.; Odds, F.C.; Rex, J.H. An insight into the antifungal pipeline: Selected new molecules and beyond. Nat. Rev. Drug Discov. 2010, 9, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Groll, A.H.; Gea-Banacloche, J.C.; Glasmacher, A.; Just-Nüebblings, G.; Maschmeyer, G.; Walsh, T.J. Clinical pharmacology of antifungal compounds. Infect. Dis. Clin. North Am. 2003, 17, 159–191. [Google Scholar] [CrossRef]
- Roilides, E.; Lyman, C.A.; Panagopoulu, P.; Chanock, S. Immunomodulation of invasive fungal infections. Infect. Dis. Clin. North Am. 2003, 17, 193–219. [Google Scholar] [CrossRef]
- Spanakis, E.K.; Aparis, G.; Mylonakis, E. New agents for the treatment of fungal infections: clinical efficacy and gaps in coverage. Clin. Infect. Dis. 2006, 42, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C.; Bernaerts, R. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J. Clin. Microbiol. 1994, 32, 1923–1929. [Google Scholar] [PubMed]
- Pfaller, M.A.; Houston, A.; Coffman, S. Application of CHROMagar Candida for rapid screening of clinical specimens, for Candida albicans, Candida tropicalis, Candida krusei, and Candida (Torulopsis) glabrata. J. Clin. Microbiol. 1996, 34, 58–61. [Google Scholar] [PubMed]
- Tan, G.L.; Peterson, E.M. CHROMagar Candida medium for direct susceptibility testing of yeast from blood cultures. J. Clin. Microbiol. 2005, 43, 1727–1731. [Google Scholar] [CrossRef] [PubMed]
- National Committee for Clinical Laboratory Standards: Abbreviated identification of bacteria and yeasts: Approved Guideline NCCLS document M35-A; NCCLS: Wayne, PA, USA, 2002.
- Baumgartner, C.; Freydiere, A.M.; Gille, Y. Direct identification and recognition of yeast species from clinical material by using Albicans ID and CHROMagar Candida plates. J. Clin. Microbiol. 1996, 34, 454–456. [Google Scholar] [PubMed]
- Alexander, B.D.; Dodds-Ashley, E.S.; Reller, L.B.; Reed, S.D. Cost savings with implementation of PNA FISH testing for identification of Candida albicans in blood cultures. Diagn. Microbiol. Infect. Dis. 2006, 54, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Forrest, G.N.; Mankes, K.; Jabra-Rizk, M.A.; Weekes, E.; Johnson, J.K.; Lincalis, D.P.; Venezia, R.A. Peptide Nucleic Acid Fluorescence In Situ Hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J. Clin. Microbiol. 2006, 44, 3381–3383. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, K.; Haase, G.; Kurtzman, C.; Hyldig-Nielsen, J.J.; Stender, H. Differentiation of Candida albicans and Candida dubliniensis by fluorescent in situ hybridization with peptide nucleic acid probes. J. Clin. Microbiol. 2001, 39, 4138–4141. [Google Scholar] [CrossRef] [PubMed]
- Rigby, S.; Procop, G.W.; Haase, G.; Wilson, D.; Hall, G.; Kurtzman, C.; Oliveira, K.; Von Oy, S.; Hyldig-Nielsen, J.J.; Coull, J.; Stendes, H. Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J. Clin. Microbiol. 2002, 40, 2182–2186. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.A.; Joyce, M.J.; Hall, L.S.; Reller, L.B.; Roberts, G.D.; Hall, G.S.; Alexander, B.D.; Procop, G.W. Multicenter evaluation of a Candida albicans peptide nucleic acid fluorescent in situ hybridization probe for characterization of yeast isolates from blood cultures. J. Clin. Microbiol. 2005, 43, 2909–2912. [Google Scholar] [CrossRef] [PubMed]
- Larone, D.H. Medically important fungi: A guide to identification, 5th ed.; American Society for Microbiology: Washington DC, WA, USA, 2014. [Google Scholar]
- Gales, A.C.; Pfaller, M.A.; Houston, A.K.; Joly, S.; Sullivan, D.J.; Coleman, D.C.; Soll, D.R. Identification of Candida dubliniensis based on temperature and utilization of xylose and α-methyl-D-glucoside as determined with the API 20C AUX and Vitek YBC systems. J. Clin. Microbiol. 1999, 37, 3804–3808. [Google Scholar] [PubMed]
- Pinjon, E.; Sullivan, D.; Salkin, I.; Shanley, D.; Coleman, D. Simple, inexpensive, reliable method for differentiation of Candida dubliniensis from Candida albicans. J. Clin. Microbiol. 1998, 36, 2093–2095. [Google Scholar] [PubMed]
