Global Longitudinal Strain as a Sensitive Marker of Left Ventricular Dysfunction in Pediatric Dilated Cardiomyopathy: A Case–Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Sample Used
2.2. Working Method
2.2.1. Clinical Assessment
2.2.2. Blood Sampling
2.2.3. Echocardiography
2.2.4. Speckle-Tracking Analysis
2.3. Statistical Tests Used
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Comparison of Conventional Echocardiographic Parameters Between the DCM and Control Groups
3.3. Global Myocardial Deformation- Global Longitudinal Strain and Strain Rate
3.4. Correlation Between Global Longitudinal Strain and Functional and Biomarker Parameters
3.5. Subgroup Analysis
3.6. Primary Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DCM | Dilated cardiomyopathy |
HF | Heart failure |
NYHA | New York Heart Association |
LV | Left ventricle |
LVEF | Left ventricular ejection fraction |
LVSF | Left ventricular shortening fraction |
LVEDD | Left ventricular end-diastolic diameter |
LVESD | Left ventricular end-systolic diameter |
LVEDV | Left ventricular end-diastolic volume |
SD | Standard deviation |
2D-STE | Two-dimensional speckle-tracking echocardiography |
EACVI | European Association of Cardiovascular Imaging |
ASE | American Society of Echocardiography |
NT-proBNP | N-terminal pro-B-type natriuretic peptide |
MAPSE | Mitral annular plane systolic excursion |
IVS | Intraventricular septum |
CO | Cardiac output |
SV | Stroke volume |
A4C | Apical four-chamber view |
A3C | Apical three-chamber view |
A2C | Apical two-chamber view |
GLS | Global longitudinal strain |
DICOM | Digital Imaging and Communications in Medicine |
SR | Strain Rate |
BLS | Basal longitudinal strain |
MLS | Mid-ventricular longitudinal strain |
ALS | Apical longitudinal strain |
IQR | Interquartile range |
CI | Confidence interval |
OR | Odds ratio |
AUC | Area under the curve |
ROC | Receiver Operating Characteristic |
BMI | Body Mass index |
NO | Number |
YR | Years |
KG | Kilograms |
CM | Centimeters |
BP | Blood pressure |
HR | Heart rate |
References
- Passantino, S.; Maurizi, N.; Fedele, E.; Marchi, A.; Ghiselli, L.; Chiriatti, C.; Fumagalli, C.; Brambilla, A.; Guccione, P.; Favilli, S.; et al. Cardiomyopathies in children—Inherited heart muscle disease. Overview of hypertrophic, dilated, restrictive and non-compaction phenotypes. Prog. Pediatr. Cardiol. 2018, 51, 8–15. [Google Scholar]
- Malinow, I.; Fong, D.C.; Miyamoto, M.; Badran, S.; Hong, C.C. Pediatric dilated cardiomyopathy: A review of current clinical approaches and pathogenesis. Front. Pediatr. 2024, 12, 1404942. [Google Scholar] [CrossRef]
- Kirk, R.; Dipchand, A.I.; Rosenthal, D.N.; Addonizio, L.; Burch, M.; Chrisant, M.; Dubin, A.; Everitt, M.; Gajarski, R.; Mertens, L.; et al. The International Society for Heart and Lung Transplantation Guidelines for the Management of Pediatric Heart Failure: Executive Summary. J. Heart Lung Transplant. 2014, 33, 888–909. [Google Scholar] [CrossRef]
