Clinical Characteristics and Cardiac Rehabilitation Outcomes During the Perioperative Period After MIDCAB and OPCAB Surgery: A Comparative Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Surgical Procedures and Revascularization
2.3. 6MWT
2.4. Pulmonary Function
2.5. HRV
2.6. UCG
2.7. Statistical Analysis
3. Results
3.1. Perioperative Clinical Characteristics
3.2. Surgical Features
3.3. Perioperative Cardiac Rehabilitation Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bansal, A.; Hiwale, K. Updates in the Management of Coronary Artery Disease: A Review Article. Cureus 2023, 15, e50644. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H. The ‘Ten Commandments’ for the 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2020, 41, 3495–3497. [Google Scholar] [CrossRef]
- Taggart, D.P.; Altman, D.G.; Gray, A.M.; Lees, B.; Gerry, S.; Benedetto, U.; Flather, M. Randomized Trial of Bilateral versus Single Internal-Thoracic-Artery Grafts. N. Engl. J. Med. 2016, 375, 2540–2549. [Google Scholar] [CrossRef]
- Andrawes, P.A.; Shariff, M.A.; Nabagiez, J.P.; Steward, R.; Azab, B.; Povar, N.; Sarza, M.; Demissie, S.; Sadel, S.M.; Nichols, M.; et al. Evolution of Minimally Invasive Coronary Artery Bypass Grafting: Learning Curve. Innovations 2018, 13, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Mori, M. Minimally invasive coronary artery bypass grafting: A systematic review. Asian Cardiovasc. Thorac. Ann. 2017, 25, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Alsharif, A.; Alsharif, A.; Alshamrani, G.; Abu Alsoud, A.; Abdullah, R.; Aljohani, S.; Alahmadi, H.; Fuadah, S.; Mohammed, A.; Hassan, F.E. Comparing the Effectiveness of Open and Minimally Invasive Approaches in Coronary Artery Bypass Grafting: A Systematic Review. Clin. Pract. 2024, 14, 1842–1868. [Google Scholar] [CrossRef]
- Serruys, P.W.; Morice, M.-C.; Kappetein, A.P.; Colombo, A.; Holmes, D.R.; Mack, M.J.; Ståhle, E.; Feldman, T.E.; Van Den Brand, M.; Bass, E.J.; et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 2009, 360, 961–972. [Google Scholar] [CrossRef]
- King, M.; Bittner, V.; Josephson, R.; Lui, K.; Thomas, R.J.; Williams, M.A. Medical director responsibilities for outpatient cardiac rehabilitation/secondary prevention programs: 2012 update: A statement for health care professionals from the American Association of Cardiovascular and Pulmonary Rehabilitation and the American Heart Association. Circulation 2012, 126, 2535–2543. [Google Scholar]
- Rouleau, C.R.; Chirico, D.; Hauer, T.; Kidd, W.; Arena, R.; Aggarwal, S.G. An observational study examining utilization of prehabilitation and its association with postoperative cardiac rehabilitation participation and risk factors following coronary artery bypass grafting. Int. J. Cardiol. 2022, 362, 28–34. [Google Scholar] [CrossRef]
- Miao, J.; Yang, H.; Shi, R.; Wang, C. The effect of cardiac rehabilitation on cardiopulmonary function after coronary artery bypass grafting: A systematic review and meta-analysis. iScience 2023, 26, 107861. [Google Scholar] [CrossRef]
- Simon, M.; Korn, K.; Cho, L.; Blackburn, G.G.; Raymond, C. Cardiac rehabilitation: A class 1 recommendation. Clevel. Clin. J. Med. 2018, 85, 551–558. [Google Scholar] [CrossRef]
- Kulik, A.; Ruel, M.; Jneid, H.; Ferguson, T.B.; Hiratzka, L.F.; Ikonomidis, J.S.; Lopez-Jimenez, F.; McNallan, S.M.; Patel, M.; Roger, V.; et al. Secondary prevention after coronary artery bypass graft surgery: A scientific statement from the American Heart Association. Circulation 2015, 131, 927–964. [Google Scholar] [CrossRef]
- Bellet, R.N.; Adams, L.; Morris, N.R. The 6-minute walk test in outpatient cardiac rehabilitation: Validity, reliability and responsiveness—A systematic review. Physiotherapy 2012, 98, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, C.; Bjarnason-Wehrens, B.; Baumgarten, H.; Walther, T.; Mengden, T.; Walther, C. Prehabilitation in patients awaiting elective coronary artery bypass graft surgery-effects on functional capacity and quality of life: A randomized controlled trial. Clin. Rehabil. 2020, 34, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Hirschhorn, A.D.; Richards, D.; Mungovan, S.F.; Morris, N.R.; Adams, L. Supervised moderate intensity exercise improves distance walked at hospital discharge following coronary artery bypass graft surgery—A randomised controlled trial. Heart Lung Circ. 2008, 17, 129–138. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Todd, I.C.; Ballantyne, D. Antianginal efficacy of exercise training: A comparison with beta blockade. Br. Heart J. 1990, 64, 14–19. [Google Scholar] [CrossRef]