- Pfaller, M.A.; Andes, D.R.; Diekema, D.J.; Horn, D.L.; Reboli, A.C.; Rotstein, C.; Franks, B.; Azie, N.E. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: Data from the Prospective Antifungal Therapy (PATH) registry 2004–2008. PLoS ONE 2014, 9, e101510. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Jones, R.N.; Castanheira, M. Regional data analysis of Candida non-albicans strains collected in United States medical sites over a 6-year period, 2006–2011. Mycoses 2014, 57, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, B.J.; Filler, S.G.; Edwards, J.E., Jr. Current treatment strategies for disseminated candidiasis. Clin. Infect. Dis. 2006, 42, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Dykewicz, C.A. Hospital infection control in hematopoietic stem cell transplant recipients. Emerging Infect. Dis. 2001, 7, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Richter, S.S.; Diekema, D.J. Conventional methods for the laboratory diagnosis of fungal infections in the immunocompromised host. In Fungal Infections in the Immunocompromised Patient; Wingard, J.R., Anaissie, E.J., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 341–381. [Google Scholar]
- Rex, J.H.; Pfaller, M.A. Has antifungal susceptibility testing come of age? Clin. Infect. Dis. 2002, 35, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Bale, M.J.; Yang, C.; Pfaller, M.A. Evaluation of growth characteristics on blood agar and eosin methylene blue agar for the identification of Candida (Torulopsis) glabrata. Diagn. Microbiol. Infect. Dis. 1997, 29, 65–67. [Google Scholar] [CrossRef]
- Buchan, B.W.; Ledeboer, N.A. Emerging technologies for the clinical microbiology laboratory. Clin. Microbiol. Rev. 2014, 27, 783–822. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef] [PubMed]
- Iwen, P.C.; Hinrichs, S.H.; Rupp, M.E. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med. Mycol. 2002, 40, 87–109. [Google Scholar] [CrossRef] [PubMed]
- Borman, A.M.; Szekely, A.; Palmer, M.D.; Johnson, E.M. Assessment of accuracy of identification of pathogenic yeasts in microbiology laboratories in the United Kingdom. J. Clin. Microbiol. 2012, 50, 2639–2644. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Woosley, L.N.; Messer, S.A.; Jones, R.N.; Castanheira, M. Significance of molecular identification and antifungal susceptibility of clinical yeasts and moulds in a global antifungal surveillance program. Mycopathologia 2012, 174, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Hall, L.; Wohlfiel, S.; Roberts, G.D. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of commonly encountered, clinically important yeast species. J. Clin. Microbiol. 2003, 41, 5099–5102. [Google Scholar] [CrossRef] [PubMed]
- Hall, L.; Wohlfiel, S.; Roberts, G.D. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of filamentous fungi encountered in the clinical laboratory. J. Clin. Microbiol. 2004, 42, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Hall, L.; LeFebre, K.M.; Demi, S.M.; Wohlfiel, S.L.; Wengenach, N.L. Evaluation of the Yeast Traffic Light™ PNA FISH; probes for the identification of Candida species from positive blood cultures. J. Clin. Microbiol. 2012, 50, 1446–1448. [Google Scholar] [CrossRef] [PubMed]
- Griffin, A.T.; Hanson, K.E. Update on fungal diagnostics. Curr. Infect. Dis. Rep. 2014, 16, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Kothari, A.; Morgan, M.; Haake, D. Emerging technologies for rapid identification of bloodstream pathogens. Clin. Infect. Dis. 2014, 59, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Bhally, H.S.; Jain, S.; Shields, C.; Halsey, N.; Cristofalo, E.; Merz, W.G. Infections in a neonate caused by Pichia fabianii: Importance of molecular identification. Med. Mycol. 2006, 44, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Page, B.T.; Shields, C.E.; Merz, W.G.; Kurtzman, C.P. Rapid identification of ascomycetous yeasts from clinical specimens by a molecular method based on flow cytometry and comparison with identifications from phenotypic assays. J. Clin. Microbiol. 2006, 44, 3167–3171. [Google Scholar] [CrossRef] [PubMed]
- Babady, N.E.; Miranda, E.; Gilhuley, K.A. Evaluation of Luminex xTAG fungal analyte-specific reagents for rapid identification of clinically relevant fungi. J. Clin. Microbiol. 2011, 49, 3777–3782. [Google Scholar] [CrossRef] [PubMed]
- Bovers, M.; Diaz, M.R.; Hagen, F.; Spanjaard, L.; Duim, B.; Visser, C.E.; Duim, B.; Visser, C.E.; Hoogveld, H.L.; Scharringa, J.; et al. Identification of genotypically diverse Cryptococcus neoformans and Cryptococcus gattii isolates by Luminex xMAP technology. J. Clin. Microbiol. 2007, 45, 1874–1883. [Google Scholar] [CrossRef] [PubMed]