- Woulfe, K.C.; Siomos, A.K.; Nguyen, H.; SooHoo, M.; Galambos, C.; Stauffer, B.L.; Sucharov, C.; Miyamoto, S. Fibrosis and fibrotic gene expression in pediatric and adult patients with idiopathic dilated cardiomyopathy. J. Card. Fail. 2017, 23, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Nicin, L.; Abplanalp, W.T.; Schänzer, A.; Sprengel, A.; John, D.; Mellentin, H.; Tombor, L.; Keuper, M.; Ullrich, E.; Klingel, K.; et al. Single nuclei Sequencing Reveals Novel Insights Into the Regulation of Cellular Signatures in Children with Dilated Cardiomyopathy. Circulation 2021, 143, 1704–1719. [Google Scholar] [CrossRef] [PubMed]
- Traister, A.; Patel, R.; Huang, A.; Patel, S.; Plakhotnik, J.; Lee, J.E.; Medina, M.G.; Welsh, C.; Ruparel, P.; Zhang, L.; et al. Cardiac regenerative capacity is age- and disease-dependent in childhood heart disease. PLoS ONE 2018, 13, e0200342. [Google Scholar] [CrossRef]
- Sturgill, S.L.; Shettigar, V.; Ziolo, M.T. Antiquated ejection fraction: Basic research applications for speckle tracking echocardiography. Front. Physiol. 2022, 13, 969314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; A Blom, N.; A de Boer, R.; et al. ESCScientific Document Group 2023 ESCGuidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef] [PubMed]
- Boer, S.L.D.M.; Sarvaas, G.J.d.M.; Klitsie, L.M.; van Iperen, G.G.; Tanke, R.B.; Helbing, W.A.; Backx, A.P.; Rammeloo, L.A.; Dalinghaus, M.; Harkel, A.D.T. Distribution of strain patterns in children with dilated cardiomyopathy. Echocardiography 2017, 34, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Geyer, H.; Caracciolo, G.; Abe, H.; Wilansky, S.; Carerj, S.; Gentile, F.; Nesser, H.J.; Khandheria, B.; Narula, J.; Sengupta, P.P. Assessment of myocardial mechanics using speckle tracking echocardiography: Fundamentals and clinical applications. J. Am. Soc. Echocardiogr. 2010, 23, 351–369. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J.Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [PubMed]
- Voigt, J.-U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging. 2015, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Das, B.B. Current State of Pediatric Heart Failure. Children 2018, 5, 88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torbey, A.F.M.; Couto, R.G.T.; Grippa, A.; Maia, E.C.; Miranda, S.A.; dos Santos, M.A.C.; Peres, E.T.; Costa, O.P.S.; de Oliveira, E.M.; Mesquita, E.T. Cardiomyopathy in Children and Adolescents in the Era of Precision Medicine. Arq. Bras. Cardiol. 2024, 121, e20230154. [Google Scholar] [PubMed]
- Palm, J.; Hoffmann, G.; Klawonn, F.; Tutarel, O.; Palm, H.; Holdenrieder, S.; Ewert, P. Continuous, complete and comparable NT-proBNP reference ranges in healthy children. Clin. Chem. Lab. Med. 2020, 58, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- German Heart Center Munich. Biomarkers in Children and Adolescents with Congenital Heart Defects—NT-probnp Z-Score Calculator; German Heart Center: Munich, Germany, 2020; Available online: https://www.deutsches-herzzentrum-muenchen.de/en/research/biomarkers-in-children-and-adolescents-with-congenital-heart-defects-working-group/ (accessed on 10 August 2025).
