Metabolic Syndrome Clusters and Arterial Stiffness: Unraveling Early Predictors of Cardiovascular Risk in a Follow-Up Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Clinical Assessment
2.5. Metabolic Syndrome Diagnosis Criteria
2.6. Ethical Statement
2.7. The Assessment of Arterial Markers
2.8. MetS Component Combinations
2.9. Follow-Up and Clinical Outcomes
2.10. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. The Relationship Between Metabolic Syndrome Components and Major Cardiovascular Events
3.3. Effects of Specific Clusters of MetS Components on Arterial Stiffness
3.4. The Relationship Between Metabolic Syndrome Components and Extremely Stiff Arteries
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Bigna, J.J. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, D.E.; Lakka, H.M.; Niskanen, L.K.; Kaplan, G.A.; Salonen, J.T.; Lakka, T.A. Metabolic syndrome and development of diabetes mellitus: Application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am. J. Epidemiol. 2002, 156, 1070–1077. [Google Scholar] [CrossRef]
- Isomaa, B.; Almgren, P.; Tuomi, T.; Forsén, B.; Lahti, K.; Nissén, M.; Taskinen, M.R.; Groop, L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001, 24, 683–689. [Google Scholar] [CrossRef]
- Lakka, H.M.; Laaksonen, D.E.; Lakka, T.A.; Niskanen, L.K.; Kumpusalo, E.; Tuomilehto, J.; Salonen, J.T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002, 288, 2709–2716. [Google Scholar] [CrossRef]
- Ryliškytė, L.; Navickas, R.; Šerpytis, P.; Puronaitė, R.; Zupkauskienė, J.; Jucevičienė, A.; Badarienė, J.; Rimkienė, M.A.; Ryliškienė, K.; Skiauterytė, E.; et al. Association of aortic stiffness, carotid intima-media thickness and endothelial function with cardiovascular events in metabolic syndrome subjects. Blood Press. 2019, 28, 131–138. [Google Scholar] [CrossRef]
- Lopes-Vicente, W.R.P.; Rodrigues, S.; Cepeda, F.X.; Jordão, C.P.; Costa-Hong, V.; Dutra-Marques, A.C.B.; Carvalho, J.C.; Alves, M.J.N.N.; Bortolotto, L.A.; Trombetta, I.C. Arterial stiffness and its association with clustering of metabolic syndrome risk factors. Diabetol. Metab. Syndr. 2017, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Sehgel, N.L.; Vatner, S.F.; Meininger, G.A. “Smooth Muscle Cell Stiffness Syndrome”—Revisiting the structural basis of arterial stiffness. Front. Physiol. 2015, 6, 335. [Google Scholar] [CrossRef]
- Brown, I.A.M.; Diederich, L.; Good, M.E.; DeLalio, L.J.; Murphy, S.A.; Cortese-Krott, M.M.; Hall, J.L.; Le, T.H.; Isakson, B.E. Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1969–1985. [Google Scholar] [CrossRef]
- Laurent, S.; Boutouyrie, P.; Asmar, R.; Gautier, I.; Laloux, B.; Guize, L.; Ducimetiere, P.; Benetos, A. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001, 37, 1236–1241. [Google Scholar] [CrossRef]
- Scuteri, A.; Laurent, S.; Cucca, F.; Cockcroft, J.; Cunha, P.G.; Mañas, L.R.; Mattace Raso, F.U.; Muiesan, M.L.; Ryliškytė, L.; Rietzschel, E.; et al. Metabolic syndrome across Europe: Different clusters of risk factors. Eur. J. Prev. Cardiol. 2015, 22, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, A.; Cunha, P.G.; Agabiti Rosei, E.; Badariere, J.; Bekaert, S.; Cockcroft, J.R.; Cotter, J.; Cucca, F.; De Buyzere, M.L.; De Meyer, T.; et al. Arterial stiffness and influences of the metabolic syndrome: A cross-countries study. Atherosclerosis 2014, 233, 654–660. [Google Scholar] [CrossRef]