- Ananda-Rajah, M.R.; Slavin, M.A.; Thursky, K.T. The case for antifungal stewardship. Curr. Opin. Infect. Dis. 2012, 25, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Caliendo, A.M.; Gilbert, D.N.; Ginocchio, C.C.; Hanson, K.E.; May, L.; Tenover, F.C.; Alland, D.; Blaschke, A.J.; Bonomo, R.A.; et al. Better tests, better care: Improved diagnostics for infectious diseases. Clin. Infect. Dis. 2013, 57 (Suppl. S3), 139–170. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ribot, J.L.; Patterson, T.F. Serological and molecular approaches to the diagnosis of invasive fungal infections in immunocompromised patients. In Fungal Infections in the Immunocompromised Patient; Wingard, J.R., Anaissie, E.J., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 383–406. [Google Scholar]
- McLintock, L.A.; Jones, B.L. Advances in the molecular and serological diagnosis of invasive fungal infection in haemato-oncology patients. Br. J. Hae. Matol. 2004, 126, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C. Reflections on the question: What does molecular mycology have to do with the clinical treating of the patient? Med. Mycol. 2003, 41, 1–6. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Archer, A.E.; Barnes, R.A. Comparison of non-culture-based methods for detection of systemic fungal infections, with an emphasis on invasive Candida infections. J. Clin. Microbiol. 2005, 43, 2181–2187. [Google Scholar] [CrossRef] [PubMed]
- Wingard, J.R. Antifungal chemoprophylaxis after blood and marrow transplantation. Clin. Infect. Dis. 2002, 34, 1386–1390. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.F.; Huie, S.; Sofair, A.N.; Campbell, S.; Durante, A.; Wong, B. Measurement of serum D-arabinitol/creatinine ratios for initial diagnosis and for predicting outcome in an unselected, population-based sample of patients with Candida fungemia. J. Clin. Microbiol. 2006, 44, 3894–3899. [Google Scholar] [CrossRef] [PubMed]
- Persat, F.; Topenot, R.; Piens, M.A.; Thiebaut, A.; Dannaoui, E.; Picot, S. Evaluation of different commercial ELISA methods for the serodiagnosis of systemic candidosis. Mycosis 2002, 45, 455–460. [Google Scholar] [CrossRef]
- Philip, A.; Odabasi, Z.; Matiuzzi, G.; Paetznick, V.L.; Tan, S.W.; Warmington, J.; Rex, J.H.; Ostrosky-Zeichner, L. Syscan 3, a kit for detection of anti-Candida antibodies for diagnosis of invasive candidiasis. J. Clin. Microbiol. 2005, 43, 4834–4835. [Google Scholar] [CrossRef] [PubMed]
- Saubolle, M.A.; McKellar, P.P.; Sussland, D. Epidemiologic, clinical and diagnostic aspects of coccidioidomycosis. J. Clin. Microbiol. 2007, 45, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Sendid, B.; Caillot, D.; Baccouch-Humbert, V.; Klingspor, L.; Grandjean, M.; Bonnin, A.; Poulain, D. Contribution of the Platelia Candida-specfic antibody and antigen tests to early diagnosis of systemic Candida tropicalis infection in neutropenic adults. J. Clin. Microbiol. 2003, 41, 551–4558. [Google Scholar] [CrossRef]
- Sendid, B.; Tabouret, M.; Poirot, J.L.; Mathieu, D.; Fruit, J.; Poulain, D. New enzyme immunoassays for sensitive detection of circulating Candida albicans mannan and antimannan antibodies: Useful combined test for diagnosis of systemic candidiasis. J. Clin. Microbiol. 1999, 37, 1510–1517. [Google Scholar] [PubMed]
- Sendid, B.; Poirot, J.L.; Tabouret, M.; Bonnin, A.; Caillot, D.; Camus, D.; Poulain, D. Combined detection of mannanaemia and antimannan antibodies as a strategy for the diagnosis of systemic infection caused by pathogenic Candida species. J. Med. Microbiol. 2002, 51, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, M.; Calandra, T.; Sanguinetti, M.; Poulain, D.; Viscoli, C. The use of mannan antigen and anti-mannan antibodies in the diagnosis of candidiasis: Recommendations from the Third European Conference on Infections in Leukemia. Crit. Care 2010, 14, R222. [Google Scholar] [CrossRef] [PubMed]
- Year, H.; Sendid, B.; Francois, N.; Camus, D.; Poulain, D. Contribution of serological tests and blood culture to the early diagnosis of systemic candidiasis. Eur. J. Clin. Microbiol. Infect. Dis. 2001, 20, 864–870. [Google Scholar] [CrossRef]
- Antinori, S.; Radice, A.; Galimberti, L.; Magni, C.; Fasan, M.; Parravicini, C. The role of cryptococcal antigen assay in diagnosis and monitoring of cryptococcal meningitis. J. Clin. Microbiol. 2005, 43, 5828–5829. [Google Scholar] [CrossRef] [PubMed]