- Lopez, L.; Colan, S.D.; Frommelt, P.C.; Ensing, G.J.; Kendall, K.; Younoszai, A.K.; Lai, W.W.; Geva, T. Recommendations for quantification methods during the performance of a pediatric echocardiogram: A report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J. Am. Soc. Echocardiogr. 2010, 23, 465–495, quiz 576–577. [Google Scholar] [CrossRef] [PubMed]
- Cantinotti, M.; Scalese, M.; Murzi, B.; Assanta, N.; Spadoni, I.; Festa, P.; De Lucia, V.; Crocetti, M.; Marotta, M.; Molinaro, S.; et al. Echocardiographic nomograms for ventricular, valvular and arterial dimensions in caucasian children with a special focus on neonates, infants and toddlers. J. Am. Soc. Echocardiogr. 2014, 27, 179–191.e2. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.K.; Cupps, B.; Pasque, M.; Woodard, P.K.; Holland, M.R.; Ludomirsky, A. Accuracy and reproducibility of strain by speckle tracking in pediatric subjects with normal heart and single ventricular physiology: A two-dimensional speckle-tracking echocardiography and magnetic resonance imaging correlative study. J. Am. Soc. Echocardiogr. 2010, 23, 1143–1152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rösner, A.; Barbosa, D.; Aarsæther, E.; Kjønås, D.; Schirmer, H.; D’hooge, J. The influence of frame rate on two-dimensional speckle-tracking strain measurements: A study on silico-simulated models and images recorded in patients. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Levy, P.T.; Machefsky, A.; Sanchez, A.A.; Patel, M.D.; Rogal, S.; Fowler, S.; Yaeger, L.; Hardi, A.; Holland, M.R.; Hamvas, A.; et al. Reference Ranges of Left Ventricular Strain Measures by Two-Dimensional Speckle-Tracking Echocardiography in Children: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2016, 29, 209–225.e6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiong, D.; Lee, G.-H.; Badorff, C.; Dorner, A.; Lee, S.; Wolf, P.; Knowlton, K.U. Dystrophin deficiency markedly increases enterovirus-induced cardiomyopathy: A genetic predisposition to viral heart disease. Nat. Med. 2002, 8, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Collier, P.; Phelan, D.; Klein, A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. J. Am. Coll. Cardiol. 2017, 69, 1043–1056. [Google Scholar] [CrossRef] [PubMed]
- Gorcsan, J., 3rd; Tanaka, H. Echocardiographic assessment of myocardial strain. J. Am. Coll. Cardiol. 2011, 58, 1401–1413. [Google Scholar] [CrossRef] [PubMed]
- Abduch, M.C.; Salgo, I.; Tsang, W.; Vieira, M.L.; Cruz, V.; Lima, M.; Tsutsui, J.M.; Mor-Avi, V.; Lang, R.M.; Mathias, W., Jr. Myocardial deformation by speckle tracking in severe dilated cardiomyopathy. Arq. Bras. Cardiol. 2012, 99, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Marcus, K.A.; Mavinkurve-Groothuis, A.M.; Barends, M.; van Dijk, A.; Feuth, T.; de Korte, C.; Kapusta, L. Reference values for myocardial two-dimensional strain echocardiography in a healthy pediatric and young adult cohort. J. Am. Soc. Echocardiogr. 2011, 24, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Jashari, H.; Rydberg, A.; Ibrahimi, P.; Bajraktari, G.; Kryeziu, L.; Jashari, F.; Henein, M.Y. Normal ranges of left ventricular strain in children: A meta-analysis. Cardiovasc. Ultrasound 2015, 13, 37. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mukherjee, S.; Rani, N.; Kumar, P.; Kumar, P.; Sarkar, A. Assessment of cardiac function in children by strain imaging and its correlation with conventional echocardiographic parameter. Ann. Card. Anaesth. 2022, 25, 264–269. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marcus, K.A.; Barends, M.; Morava-Kozicz, E.; Feuth, T.; de Korte, C.L.; Kapusta, L. Early detection of myocardial dysfunction in children with mitochondrial disease: An ultrasound and two-dimensional strain echocardiography study. Mitochondrion 2011, 11, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Forsha, D.; Slorach, C.; Chen, C.K.; Sherman, A.; Mertens, L.; Barker, P.; Kisslo, J.; Friedberg, M.K. Patterns of Mechanical Inefficiency in Pediatric Dilated Cardiomyopathy and Their Relation to Left Ventricular Function and Clinical Outcomes. J. Am. Soc. Echocardiogr. 2016, 29, 226–236. [Google Scholar] [CrossRef] [PubMed]
- van der Meulen, M.; den Boer, S.; du Marchie Sarvaas, G.J.; Blom, N.; Ten Harkel, A.D.J.; Breur, H.M.P.J.; Rammeloo, L.A.J.; Tanke, R.; Bogers, A.J.J.C.; Helbing, W.A.; et al. Predicting outcome in children with dilated cardiomyopathy: The use of repeated measurements of risk factors for outcome. ESC Heart Fail. 2021, 8, 1472–1481. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, Y.; Yu, S.; Tang, X.; Ren, H.; Li, S.; Zou, Q.; Xiong, F.; Zheng, T.; Gong, L. Evaluation of left ventricular strain in patients with dilated cardiomyopathy. J. Int. Med. Res. 2017, 45, 2092–2100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferferieva, V.; Van den Bergh, A.; Claus, P.; Jasaityte, R.; Veulemans, P.; Pellens, M.; La Gerche, A.; Rademakers, F.; Herijgers, P.; D’hooge, J. The relative value of strain and strain rate for defining intrinsic myocardial function. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H188–H195. [Google Scholar] [CrossRef] [PubMed]
- Mah, K.; Mertens, L. Echocardiographic Assessment of Right Ventricular Function in Paediatric Heart Disease: A Practical Clinical Approach. CJC Pediatr. Congenit. Heart Dis. 2022, 1, 136–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boettler, P.; Hartmann, M.; Watzl, K.; Maroula, E.; Schulte-Moenting, J.; Knirsch, W.; Dittrich, S.; Kececioglu, D. Heart rate effects on strain and strain rate in healthy children. J. Am. Soc. Echocardiogr. 2005, 18, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; Kronzon, I.; Panagopoulos, G.; Perk, G. Mitral annular plane systolic excursion as a surrogate for left ventricular ejection fraction. J. Am. Soc. Echocardiogr. 2012, 25, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.X.; Shiota, T.; Tsujino, H.; Saracino, G.; White, R.D.; Greenberg, N.L.; Kwan, J.; Popović, Z.B.; Agler, D.A.; Stewart, W.J.; et al. Mitral annular motion as a surrogate for left ventricular ejection fraction: Real-time three-dimensional echocardiography and magnetic resonance imaging studies. Eur. J. Echocardiogr. 