- Rodriguez-Colon, S.M.; Mo, J.; Duan, Y.; Liu, J.; Caulfield, J.E.; Jin, X.; Liao, D. Metabolic syndrome clusters and the risk of incident stroke: The Atherosclerosis Risk in Communities (ARIC) study. Stroke 2009, 40, 200–205. [Google Scholar] [CrossRef]
- Laucyte-Cibulskiene, A.; Chen, C.H.; Cockcroft, J.; Cunha, P.G.; Kavousi, M.; Laucevicius, A.; Muiesan, M.L.; Rietzschel, E.R.; Ryliskyte, L.; Strazhesko, I.D.; et al. Clusters of risk factors in metabolic syndrome and their influence on central blood pressure in a global study. Sci. Rep. 2022, 12, 14409. [Google Scholar] [CrossRef]
- Laucevičius, A.; Kasiulevičius, V.; Jatužis, D.; Petrulionienė, Ž.; Ryliškytė, L.; Rinkūnienė, E.; Badarienė, J.; Čypienė, A.; Gustienė, O.; Šlapikas, R. Lithuanian High Cardiovascular Risk (LitHiR) primary prevention programme-rationale and design. Semin. Cardiovasc. Med. 2012, 18, 1–6. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Butlin, M.; Qasem, A. Large artery stiffness assessment using SphygmoCor technology. Pulse 2017, 4, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H.; et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [PubMed]
- Shirai, K.; Utino, J.; Otsuka, K.; Takata, M. A novel blood pressure-independent arterial wall stiffness parameter: Cardio-ankle vascular index (CAVI). J. Atheroscler. Thromb. 2006, 13, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Jucevičienė, A.; Puronaitė, R.; Badarienė, J.; Ryliškytė, L. Aortic pulse wave velocity predicts cardiovascular mortality among middle-aged metabolic syndrome subjects without overt cardiovascular disease. Nutr. Metab. 2024, 21, 98. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef]
- Jang, Y.N.; Lee, J.H.; Moon, J.S.; Kang, D.R.; Park, S.Y.; Cho, J.; Kim, J.Y.; Huh, J.H. Metabolic syndrome severity score for predicting cardiovascular events: A nationwide population-based study from Korea. Diabetes Metab. J. 2021, 45, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.-H.; Yin, F.; Qiao, Y.-N.; Guo, S.-D. Triglyceride and triglyceride-rich lipoproteins in atherosclerosis. Front. Mol. Biosci. 2022, 9, 909151. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Islam, R.; Nguyen, I.; Malik, H.; Pirzadah, H.; Shrestha, B.; Lentz, I.B.; Shekoohi, S.; Kaye, A.D. Diabetes mellitus and associated vascular disease: Pathogenesis, complications, and evolving treatments. Adv. Ther. 2025, 42, 2659–2678. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, C.; Song, B.; Chen, D.; Teng, D.; Shan, Z.; Teng, W. The prevalence and clustering of metabolic syndrome risk components in Chinese population: A cross-sectional study. Front. Endocrinol. 2023, 14, 1290855. [Google Scholar] [CrossRef] [PubMed]
- Carullo, N.; Zicarelli, M.; Michael, A.; Faga, T.; Battaglia, Y.; Pisani, A.; Perticone, M.; Costa, D.; Ielapi, N.; Coppolino, G.; et al. Childhood obesity: Insight into kidney involvement. Int. J. Mol. Sci. 2023, 24, 17400. [Google Scholar] [CrossRef]
- Irace, C.; Scavelli, F.; Carallo, C.; Serra, R.; Cortese, C.; Gnasso, A. Body mass index, metabolic syndrome and carotid atherosclerosis. Coron. Artery Dis. 2009, 20, 94–99. [Google Scholar] [CrossRef]