- Fujita, S.; Takamura, T.; Nagahara, M.; Hashimoto, T. Evaluation of a newly developed down-flow immunoassay for detection of serum mannan antigens in patients with candidaemia. J. Med. Microbiol. 2006, 55, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Odabasi, Z.; Mattiuzzi, G.; Estey, E.; Kantarjian, H.; Saeki, F.; Ridge, R.J.; Ketchum, P.A.; Finkelman, M.A.; Rex, J.H.; Ostrosky-Zeichner, L. β-d-glucan as a diagnostic adjunct for invasive fungal infections: Validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. Clin. Infect. Dis. 2004, 39, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Pickering, J.W.; Sant, H.W.; Bowles, C.A.P.; Roberts, W.L.; Woods, G.L. Evaluation of a (1→3)-β-d-glucan assay for diagnosis of invasive fungal infections. J. Clin. Microbiol. 2005, 43, 5957–5962. [Google Scholar] [CrossRef] [PubMed]
- Sendid, B.; Jonault, T.; Coudriau, R.; Camus, D.; Odds, F.; Tabouret, M.; Poulain, D. Increased sensitivity of mannenemia detection tests by joint detection of α- and β-linked oligomannosides during experimental and human systemic candidiasis. J. Clin. Microbiol. 2004, 42, 164–171. [Google Scholar] [CrossRef] [PubMed]
- McLintock, L.A.; Jordanides, N.E.; Alla, E.K.; Copland, M.; Stewart, K.; Parker, A.; Devaney, M.; Holyoake, T.L.; Jones, B.L. The use of a risk group stratification in the management of invasive fungal infection: A prospective validation. Br. J. Haematol. 2004, 124, 403–404. [Google Scholar] [CrossRef] [PubMed]
- De Pauw, B.E. Between over- and under-treatment of invasive fungal disease. Clin. Infect. Dis. 2005, 41, 1251–1253. [Google Scholar] [CrossRef] [PubMed]
- McMullan, B.J.; Halliday, C.; Sorrell, T.C.; Judd, D.; Sleiman, S.; Marriott, D.; Olma, T.; Chen, S.C. Clinical utility of the cryptococcal antigen lateral flow assay in a diagnostic mycology laboratory. PLoS ONE 2012, 7, e49541. [Google Scholar] [CrossRef] [PubMed]
- Lawn, S.D.; Wood, R. Point-of-care urine antigen screening tests for tuberculosis and cryptococcosis: Potential for mortality reduction in antiretroviral treatment programs in Africa. Clin. Infect. Dis. 2012, 54, 730–740. [Google Scholar] [CrossRef] [PubMed]
- McKenney, J.; Smith, R.M.; Chiller, T.; Detels, R.; Margolick, J.; Klausner, J.D. Prevalence and correlates of cryptococcal anitigen positivity among AIDS patients-United States, 1986–2012. Morb. Mortal. Wkly. Rep. 2014, 63, 585–587. [Google Scholar]
- Kohno, S.; Mitsutake, K.; Masesaki, S.; Yasuoka, A.; Miyazaki, T.; Kaku, M.; Koga, H.; Hara, K. An evaluation of serodiagnostic tests in patients with candidemia: Beta-glucan, mannan, candida antigen by Cand-Tec and D-arabinitol. Microbiol. Immunol. 1993, 37, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Mitsutake, K.; Miyazaki, T.; Tashiro, T.; Yamamoto, Y.; Kakeya, H.; Otsubo, T.; Kawamura, S.; Hossain, M.A.; Noda, T.; Hirakata, U.; et al. Enolase antigen, mannan antigen, Cand-Tec antigen and beta-glucan in patients with candidemia. J. Clin. Microbiol. 1996, 34, 1918–1921. [Google Scholar] [PubMed]
- Pfaller, M.A.; Cabezudo, I.; Buschelman, B.; Bale, M.; Howe, T.; Vitug, M.; Linton, H.J.; Densel, M. Value of Hybritech ICON Candida assay in the diagnosis of invasive candidiasis in high risk patients. Diagn. Microbiol. Infect. Dis. 1993, 16, 53–60. [Google Scholar] [CrossRef]
- Gutierrez, J.; Maroto, C.; Piedrola, G.; Martin, E.; Perez, J.A. Circulating Candida antigens and antibodies: Useful markers of candidemia. J. Clin. Microbiol. 1993, 31, 2550–2552. [Google Scholar] [PubMed]
- Gentry, L.O.; Wilkinson, I.D.; Lea, A.S.; Price, M.F. Latex agglutination test for detection of Candida antigen in patients with disseminated disease. Eur. J. Clin. Microbiol. 1983, 2, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Phillips, P.; Dowd, A.; Jewesson, P.; Radigan, G.; Tweeddale, M.G.; Clarke, A.; Geere, I.; Kelly, M. Nonvalue of antigen detection immunoassays for diagnosis of candidemia. J. Clin. Microbiol. 1990, 28, 2320–2326. [Google Scholar] [PubMed]
- Ruchel, R.; Boning-Stutzer, B.; Mari, A. A synoptical approach to the diagnosis of candidosis, relying on serological antigen and antibody tests, on culture, and on evaluation of clinical data. Mycoses 1988, 31, 87–106. [Google Scholar] [CrossRef] [PubMed]
- Matthews, R.; Burnie, J. Diagnosis of systemic candidiasis by an enzyme-linked dot immunobinding assay for a circulating immunodominant 47-kilodalton antigen. J. Clin. Microbiol. 1988, 26, 459–463. [Google Scholar] [PubMed]
- Walsh, T.J.; Hathorn, J.W.; Sobel, J.D.; Merz, W.G.; Sanchez, V.; Maret, S.M.; Buckley, H.R.; Pfaller, M.A.; Schaufele, R.; Sliva, C.; et al. Detection of circulating Candida enolase by immunoassay in patients with cancer and invasive candidiasis. N. Engl. J. Med. 1991, 324, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Karageorgopoulos, D.E.; Vouloumanou, E.K.; Ntziora, F.; Michalopoulos, A.; Rafailidis, P.I.; Falagas, M.E. β-d-glucan assay for the diagnosis of invasive fungal infections: A meta-analysis. Clin. Infect. Dis. 2011, 52, 750–770. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Kohno, S.; Mitsutake, K.; Maesaki, S.; Tanaka, K.I.; Ishikawa, N.; Hara, K. Plasma (1→3)-β-d-glucan and fungal antigenemia in patients with candidemia, aspergillosis, and cryptococcosis. J. Clin. Microbiol. 1995, 33, 3115–3118. [Google Scholar] [PubMed]