2004, 5, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Hensel, K.O.; Roskopf, M.; Wilke, L.; Heusch, A. Intraobserver and interobserver reproducibility of M-mode and B-mode acquired mitral annular plane systolic excursion (MAPSE) and its dependency on echocardiographic image quality in children. PLoS ONE 2018, 13, e0196614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terada, T.; Mori, K.; Inoue, M.; Yasunobu, H. Mitral annular plane systolic excursion/left ventricular length (MAPSE/L) as a simple index for assessing left ventricular longitudinal function in children. Echocardiography 2016, 33, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
- Cirin, L.; Crișan, S.; Luca, C.T.; Buzaș, R.; Lighezan, D.F.; Văcărescu, C.; Cozgarea, A.; Tudoran, C.; Cozma, D. Mitral Annular Plane Systolic Excursion (MAPSE): A Review of a Simple and Forgotten Parameter for Assessing Left Ventricle Function. J. Clin. Med. 2024, 13, 5265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agha, H.; Shalaby, L.; Attia, W.; Abdelmohsen, G.; Aziz, O.A.; Rahman, M.Y. Early Ventricular Dysfunction After Anthracycline Chemotherapy in Children. Pediatr. Cardiol. 2016, 37, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Koestenberger, M.; Nagel, B.; Ravekes, W.; Avian, A.; Heinzl, B.; Fritsch, P.; Fandl, A.; Rehak, T.; Gamillscheg, A. Left ventricular long-axis function: Reference values of the mitral annular plane systolic excursion in 558 healthy children and calculation of z-score values. Am Heart J. 2012, 164, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Raafs, A.G.; Boscutti, A.; Henkens, M.T.H.M.; van den Broek, W.W.A.; Verdonschot, J.A.J.; Weerts, J.; Stolfo, D.; Nuzzi, V.; Manca, P.; Hazebroek, M.R.; et al. Global Longitudinal Strain is Incremental to Left Ventricular Ejection Fraction for the Prediction of Outcome in Optimally Treated Dilated Cardiomyopathy Patients. J. Am. Heart Assoc. 2022, 11, e024505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Janwanishstaporn, S.; Cho, J.Y.; Feng, S.; Brann, A.; Seo, J.S.; Narezkina, A.; Greenberg, B. Prognostic Value of Global Longitudinal Strain in Patients with Heart Failure with Improved Ejection Fraction. JACC Heart Fail. 2022, 10, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Buss, S.J.; Breuninger, K.; Lehrke, S.; Voss, A.; Galuschky, C.; Lossnitzer, D.; Andre, F.; Ehlermann, P.; Franke, J.; Taeger, T.; et al. Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Romanowicz, J.; Ferraro, A.M.; Harrington, J.K.; Sleeper, L.A.; Adar, A.; Levy, P.T.; Powell, A.J.; Harrild, D.M. Pediatric Normal Values and Z Score Equations for Left and Right Ventricular Strain by Two-Dimensional Speckle-Tracking Echocardiography Derived from a Large Cohort of Healthy Children. J. Am. Soc. Echocardiogr. 2023, 36, 310–323. [Google Scholar] [CrossRef] [PubMed]
