Ablation of Atrioventricular Nodal Re-Entrant Tachycardia Combining Irrigated Flexible-Tip Catheters and Three-Dimensional Electroanatomic Mapping: Long-Term Outcomes
Abstract
:1. Introduction
2. Methods
2.1. Electrophysiological Study and Catheter Ablation
2.2. Clinical Outcomes
2.3. Data Analysis
3. Results
4. Discussion
4.1. Procedural Success
4.2. Long-Term Success
4.3. Iatrogenic AV Conduction Block
4.4. Radiation Exposure
4.5. Mortality
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Di Biase, L.; Gianni, C.; Bagliani, G.; Padeletti, L. Arrhythmias Involving the Atrioventricular Junction. Card. Electrophysiol. Clin. 2017, 9, 435–452. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, Y.; Armstrong, T.J. Rhythm, Tachycardia, Atrioventricular Nodal Reentry Tachycardia (AVNRT); StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Inoue, S.; Becker, A.E. Posterior extensions of the human compact atrioventricular node: A neglected anatomic feature of potential clinical significance. Circulation 1998, 97, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Po, S.S. Warren Jackman’s Art of War: A Sniper’s Approach to Catheter Ablation. Self-Published Digital Book. Available online: https://www.aphrs.org/publications/ebooks (accessed on 10 April 2021).
- Brugada, J.; Katritsis, D.G.; Arbelo, E.; Arribas, F.; Bax, J.J.; Blomstrom-Lundqvist, C.; Calkins, H.; Corrado, D.; Deftereos, S.G.; Diller, G.P.; et al. 2019 ESC Guidelines for themanagement of patients with supraventricular tachycardia. Eur. Heart J. 2020, 41, 655–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katritsis, D.G.; Zografos, T.; Katritsis, G.D.; Giazitzoglou, E.; Vachliotis, V.; Paxinos, G.; Camm, A.J.; Josephson, M.E. Catheter ablation vs. antiarrhythmic drug therapy in patients with symptomatic atrioventricular nodal re-entrant tachycardia: A randomized, controlled trial. Europace 2017, 19, 602–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brembilla-Perrot, B.; Sellal, J.M.; Olivier, A.; Manenti, V.; Beurrier, D.; De Chillou, C.; Villemin, T.; Girerd, N. Recurrences of symptoms after AV node re-entrant tachycardia ablation: A clinical arrhythmia risk score to assess putative underlying cause. Int. J. Cardiol. 2015, 179, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Santangeli, P.; Proietti, R.; Di Biase, L.; Bai, R.; Natale, A. Cryoablation versus radiofrequency ablation of atrioventricular nodal reentrant tachycardia. J. Interv. Card. Electrophysiol. 2014, 39, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Decroocq, M.; Rousselet, L.; Riant, M.; Norberciak, L.; Viart, G.; Guyomar, Y.; Graux, P.; Maréchaux, S.; Germain, M.; Menet, A. Periprocedural, early, and long-term risks of pacemaker implantation after atrioventricular nodal re-entry tachycardia ablation: A French nationwide cohort. Europace 2020, 22, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.N.; Hu, Y.F.; Wu, T.J.; Fong, A.N.; Lin, W.S.; Lin, Y.J.; Chang, S.L.; Lo, L.W.; Tuan, T.C.; Chang, H.Y.; et al. Permanent pacemaker implantation for late atrioventricular block in patients receiving catheter ablation for atrioventricular nodal reentrant tachycardia. Am. J. Cardiol. 2013, 111, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Jackman, W.M.; Beckman, K.J.; McClelland, J.H.; Wang, X.; Friday, K.J.; Roman, C.A.; Moulton, K.P.; Twidale, N.; Hazlitt, H.A.; Prior, M.I.; et al. Treatment of Supraventricular Tachycardia Due to Atrioventricular Nodal Reentry by Radiofrequency Catheter Ablation of Slow-Pathway Conduction. N. Engl. J. Med. 1992, 327, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, M.; Tercedor, L.; Almansa, I.; Ros, N.; Galdeano, R.S.; Burillo, F.; Santiago, P.; Peñas, R. Safety and feasibility of catheter ablation for atrioventricular nodal re-entrant tachycardia without fluoroscopic guidance. Heart Rhythm. 2009, 6, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Casella, M.; Dello-Russo, A.; Pelargonio, G.; Del Greco, M.; Zingarini, G.; Piacenti, M.; Di Cori, A.; Casula, V.; Marini, M.; Pizzamiglio, F.; et al. Near zerO fluoroscopic exPosure during catheter ablAtion of supRavenTricular arrhYthmias: The NO-PARTY multicentre randomized trial. Europace 2016, 18, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Peichl, P.; Kautzner, J. Advances in irrigated tip catheter technology for treatment of cardiac arrhythmias. Recent Pat. Cardiovasc. Drug Discov. 2013, 8, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Chrispin, J.; Misra, S.; Marine, J.E.; Rickard, J.; Barth, A.; Kolandaivelu, A.; Ashikaga, H.; Tandri, H.; Spragg, D.D.; Crosson, J.; et al. Current management and clinical outcomes for catheter ablation of atrioventricular nodal re-entrant tachycardia. Europace 2018, 20, e51–e59. [Google Scholar] [CrossRef] [PubMed]