- Obayashi, T.; Yoshida, M.; Mori, T.; Goto, H.; Yasuoka, A.; Iwasaki, H.; Teshima, H.; Kohno, S.; Horiuchi, A.; Ito, A. Plasma (1→3)-β-d-glucan measurement in diagnosis of invasive deep mycosis and fungal febrile episodes. Lancet 1995, 345, 17–20. [Google Scholar] [CrossRef]
- Tamura, H.; Tanaka, S.; Ikeda, T.; Obayashi, T.; Hashimoto, Y. Plasma ((1→3)-β-d-glucan assay and immunohistochemical staining of (1→3)-β-d-glucan in the fungal cell walls using a novel horseshoe crab protein (T-GBP) that specifically binds to (1→3)-β-d-glucan. J. Clin. Lab. Anal. 1997, 11, 104–109. [Google Scholar] [CrossRef]
- Ostrosky-Zeichner, L.; Alexander, B.D.; Kett, D.H.; Vazquez, J.; Pappas, P.G.; Saeki, F.; Ketchum, P.A.; Wingard, J.; Schiff, R.; Tamura, H.; Finkelman, M.A.; Rex, J.H. Multicenter clinical evaluation of the (1→3)-β-d-glucan assay as an aid to diagnosis of fungal infections in humans. Clin. Infect. Dis. 2005, 41, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Digby, J.; Kalbfleisch, J.; Glenn, A.; Larsen, A.; Browder, W.; Williams, D. Serum glucan levels are not specific for presence of fungal infections in intensive care units. Clin. Diagn. Lab. Immunol. 2003, 10, 882–885. [Google Scholar] [CrossRef] [PubMed]
- Neely, L.A.; Audeh, M.; Phung, N.A.; Min, M.; Suchocki, A.; Plourde, D.; Blanco, M.; Demas, V.; Skewis, L.R.; Anagnostou, T.; et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci. Transl. Med. 2013, 5, 182ra54. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Hsieh, W.H.; Liu, T.S.; Wang, C.H.; Chou, H.C.; Yeo, Y.H.; Tseng, C.P.; Lee, C.C. Multiplex PCR system for rapid detection of pathogens in apteients with presumed sepsis—a systematic review and meta-analysis. PLoS ONE 2013, 8, e62323. [Google Scholar] [CrossRef] [PubMed]
- Mylonakis, E.; Clancy, C.J.; Ostrosky-Zeichner, L.; Garey, K.W.; Alangaden, G.J.; Vazquez, J.A.; Groeger, J.S.; Judson, M.A.; Vinagre, Y.M.; Heard, S.O.; et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood. Clin. Infect. Dis. 2015, 60, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Baron, E.J. Implications of new technology for infectious disease practice. Clin. Infect. Dis. 2006, 43, 1318–1323. [Google Scholar] [PubMed]
- Moreira-Oliveira, M.S.; Mikami, Y.; Miyaji, M.; Imai, T.; Schreiber, A.Z.; Moretti, M.L. Diagnosis of candidemia by polymerase chain reaction and blood culture: Prospective study in a high-risk population and identification of variables associated with development of candidemia. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Buchheidt, D.; Baust, C.; Skladny, H.; Ritter, J.; Suedhoff, T.; Baldus, M.; Seifarth, W.; Leib-Moesch, C.; Hehlmann, R. Detection of Aspergillus species in blood and bronchoalveolar lavage samples from immunocompromised patients by means of 2-step polymerase chain reaction: Clinical results. Clin. Infect. Dis. 2001, 33, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Buchheidt, D.; Hummel, M.; Schleiermacher, D.; Spiess, V.; Schwerdtferger, R.; Cornely, O.A.; Wilhelm, S.; Reuter, S.; Kern, W.; Südhoff, T.; et al. Prospective clinical evaluation of a LightCycler™-mediated polymerase chain reaction assay, a nested-PCR assay and a galactomannan enzyme-linked immunosorbent assay for detection of invasive aspergillosis in neutropenic cancer patients and haematological stem cell transplant patients. Br. J. Haematol. 2004, 125, 196–202. [Google Scholar] [PubMed]
- Florent, M.; Katsahian, S.; Vekhoff, A.; Levy, V.; Rio, B.; Marie, J.P.; Bouvet, A.; Cornet, M. Prospective evaluation of a polymerase chain reaction-ELISA targeted to Aspergillus fumigatus and Aspergillus flavus for the early diagnosis of invasive aspergillosis in patients with hematological malignancies. J. Infect. Dis. 2006, 193, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Hebart, H.; Löffler, J.; Reitze, H.; Engel, A.; Schumacher, U.; Klingebiel, T.; Bader, P.; Böhme, A.; Martin, H.; Bunjes, D.; et al. Prospective screening by a panfungal polymerase chain reaction assay in patients at risk for fungal infections: Implications for the management of febrile neutropenia. Br. J. Haematol. 2000, 111, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Hebart, H.; Löffler, J.; Meisner, C.; Serey, F.; Schmidt, D.; Böhme, A.; Martin, H.; Engel, A.; Bunjes, D.; Kern, W.V.; et al. Early detection of Aspergillus infection after allogeneic stem cell transplantation by polymerase chain reaction screening. J. Infect. Dis. 2000, 181, 1713–1719. [Google Scholar] [CrossRef] [PubMed]