- Knapp, M.; Tu, X.; Wu, R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol. Sin. 2019, 40, 1–8. [Google Scholar] [CrossRef]
- De Bock, K.; Georgiadou, M.; Schoors, S.; Kuchnio, A.; Wong, B.W.; Cantelmo, A.R.; Quaegebeur, A.; Ghesquière, B.; Cauwenberghs, S.; Eelen, G.; et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 2013, 154, 651–663. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Palomo, I.; Contreras, A.; Alarcón, L.M.; Leiva, E.; Guzmán, L.; Mujica, V.; Icaza, G.; Díaz, N.; González, D.R.; Moore-Carrasco, R. Elevated concentration of asymmetric dimethylarginine (ADMA) in individuals with metabolic syndrome. Nitric Oxide 2011, 24, 224–228. [Google Scholar] [CrossRef]
- Spronck, B.; Obeid, M.J.; Paravathaneni, M.; Gadela, N.V.; Singh, G.; Magro, C.A.; Kulkarni, V.; Kondaveety, S.; Gade, K.C.; Bhuva, R.; et al. Predictive ability of pressure-corrected arterial stiffness indices: Comparison of pulse wave velocity, cardio-ankle vascular index (CAVI), and CAVI0. Am. J. Hypertens. 2022, 35, 272–280. [Google Scholar] [CrossRef]
- Saiki, A.; Ohira, M.; Yamaguchi, T.; Nagayama, D.; Shimizu, N.; Shirai, K.; Tatsuno, I. New horizons of arterial stiffness developed using cardio-ankle vascular index (CAVI). J. Atheroscler. Thromb. 2020, 27, 732–748. [Google Scholar] [CrossRef]
- Nagayama, D.; Watanabe, Y.; Shirai, K.; Ohira, M.; Saiki, A. Modified metabolic syndrome criteria considering cardio-ankle vascular index (CAVI) and a body shape index (ABSI): Implications for kidney risk. Rev. Cardiovasc. Med. 2025, 26, 26583. [Google Scholar] [CrossRef]
- Badhwar, S.; Chandran, D.S.; Jaryal, A.K.; Narang, R.; Deepak, K.K. Regional arterial stiffness in central and peripheral arteries is differentially related to endothelial dysfunction assessed by brachial flow-mediated dilation in metabolic syndrome. Diabetes Vasc. Dis. Res. 2018, 15, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Giangregorio, F.; Mosconi, E.; Debellis, M.G.; Provini, S.; Esposito, C.; Garolfi, M.; Oraka, S.; Kaloudi, O.; Mustafazade, G.; Marín-Baselga, R.; et al. A systematic review of metabolic syndrome: Key correlated pathologies and non-invasive diagnostic approaches. J. Clin. Med. 2024, 13, 5880. [Google Scholar] [CrossRef] [PubMed]
- Catharina, A.S.; Modolo, R.; Ritter, A.M.V.; Sabbatini, A.R.; Lopes, H.F.; Moreno Junior, H.; Faria, A.P. Metabolic syndrome-related features in controlled and resistant hypertensive subjects. Arq. Bras. Cardiol. 2018, 110, 514–521. [Google Scholar] [CrossRef]
- Maloberti, A.; Bombelli, M.; Vallerio, P.; Milani, M.; Cartella, I.; Tavecchia, G.; Tognola, C.; Grasso, E.; Sun, J.; De Chiara, B.; et al. Metabolic syndrome is related to vascular structural alterations but not to functional ones both in hypertensives and healthy subjects. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, S.P.; Wang, D.; McEvoy, J.W.; Harrap, S.; Harris, K.; Mancia, G.; Marre, M.; Neal, B.; Patel, A.; Poulter, N.R.; et al. Effects of glucose and blood pressure reduction on subclinical cardiac damage: Results from ADVANCE. Int. J. Cardiol. 2022, 358, 103–109. [Google Scholar] [CrossRef]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension: Developed by the task force on the management of elevated blood pressure and hypertension of the European Society of Cardiology (ESC) and endorsed by the European Society of Endocrinology (ESE) and the European Stroke Organisation (ESO). Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef]