- Winterfield, J.R.; Jensen, J.; Gilbert, T.; Marchlinski, F.; Natale, A.; Packer, D.; Reddy, V.; Mahapatra, S.; Wilber, D.J. Lesion size and safety comparison between the novel flex tip on the FlexAbility ablation catheter and the solid tips on the thermo cool and thermo cool SFl. J. Cardiovasc. Electrophysiol. 2016, 27, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Bertini, M.; Brieda, A.; Balla, C.; Pollastrelli, A.; Smarrazzo, V.; Francesco, V.; Malagù, M.; Ferrari, R. Efficacy and safety of catheter ablation of atrioventricular nodal re-entrant tachycardia by means of flexible-tip irrigated catheters. J. Interv. Card. Electrophysiol. 2020, 58, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Houmsse, M.; Daoud, E.G. Biophysics and clinical utility of irrigated-tip radiofrequency catheter ablation. Expert Rev. Med. Devices 2012, 9, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, J.Á.; Anderson, R.H.; Macías, Y.; Nevado-Medina, J.; Porta-Sánchez, A.; Rubio, J.M.; Sánchez-Quintana, D. Variable Arrangement of the Atrioventricular Conduction Axis Within the Triangle of Koch: Implications for Permanent His Bundle Pacing. Clin. Electrophysiol. 2020, 6, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.A.; Galvin, J.; Keaney, J.; Keelan, E.; Szeplaki, G. First experience with zero-fluoroscopic ablation for supraventricular tachycardias using a novel impedance and magnetic-field-based mapping system. Clin. Res. Cardiol. 2018, 107, 578–585. [Google Scholar] [PubMed] [Green Version]
Variable | Study Population (n = 150) |
---|---|
Male | 70 (46.7%) |
Female | 80 (53.3%) |
Age (years), median (interquartile range) | 61 (53–72) |
Hypertension | 68 (45.3%) |
Coronary artery disease | 14 (9.3%) |
Diabetes mellitus | 13 (8.7%) |
Mitral valvular disease | 9 (6.0%) |
Aortic valvular disease | 6 (4.0%) |
NYHA class I | 140 (93.3%) |
NYHA class II | 9 (6.0%) |
NYHA class III | 1 (0.7%) |
NYHA class IV | 0 (0.0%) |
Ejection fraction (%) | 59.1 ± 7.9 |
Antiarrhythmic drug therapy | 46 (30.7%) |
Two or more antiarrhythmic drugs | 7 (4.6%) |
Beta-blockers | 22 (14.7%) |
Verapamil | 12 (8.0%) |
Flecainide | 11 (7.3%) |
Amiodarone | 4 (2.7%) |
Sotalol | 2 (1.3%) |
Propafenone | 1 (0.7%) |
Diltiazem | 1 (0.7%) |
Other antiarrhythmic drug | 0 (0.0%) |
Previous AVNRT ablation | 4 (2.7%) |
Variable | Study Population (n = 150) |
---|---|
Procedure time (min) | 82.7 ± 40.8 |
Fluoroscopy time (s) | 99.7 ± 74.9 |
Isoproterenol infusion | 44 (29.3%) |
Inducible AVNRT | 128 (85.3%) |
AVNRT type slow-fast | 108 (72.0%) |
AVNRT type slow-slow | 18 (12.0%) |
AVNRT type fast-slow | 2 (1.3%) |
Arrhythmia cycle length (ms)t | 373.1 ± 69.4 |
Arrhythmia cycle length (bpm) | 162.8 ± 37.8 |
Evidence of dual AV nodal physiology | 94 (62.7%) |
Evidence of slow pathway potential | 6 (4.0%) |
Maximum radiofrequency power (W) | 25.5 ± 3.5 |
Radiofrequency delivery duration (s) | 48.1 ± 22 |
Impedance drop (Ohm) | 15.4 ± 3.5 |
Concomitant other arrhythmia ablation | 9 (6.0%) |
Pre-ablation PR interval (ms) | 159.2 ± 29.7 |
Post-ablation PR interval (ms) | 159.6 ± 32.4 |
Procedural success | 145 (96.7%) |
Variable | Study Population (n = 150) |
---|---|
Arrhythmia recurrences | 11 (7.3%) |
Pacemaker implantation | 0 (0.0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malagù, M.; Vitali, F.; Marchini, F.; Fiorio, A.; Sirugo, P.; Mele, D.; Brieda, A.; Balla, C.; Bertini, M. Ablation of Atrioventricular Nodal Re-Entrant Tachycardia Combining Irrigated Flexible-Tip Catheters and Three-Dimensional Electroanatomic Mapping: Long-Term Outcomes. J. Cardiovasc. Dev. Dis. 2021, 8, 61. https://doi.org/10.3390/jcdd8060061
Malagù M, Vitali F, Marchini F, Fiorio A, Sirugo P, Mele D, Brieda A, Balla C, Bertini M. Ablation of Atrioventricular Nodal Re-Entrant Tachycardia Combining Irrigated Flexible-Tip Catheters and Three-Dimensional Electroanatomic Mapping: Long-Term Outcomes. Journal of Cardiovascular Development and Disease. 2021; 8(6):61. https://doi.org/10.3390/jcdd8060061
Chicago/Turabian StyleMalagù, Michele, Francesco Vitali, Federico Marchini, Alessio Fiorio, Paolo Sirugo, Daniela Mele, Alessandro Brieda, Cristina Balla, and Matteo Bertini. 2021. "Ablation of Atrioventricular Nodal Re-Entrant Tachycardia Combining Irrigated Flexible-Tip Catheters and Three-Dimensional Electroanatomic Mapping: Long-Term Outcomes" Journal of Cardiovascular Development and Disease 8, no. 6: 61. https://doi.org/10.3390/jcdd8060061