- Hope, W.W.; Walsh, T.J.; Denning, D.W. Laboratory diagnosis of invasive aspergillosis. Lancet Infect. Dis. 2005, 5, 609–622. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Aigner, J.; Gunsilius, E.; Petzer, A.; Nachbaur, D.; Gastl, G.; Einsele, H.; Löffler, J.; Dierich, M.P.; Würzner, R. Screening for Aspergillus spp. using polymerase chain reaction of whole blood samples from patients with haematological malignancies. Br. J. Haematol. 2001, 113, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Skladney, H.; Buchheidt, D.; Baust, C.; Krieg-Schneider, F.; Seifarth, W.; Leib-Mösch, C.; Hehlmann, R. Specific detection of Aspergillus species in blood and bronchoalveolar lavage samples of immunocompromised patients by two-step PCR. J. Clin. Microbiol. 1999, 37, 3865–3871. [Google Scholar]
- Rappelli, P.; Are, R.; Casu, G.; Fiori, P.L.; Cappuccinelli, P.; Aceti, A. Development of a nested PCR for detection of Cryptococcus neoformans in cerebrospinal fluid. J. Clin. Microbiol. 1998, 36, 3438–3440. [Google Scholar] [PubMed]
- Thompson, G.R.; Sharma, S.; Bays, D.J.; Pruitt, R.; Engelthaler, D.M.; Bowers, J.; Driebe, E.M.; Davis, M.; Libke, R.; Cohen, S.H.; et al. Coccidioidomycosis: Adenosine deaminase levels, serologic parameters, culture results, and polymerase chain reaction testing in pleural fluid. Chest 2013, 143, 776–781. [Google Scholar] [PubMed]
- Einsele, H.; Hebart, H.; Roller, G.; Löffler, J.; Rothenhöfer, I.; Müller, C.A.; Bowden, R.A.; van Burik, J.A.; Engelhard, D.; Kanz, L.; et al. Detection and identification of fungal pathogens in blood by using molecular probes. J. Clin. Microbiol. 1997, 35, 1353–1360. [Google Scholar] [PubMed]
- Jordanides, N.E.; Allan, E.K.; McLintock, L.A.; Copland, M.; Devaney, M.; Stewart, K.; Parker, A.N.; Johnson, P.R.E.; Holyoake, T.L.; Jones, B.L. A prospective study of real-time panfungal PCR for the early diagnosis of invasive fungal infections in haemato-oncology patients. Bone Marrow Transplant. 2005, 35, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.T.; Lu, H.C.; Chen, W.L. Improving efficacy of antifungal therapy by polymerase chain reaction-based strategy among patients with neutropenia and cancer. Clin. Infect. Dis. 2001, 33, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Veron, V.; Simon, S.; Blanchet, D.; Aznar, C. Real-time polymerase chain reaction of Cryptococcus neoformans and Cryptococcus gattii in human samples. Diagn. Microbiol. Infect. Dis. 2009, 65, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Baselski, V.; Buchanan, K.; Carey, R.; Clarridge, J.; Weissfeld, A. Survey of Clinical Microbiology Laboratory Workloads, Productivity Rates, and Staffing Vacancies. American Society for Microbiology Office of Public and Scientific Affairs: Washington DC, WA, USA, 2005. [Google Scholar]
- Kan, V.L. Polymerase chain reaction for the diagnosis of candidemia. J. Infect. Dis. 1993, 168, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.A. PCR identification of four medically important Candida species by using a single primer pair. J. Clin. Microbiol. 1994, 32, 2962–2967. [Google Scholar] [PubMed]
- Burgener-Kainuz, P.; Zuber, J.P.; Jaunin, P.; Buchman, T.G.; Bille, J.; Rossier, M. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-α-demethylase (L1A1) gene fragment. J. Clin. Microbiol. 1994, 32, 1902–1907. [Google Scholar]
- Morace, G.; Pagano, L.; Sanguinetti, M.; Posteraro, B.; Mele, L.; Equitani, F.; D’Amore, G.; Leone, G.; Fadda, G. PCR-restriction enzyme analysis for detection of Candida DNA in blood from febrile patients with hematological malignancies. J. Clin. Microbiol. 1999, 37, 1871–1875. [Google Scholar] [PubMed]
- Flahaut, M.; Sanglard, D.; Monod, M.; Bille, J.; Rossier, M. Rapid detection of Candida albicans in clinical samples by DNA amplification of common regions from C. albicans-secreted aspartic proteinase genes. J. Clin. Microbiol. 1998, 36, 395–401. [Google Scholar] [PubMed]