Metabolic Syndrome Components | ||||||
---|---|---|---|---|---|---|
W | T | H | B | G | ||
Metabolic syndrome clusters | WTHBG (n = 1657, 31.2%) | + | + | + | + | + |
WTHB (n = 519, 9.8%) | + | + | + | + | − | |
WTHG (n = 81, 1.5%) | + | + | + | − | + | |
WTBG (n = 710, 13.4%) | + | + | − | + | + | |
WHBG (n = 497, 9.4%) | + | − | + | + | + | |
THBG (n = 176, 3.3%) | − | + | + | + | + | |
WTH (n = 44, 0.8%) | + | + | + | − | − | |
WTB (n = 269, 5.1%) | + | + | − | + | − | |
WHB (n = 211, 4.0%) | + | − | + | + | − | |
THB (n = 55, 1.0%) | − | + | + | + | − | |
WTG (n = 20, 0.4%) | + | + | − | − | + | |
WHG (n = 26, 0.5%) | + | − | + | − | + | |
THG (n = 20, 0.4%) | − | + | + | − | + | |
WBG (n = 905, 17.0%) | + | − | − | + | + | |
TBG (n = 81, 1.5%) | − | + | − | + | + | |
HBG (n = 36, 0.7%) | − | − | + | + | + |
Characteristic | Total (n = 5307) | Event (+) (n = 177) | Event (−) (n = 5130) | p |
---|---|---|---|---|
MetS (waist circumference), n (%) | 0.764 | |||
yes | 4939 (93.1) | 164 (92.7) | 4775 (93.1) | |
no | 368 (6.9) | 13 (7.3) | 355 (6.9) | |
MetS (triglycerides), n (%) | 0.014 | |||
yes | 3632 (68.4) | 136 (76.8) | 3496 (68.1) | |
no | 1675 (31.6) | 41 (23.2) | 1634 (31.9) | |
MetS (HDL-C), n (%) | 0.155 | |||
yes | 3322 (62.6) | 120 (67.8) | 3202 (62.4) | |
no | 1985 (37.4) | 57 (32.2) | 1928 (37.6) | |
MetS (blood pressure), n (%) | 0.415 | |||
yes | 5116 (96.4) | 173 (97.7) | 4943 (96.4) | |
no | 191 (3.6) | 4 (2.3) | 187 (3.6) | |
MetS (glucose), n (%) | 0.037 | |||
yes | 4209 (79.3) | 129 (72.9) | 4080 (79.5) | |
no | 1098 (20.7) | 48 (27.1) | 1050 (20.5) | |
MetS (number of components), n (%) | 0.024 | |||
5 | 1657 (31.2) | 55 (31.1) | 1602 (31.2) | |
4 | 1983 (37.4) | 81 (45.8) | 1902 (37.1) | |
3 | 1667 (31.4) | 41 (23.2) | 1626 (31.7) | |
MetS (WTHBG), n (%) | 1.000 | |||
yes | 1657 (31.2) | 55 (31.1) | 1602 (31.2) | |
no | 3650 (68.8) | 122 (68.9) | 3528 (68.8) | |
MetS (WTHB), n (%) | 0.038 | |||
yes | 519 (9.8) | 26 (14.7) | 493 (9.6) | |
no | 4788 (90.2) | 151 (85.3) | 4637 (90.4) | |
MetS (WTHG), n (%) | 1.000 | |||
yes | 81 (1.5) | 2 (1.1) | 79 (1.5) | |
no | 5226 (98.5) | 175 (98.9) | 5051 (98.5) | |
MetS (WTBG), n (%) | 0.177 | |||
yes | 710 (13.4) | 30 (16.9) | 680 (13.3) | |
no | 4597 (86.6) | 147 (83.1) | 4450 (86.7) | |
MetS (WHBG), n (%) | 0.600 | |||
yes | 497 (9.4) | 14 (7.9) | 483 (9.4) | |
no | 4810 (90.6) | 163 (92.1) | 4647 (90.6) | |
MetS (THBG), n (%) | 0.194 | |||
yes | 176 (3.3) | 9 (5.1) | 167 (3.3) | |
no | 5131 (96.7) | 168 (94.9) | 4963 (96.7) | |
MetS (WTH), n (%) | 0.404 | |||
yes | 44 (0.8) | 0 (0.0) | 44 (0.9) | |
no | 5263 (99.2) | 177 (100.0) | 5086 (99.1) | |
MetS (WTB), n (%) | 1.000 | |||
yes | 269 (5.1) | 9 (5.1) | 260 (5.1) | |
no | 5038 (94.9) | 168 (94.9) | 4870 (94.9) | |
MetS (WHB), n (%) | 0.073 | |||
yes | 211 (4.0) | 12 (6.8) | 199 (3.9) | |
no | 5096 (96.0) | 165 (93.2) | 4931 (96.1) | |
MetS (THB), n (%) | 1.000 | |||
yes | 55 (1.0) | 1 (0.6) | 54 (1.1) | |
no | 5252 (99.0) | 176 (99.4) | 5076 (98.9) | |