- Koopman, L.P.; Rebel, B.; Gnanam, D.; Menting, M.E.; Helbing, W.A.; Boersma, E. Reference values for two-dimensional myocardial strain echocardiography of the left ventricle in healthy children. Cardiol. Young 2019, 29, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C.; Steyerberg, E.W. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat. Methods Med. Res. 2017, 26, 796–808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmitt, W.; Diedrich, C.; Hamza, T.H.; Meyer, M.; Eissing, T.; Breitenstein, S.; Rossano, J.W.; Lipshultz, S.E. NT-proBNP for Predicting All-Cause Death and Heart Transplant in Children and Adults with Heart Failure. Pediatr. Cardiol. 2025, 46, 694–703. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tröbs, S.O.; Prochaska, J.H.; Schwuchow-Thonke, S.; Schulz, A.; Müller, F.; Heidorn, M.W.; Göbel, S.; Diestelmeier, S.; Lerma Monteverde, J.; Lackner, K.J.; et al. Association of Global Longitudinal Strain with Clinical Status and Mortality in Patients with Chronic Heart Failure. JAMA Cardiol. 2021, 6, 448–456. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spurney, C.F.; McCaffrey, F.M.; Cnaan, A.; Morgenroth, L.P.; Ghelani, S.J.; Gordish-Dressman, H.; Arrieta, A.; Connolly, A.M.; Lotze, T.E.; McDonald, C.M.; et al. Feasibility and Reproducibility of Echocardiographic Measures in Children with Muscular Dystrophies. J. Am. Soc. Echocardiogr. 2015, 28, 999–1008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sonaglioni, A.; Nicolosi, G.L.; Braga, M.; Villa, M.C.; Migliori, C.; Lombardo, M. Does chest wall conformation influence myocardial strain parameters in infants with pectus excavatum? J. Clin. Ultrasound 2021, 49, 918–928. [Google Scholar] [CrossRef] [PubMed]
DCM Group (No. 29) | Control Group (No. 27) | p-Value | |
---|---|---|---|
Residential Background | |||
Urban Area | 41.37% (no. 12) | 66.6% (no. 18) | 0.07 |
Rural Area | 58.6% (no. 17) | 33.3% (no. 9) | 0.08 |
Gender | |||
Male | 72.41% (no. 21) | 51.83% (no. 14) | 0.16 |
Female | 27.58% (no. 8) | 48.14% (no. 13) | 0.16 |
Age (yr) | |||
mean ± SD | 10.53 ± 6.719 | 13.51 ± 4.22 | 0.17 |
Weight (kg) | |||
mean ± SD | 44.29 ± 26.46 | 52.7 ± 16.36 | 0.33 |
Height (cm) | |||
mean ± SD | 137.6 ± 47.68 | 158.8 ± 21.67 | 0.407 |
BMI (kg/m2) | |||
18.2 ± 4.46 | 20.29 ± 2.88 | 0.06 | |
NT-proBNP (pg/mL) | 997 [119.5–56,880] | 45 [35–185] | <0.001 |
zLog NT-proBNP | 3.28 ± 2.12 | 0.36 ± 0.7 | <0.001 |
Systolic BP (mmHg) | 102.9 ± 11.72 | 107.9 ± 9.51 | <0.001 |
Systolic BP percentile | 48.44 ± 29.8 | 47.07 ± 24 | 0.87 |
Diastolic BP (mmHg) | 60.19 ± 11 | 70.44 ± 9.58 | <0.001 |
Diastolic BP percentile | 56 ± 26.08 | 66.22 ± 24.57 | 0.14 |
HR (bpm) | 87.5 ± 17.03 | 79.56 ± 13.62 | 0.063 |
NYHA/Ross Class | |||
I | 17.2% (no. 5) | ||
II | 27.5%(no. 8) | ||
III | 34.4% (no. 10) | ||
IV | 20.6% (no.6) |
DCM (Mean ± SD) | Control (Mean ± SD) | p Value | |
---|---|---|---|
MAPSE (cm) | 1.02 ± 0.32 | 1.71 ± 0.27 | <0.01 |
IVS (cm) | |||
Systole | 1.1 ± 0.46 | 1.35 ± 0.26 | <0.01 |
Diastole | 0.88 ± 0.31 | 0.93 ± 0.22 | <0.01 |
LV PW (cm) | |||
Systole | 1.08 ± 0.37 | 1.36 ± 0.29 | <0.01 |
Diastole | 1.1 ± 0.67 | 0.77 ± 0.25 | <0.01 |
LVEDD (cm) | 6.77 ± 6.41 | 4.35 ± 0.6 | <0.01 |
LVEDD Z-SCORE | 4.47 ± 2.42 | −0.331 ± 1.61 | <0.01 |
LVESD (cm) | 4.42 ± 1.59 | 2.55 ± 0.38 | <0.01 |
LV EF (%) | 29.42 ± 14.35 | 72.17 ± 4.78 | <0.01 |
LV SF (%) | 22.79 ± 9.89 | 41.26 ± 4.19 | <0.01 |
LV SV (mL) | 31.27 ± 19.41 | 52.07 ± 15.7 | <0.01 |