- Burnie, J.P.; Golband, N.; Matthews, R.C. Semiquantitative polymerase chain reaction enzyme immunoassay for diagnosis of disseminated candidiasis. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Chryssanthou, E.; Klingspor, L.; Tollemar, J.; Petrini, B.; Larsson, L.; Christensson, B.; Ringdén, O. PCR and other non-culture methods for diagnosis of invasive Candida infections in allogeneic bone marrow and solid organ transplant recipients. Mycoses 1999, 42, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Carrara, L.; Navarro, F.; Turbau, M.; Seres, M.; Morán, I.; Quintana, I.; Martino, R.; González, Y.; Brell, A.; Cordon, O.; et al. Coll P Molecular diagnosis of bloodstream infections with a new dual-priming oligonucleotide-based multiplex PCR assay. J. Med. Microbiol. 2013, 62, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Fitting, C.; Parlato, M.; Adib-Conquy, M.; Memain, N.; Philippart, F.; Misset, B.; Monchi, M.; Cavaillon, J.M.; Adrie, C. DNAemia detection by multiplex PCR and biomarkers for infection in systemic inflammatory response syndrome patients. PLoS ONE 2012, 7, e38916. [Google Scholar] [CrossRef] [PubMed]
- Haag, H.; Locher, F.; Nolte, O. Molecular diagnosis of microbial aetiologies using SepsiTest in the daily routine of a diagnostic laboratory. Diagn. Microbiol. Infect. Dis. 2013, 76, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Jordana-Lluch, E.; Carolan, H.; Gimenez, M.; Sampath, R.; Ecker, D.J.; Quesada, M.D.; Mòdol, J.M.; Arméstar, F.; Blyn, L.B.; Cummins, L.L.; Ausina, V.; Martró, E. Rapid diagnosis of bloodstream infections with PCR followed by mass spectrometry. PLoS ONE 2013, 8, e62108. [Google Scholar] [CrossRef] [PubMed]
- Leitner, E.; Kessler, H.H.; Spindelboeck, W.; Hoenigl, M.; Putz-Bankuti, C.; Stadlbauer-Köllner, V.; Krause, R.; Grisold, A.J.; Feierl, G.; Stauber, R.E. Comparison of two molecular assays with conventional blood culture for diagnosis of sepsis. J. Microbiol. Methods 2013, 92, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Opota, O.; Jaton, K.; Greub, G. Microbial diagnosis of bloodstream infection: Towards molecular diagnosis directly from blood. Clin. Microbiol. Infect. 2015, 21, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, J.; Nierhaus, A.; Braune, S.A.; de Heer, G.; Kluge, S. Comparison of three different commercial PCR assays for the detection of pathogens in critically ill sepsis patients. Med. Klin. Intensivmed. Notfmed. 2013, 108, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Wellinghausen, N.; Kochem, A.J.; Disque, C.; Mühl, H.; Gebert, S.; Winter, J.; Matten, J.; Sakka, S.G. Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J. Clin. Microbiol. 2009, 47, 2759–2765. [Google Scholar] [CrossRef] [PubMed]
- Espy, M.J.; Uhl, J.R.; Sloan, L.M.; Buckwalter, S.P.; Jones, M.F.; Vetter, E.A.; Yao, J.D.C.; Wengenack, N.L.; Rosenblatt, J.E.; Cockerill, F.R., III; et al. Real-time PCR in clinical microbiology: Applications for routine laboratory testing. Clin. Microbiol. Rev. 2006, 19, 165–256. [Google Scholar] [CrossRef] [PubMed]
- Löeffler, J.; Henke, N.; Hebart, H.; Schmidt, D.; Hagmeyer, L.; Schumacher, U.; Einsele, H. Quantification of fungal DNA by using fluorescence resonance energy transfer and the Light Cycler system. J. Clin. Microbiol. 2000, 38, 586–590. [Google Scholar] [PubMed]
- Heil, E.L.; Daniels, L.M.; Long, D.M.; Rodino, K.G.; Weber, D.J.; Miller, M.B. Impact of a rapid peptide nucleic acid fluorescence in situ hybridization assay on treatment of Candida infections. Am. J. Health Syst. Pharm. 2012, 69, 1910–1914. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.M.; Hata, D.J. Rapid identification of bacteria and Candida using PNA-FISH from blood and peritoneal cultures: A retrospective clinical study. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.R.; Gorton, R.L.; Barker, K.; Ramnarain, P.; Kibbler, C.C. Evaluation of PNA-FISH yeast traffic light for rapid identification of yeast directly from positive blood cultures and assessment of clinical impact. J. Clin. Microbiol. 2013, 51, 1301–1302. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.A.; White, P.L.; Bygrave, C.; Evans, N.; Healy, B.; Kell, J. Clinical impact of enhanced diagnosis of invasive fungal disease in high-risk haematology and stem cell treansplant patients. J. Clin. Pathol. 2009, 62, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.H. Undiagnosed invasive candidiasis: Incorporating non-culture diagnostics into rational prophylactic and preemptive antifungal strategies. Expert Rev. Anti. Infect. Ther. 2014, 12, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Prentice, H.G.; Kibbler, C.C.; Prentice, A.G. Towards a targeted, risk-based, antifungal strategy in neutropenic patients. Br. J. Haematol. 2000, 110, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, R.P.; Gennings, C. Bloodstream infections due to Candida species in the intensive care unit: Identifying especially high-risk patients to determine prevention strategies. Clin. Infect. Dis. 2005, 41 (Suppl. S6), 389–393. [Google Scholar] [CrossRef] [PubMed]