MetS (WTG), n (%) | 0.142 | |||
yes | 20 (0.4) | 2 (1.1) | 18 (0.4) | |
no | 5287 (99.6) | 175 (98.9) | 5112 (99.6) | |
MetS (WHG), n (%) | 1.000 | |||
yes | 26 (0.5) | 0 (0.0) | 26 (0.5) | |
no | 5281 (99.5) | 177 (100.0) | 5104 (99.5) | |
MetS (THG), n (%) | 1.000 | |||
yes | 20 (0.4) | 0 (0.0) | 20 (0.4) | |
no | 5287 (99.6) | 177 (100.0) | 5110 (99.6) | |
MetS (WBG), n (%) | <0.001 | |||
yes | 905 (17.1) | 14 (7.9) | 891 (17.4) | |
no | 4402 (82.9) | 163 (92.1) | 4239 (82.6) | |
MetS (TBG), n (%) | 1.000 | |||
yes | 81 (1.5) | 2 (1.1) | 79 (1.5) | |
no | 5226 (98.5) | 175 (98.9) | 5051 (98.5) | |
MetS (HBG), n (%) | 1.000 | |||
yes | 36 (0.7) | 1 (0.6) | 35 (0.7) | |
no | 5271 (99.3) | 176 (99.4) | 5095 (99.3) |
Prevalence in Population | Prevalence in Extremely Stiff Arteries Group | OR | 95% CI | p | |
---|---|---|---|---|---|
Age | 1.086 | 1.054–1.122 | <0.001 | ||
Male Gender | 1.010 | 0.661–1.539 | 0.965 | ||
Smoking | 0.757 | 0.527–1.064 | 0.119 | ||
Non-HDL-C | 1.047 | 0.948–1.539 | 0.360 | ||
Diabetes Mellitus | 1.795 | 1.353–2.368 | <0.001 | ||
WBG | 17.1 | 18.3 | 1.671 | 0.962–3.038 | 0.078 |
WHBG | 9.4 | 7.6 | 1.213 | 0.620–2.395 | 0.573 |
WTB | 5.1 | 3.0 | 1.283 | 0.514–2.947 | 0.570 |
WTBG | 13.4 | 17.5 | 2.351 | 1.346–4.293 | 0.004 |
WTHB | 9.8 | 4.6 | 0.884 | 0.406–1.867 | 0.749 |
WTHBG | 31.2 | 42.6 | 2.201 | 1.334–3.854 | 0.003 |
Prevalence in Population | Prevalence in Extremely Stiff Arteries Group | OR | 95% CI | p | |
---|---|---|---|---|---|
Age | 1.137 | 1.100–1.176 | <0.001 | ||
Male Sex | 5.083 | 3.340–7.793 | <0.001 | ||
Smoking | 1.586 | 1.187–2.108 | 0.002 | ||
Non-HDL-C | 1.108 | 1.001–1.222 | 0.044 | ||
Diabetes Mellitus | 1.694 | 1.242–2.289 | <0.001 | ||
WBG | 17.1 | 15.3 | 1.125 | 0.677–1.890 | 0.652 |
WHBG | 9.4 | 10.5 | 1.483 | 0.839–2.612 | 0.172 |
WTB | 5.1 | 7.7 | 2.096 | 1.120–3.846 | 0.018 |
WTBG | 13.4 | 20.2 | 1.673 | 1.037–2.750 | 0.038 |
WTHB | 9.8 | 6.0 | 0.898 | 0.459–1.693 | 0.744 |
WTHBG | 31.2 | 29.0 | 1.072 | 0.686–1.717 | 0.766 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jucevičienė, A.; Ryliškytė, L.; Badarienė, J.; Laucevičius, A. Metabolic Syndrome Clusters and Arterial Stiffness: Unraveling Early Predictors of Cardiovascular Risk in a Follow-Up Study. J. Cardiovasc. Dev. Dis. 2025, 12, 332. https://doi.org/10.3390/jcdd12090332
Jucevičienė A, Ryliškytė L, Badarienė J, Laucevičius A. Metabolic Syndrome Clusters and Arterial Stiffness: Unraveling Early Predictors of Cardiovascular Risk in a Follow-Up Study. Journal of Cardiovascular Development and Disease. 2025; 12(9):332. https://doi.org/10.3390/jcdd12090332
Chicago/Turabian StyleJucevičienė, Agnė, Ligita Ryliškytė, Jolita Badarienė, and Aleksandras Laucevičius. 2025. "Metabolic Syndrome Clusters and Arterial Stiffness: Unraveling Early Predictors of Cardiovascular Risk in a Follow-Up Study" Journal of Cardiovascular Development and Disease 12, no. 9: 332. https://doi.org/10.3390/jcdd12090332
APA StyleJucevičienė, A., Ryliškytė, L., Badarienė, J., & Laucevičius, A. (2025). Metabolic Syndrome Clusters and Arterial Stiffness: Unraveling Early Predictors of Cardiovascular Risk in a Follow-Up Study. Journal of Cardiovascular Development and Disease, 12(9), 332. https://doi.org/10.3390/jcdd12090332