LV CO (L/min) | 2.47 ± 1.12 | 4.04 ± 1.17 | <0.01 |
S’ lateral | 7.45 ± 2.14 | 11 ± 2.06 | <0.01 |
DCM Group (Mean ± SD) | Control Group (Mean ± SD) | p Value | |
---|---|---|---|
GLS A4C (%) | −12.14 ± 7.01 | −20.73 ± 3.66 | <0.01 |
GLS A2C (%) | −10.14 ± 8.65 | −20.81 ± 4.58 | <0.01 |
GLS A3C (%) | −11.10 ± 7.09 | −18.41 ± 3.56 | <0.01 |
Global GLS | −11.13 ± 6.79 | −19.98 ± 3.25 | <0.01 |
SR A4C (s−1) | −0.85 ± 0.53 | −1.18 ± 0.25 | <0.01 |
SR A3C (s−1) | −0.72 ± 0.46 | −1.06 ± 0.24 | <0.01 |
SR A2C (s−1) | −0.73 ± 0.49 | −1.14 ± 0.25 | <0.01 |
Global SR (s−1) | −0.74 ± 0.39 | −1.12 ± 0.16 | <0.01 |
Variable | R-Value | p-Value |
---|---|---|
MAPSE | −0.276 | >0.05 |
LVEDD Z-score | 0.61 | <0.05 |
LV EF | −0.616 | <0.05 |
LV SF | −0.611 | <0.05 |
S lateral wave | −0.64 | <0.05 |
NT-proBNP | 0.74 | <0.05 |
DCM Group NYHA/Ross I–II | DCM Group NYHA/Ross III–IV | p-Value | |
---|---|---|---|
NT-proBNP (pg/mL) | 119.5 (IQR 77.5–371.3) | 3500 (IQR 1706–6601) | p < 0.001 |
z-log NT-proBNP | 1.40 ± 1.07 | 4.85 ± 1.34 | p < 0.001 |
MAPSE (cm) | 1.17 ± 0.38 | 0.88 ± 0.2 | p < 0.05 |
LVEDD Z-score | 2.71 ± 0.7 | 4.09 ± 1.53 | p < 0.001 |
LV EF (%) | 38.28 ± 11.48 | 21.68 ± 11.86 | p < 0.001 |
LV SF (%) | 28.22 ± 7.87 | 17.65 ± 8.74 | p < 0.001 |
GLS (%) | −16.59 ± 5.78 | −7.406 ± 2.98 | p < 0.001 |
Model | GLS OR (per 1% ↑) * (95% CI) | p-Value | Covariate OR (95% CI) | p-Value |
---|---|---|---|---|
Primary (GLS only) | 1.54 (1.14–2.07) | 0.005 | — | — |
+sBP | 1.55 (1.13–2.12) | 0.007 | 1.01 (0.92–1.12) | 0.798 |
+HR | 1.53 (1.13–2.06) | 0.005 | 1.00 (0.93–1.07) | 0.973 |
+Age | 1.51 (1.07–2.14) | 0.018 | 0.94 (0.7–1.2) | 0.63 |
+BMI | 1.51 (1.07–2.14) | 0.018 | 1.37 (0.82–2.31) | 0.229 |
Predictor (Scaling) | OR (95% CI) | p-Value |
---|---|---|
LVEF (per 1% ↓) | 1.12 (1.03–1.22) | 0.009 |
LVSF (per 1% ↓) | 1.19 (1.04–1.36) | 0.011 |
NT-proBNP (per 100 units ↑) | ≈1.11 (≈1.00–1.22) | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muntean, I.; Hack, B.-J.; Hagau, A.C. Global Longitudinal Strain as a Sensitive Marker of Left Ventricular Dysfunction in Pediatric Dilated Cardiomyopathy: A Case–Control Study. J. Cardiovasc. Dev. Dis. 2025, 12, 351. https://doi.org/10.3390/jcdd12090351
Muntean I, Hack B-J, Hagau AC. Global Longitudinal Strain as a Sensitive Marker of Left Ventricular Dysfunction in Pediatric Dilated Cardiomyopathy: A Case–Control Study. Journal of Cardiovascular Development and Disease. 2025; 12(9):351. https://doi.org/10.3390/jcdd12090351
Chicago/Turabian StyleMuntean, Iolanda, Beatrix-Jullia Hack, and Asmaa Carla Hagau. 2025. "Global Longitudinal Strain as a Sensitive Marker of Left Ventricular Dysfunction in Pediatric Dilated Cardiomyopathy: A Case–Control Study" Journal of Cardiovascular Development and Disease 12, no. 9: 351. https://doi.org/10.3390/jcdd12090351
APA StyleMuntean, I., Hack, B.-J., & Hagau, A. C. (2025). Global Longitudinal Strain as a Sensitive Marker of Left Ventricular Dysfunction in Pediatric Dilated Cardiomyopathy: A Case–Control Study. Journal of Cardiovascular Development and Disease, 12(9), 351. https://doi.org/10.3390/jcdd12090351