- Diekema, D.J.; Pfaller, M.A. Rapid detection of antibiotic-resistant organism carriage for infection prevention. Clin. Infect. Dis. 2013, 56, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Hull, C.M.; Purdy, N.J.; Moody, S.C. Mitigation of human-pathogenic fungi that exhibit resistance to medical agents: Can antifungal stewardship help? Future Microbiol. 2014, 9, 307–325. [Google Scholar] [CrossRef] [PubMed]
- Aitken, S.L.; Beyda, N.D.; Shah, D.N.; Palmer, H.R.; Lasco, T.M.; Koo, H.; Garey, K.W. Clinical practice patterns in hospitalized patients at risk for invasive candidiasis: Role of antifungal stewardship programs in an era of rapid diagnostics. Ann. Pharmacother. 2014, 48, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Bilir, S.P.; Ferrufino, C.P.; Pfaller, M.A.; Munakata, J. The economic impact of rapid Candida species identification by T2Candida among high-risk patients. Future Microbiol. 2015, 10, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Ostrosky-Zeichner, L.; Pappas, P.G.; Shoham, S.; Reboli, A.; Barron, M.A.; Sims, C.; Wood, C.; Sobel, J.D. Improvement of a clinical predication rule for clinical trials on prophylaxis in the intensive care unit. Mycoses 2011, 54, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Messer, S.A.; Jones, R.N.; Farrell, D.J.; Pfaller, M.A. Activity of echinocandins and triazoles against a contemporary (2012) worldwide collection of yeasts and moulds collected from invasive infections. Int. J. Antimicrob. Agents 2014, 44, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Valerio, M.; Rodriguez-Gonzalez, C.G.; Munoz, P.; Caliz, B.; Sanjurjo, M.; Bouza, E.; Anaya, F.; Bañares, R.; Bouza, E.; Bustinza, A.; et al. Evaluation of antifungal use in a tertiary care institution: Antifungal stewardship urgently needed. J. Antimicrob. Chemother. 2014, 69, 1993–1999. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.E.; Vallabhaneni, S.; Smith, R.M.; Chideya-Chihota, S.; Chehab, J.; Park, B. Cryptococcal antigen screening and early antifungal treatment to prevent cryptococcal meningitis: A review of the literature. J. Acquir. Immune Defic. Syndr. 2015, 68 (Suppl. S3), 331–339. [Google Scholar] [CrossRef] [PubMed]
- Meya, D.; Rajasingham, R.; Nalintya, E.; Tenforde, M.; Jarvis, J.N. Preventing cryptococcosis-shifting the paradigm in the era of highly active antiretroviral therapy. Curr. Trop. Med. Rep. 2015, 2, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Pyrgos, V.; Setz, A.E.; Steiner, C.A.; Prevots, D.R.; Williamson, P.R. Epidemiology of cryptococcal meningitis in the US: 1997–2009. PLoS ONE 2013, 8, e56269. [Google Scholar] [CrossRef] [PubMed]
- Rosner, E.R.; Reiss, E.; Warren, N.G.; Shadomy, H.J.; Lipman, H.B. Evaluation of the status of laboratory practices and the need for continuing education in medical mycology. Am. J. Clin. Pathol. 2002, 118, 278–286. [Google Scholar] [PubMed]
- Schelenz, S.; Barnes, R.A.; Kibbler, C.C.; Jones, B.L.; Denning, D.W. Standards of care for patients with invasive fungal infections within the United Kingdom: A national audit. J. Infect. 2009, 58, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.L. Practice makes perfect. Am. J. Clin. Pathol. 2002, 118, 167–169. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfaller, M.A. Application of Culture-Independent Rapid Diagnostic Tests in the Management of Invasive Candidiasis and Cryptococcosis. J. Fungi 2015, 1, 217-251. https://doi.org/10.3390/jof1020217
Pfaller MA. Application of Culture-Independent Rapid Diagnostic Tests in the Management of Invasive Candidiasis and Cryptococcosis. Journal of Fungi. 2015; 1(2):217-251. https://doi.org/10.3390/jof1020217
Chicago/Turabian StylePfaller, Michael A. 2015. "Application of Culture-Independent Rapid Diagnostic Tests in the Management of Invasive Candidiasis and Cryptococcosis" Journal of Fungi 1, no. 2: 217-251. https://doi.org/10.3390/jof1020217
APA StylePfaller, M. A. (2015). Application of Culture-Independent Rapid Diagnostic Tests in the Management of Invasive Candidiasis and Cryptococcosis. Journal of Fungi, 1(2), 217-251. https://doi.org/10.3390/jof1020217