- Enright, P.L.; Sherrill, D.L. Reference equations for the six-minute walk in healthy adults. Am. J. Respir. Crit. Care Med. 1998, 158, 1384–1387. [Google Scholar] [CrossRef]
- Algoet, M.; Verbelen, T.; Jacobs, S.; De Praetere, H.; Marynissen, M.; Oosterlinck, W. Robot-Assisted MIDCAB Using Bilateral Internal Thoracic Artery: A Propensity Score-Matched Study with OPCAB Patients. Innovations 2024, 19, 184–191. [Google Scholar] [CrossRef]
- Sharaf, M.; Zittermann, A.; Sunavsky, J.; Gilis-Januszewski, T.; Rojas, S.V.; Götte, J.; Opacic, D.; Radakovic, D.; El-Hachem, G.; Razumov, A.; et al. Early and late outcomes after minimally invasive direct coronary artery bypass vs. full sternotomy off-pump coronary artery bypass grafting. Front. Cardiovasc. Med. 2024, 11, 1298466. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Bao, W.; Qiu, S. MIDCAB versus off-pump CABG: Comparative study. Hellenic J. Cardiol. 2020, 61, 120–124. [Google Scholar] [CrossRef]
- Thijs, I.; Fresiello, L.; Oosterlinck, W.; Sinnaeve, P.; Rega, F. Assessment of Physical Activity by Wearable Technology During Rehabilitation After Cardiac Surgery: Explorative Prospective Monocentric Observational Cohort Study. JMIR mHealth uHealth 2019, 7, e9865. [Google Scholar] [CrossRef]
- Opasich, C.; De Feo, S.; Pinna, G.D.; Furgi, G.; Pedretti, R.; Scrutinio, D.; Tramarin, R. Distance walked in the 6-minute test soon after cardiac surgery: Toward an efficient use in the individual patient. Chest 2004, 126, 1796–1801. [Google Scholar] [CrossRef]
- Shawon, S.R.; Hsu, B.; Chard, R.; Nicholson, I.A.; Elias, V.L.; Nicola, L.K.; Moore, C.R.; Hirschhorn, A.D.; Jorm, L.R.; Mungovan, S.F. Six-minute walk test distance at time of hospital discharge is strongly and independently associated with all-cause mortality following cardiac surgery. Sci. Rep. 2024, 14, 2493. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Pinna, G.D.; Maestri, R.; Olmetti, F.; Paganini, V.; Riccardi, G.; Riccardi, R.; Goggi, C.; Ranucci, M.; Febo, O. The 6-minute walking test and all-cause mortality in patients undergoing a post-cardiac surgery rehabilitation program. Eur. J. Prev. Cardiol. 2015, 22, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Fiorina, C.; Vizzardi, E.; Lorusso, R.; Maggio, M.; De Cicco, G.; Nodari, S.; Faggiano, P.; Cas, L.D. The 6-min walking test early after cardiac surgery. Reference values and the effects of rehabilitation programme. Eur. J. Cardiothorac. Surg. 2007, 32, 724–729. [Google Scholar] [CrossRef] [PubMed]
- De Feo, S.; Tramarin, R.; Faggiano, P.; Ambrosetti, M.; Riccio, C.; Diaco, T.; Carlon, R.; Temporelli, P.L.; Baroni, P.L.; Fattirolli, F.; et al. The inability to perform a 6 minute walking test after cardio-thoracic surgery is a marker of clinical severity and poor outcome. Data from the ISYDE-2008 Italian survey. Int. J. Cardiol. 2011, 151, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Soares, P.P.; Moreno, A.M.; Cravo, S.L.; Nóbrega, A.C. Coronary artery bypass surgery and longitudinal evaluation of the autonomic cardiovascular function. Crit Care 2005, 9, R124–R131. [Google Scholar] [CrossRef]
- Komatsu, T.; Kimura, T.; Nishiwaki, K.; Fujiwara, Y.; Sawada, K.; Shimada, Y. Recovery of heart rate variability profile in patients after coronary artery surgery. Anesth. Analg. 1997, 85, 713–718. [Google Scholar] [CrossRef]
- Shan, R.; Zhang, L.; Zhu, Y.; Ben, L.; Xin, Y.; Wang, F.; Yan, L.; Hashmi, M.F. Effect of Early Exercise Rehabilitation on Cardiopulmonary Function and Quality of Life in Patients after Coronary Artery Bypass Grafting. Contrast Media Mol. Imaging 2022, 2022, 4590037. [Google Scholar] [CrossRef]
Variables | MIDCAB | OPCAB | Total | Statistics | p-Values |
---|---|---|---|---|---|
n = 95 (31.2%) | n = 209 (68.8%) | n = 304 (100%) | |||
Age, y | 63 ± 11 | 63 ± 13 | 63 ± 12 | Z = −0.571 | 0.568 a |
Gender | χ2 = 4.289 | 0.038 b | |||
Male | 81 (85.3%) | 156 (74.6%) | 237 (78.0%) | ||
Female | 14 (14.7%) | 53 (25.4%) | 67 (22.0%) | ||
BMI, kg/m2 | 25.69 ± 2.93 * | 25.88 ± 3.11 * | 25.82 ± 3.05 * | t = −0.512 | 0.609 d |
Duration of symptoms, y | 0.50 ± 1.92 | 1.00 ± 5.90 | 0.75 ± 4.92 | Z = −1.495 | 0.135 a |
LAD, mm | 41 ± 8 | 41 ± 8 | 41 ± 7 | Z = −1.065 | 0.287 a |
LVEDD, mm | 46 ± 7 | 47 ± 6 | 46 ± 6 | Z = −0.816 | 0.414 a |
LVEF, % | 62 ± 6 | 61 ± 7 | 62 ± 7 | Z = −1.600 | 0.110 a |
Hypertension | 62 (65.3%) | 122 (58.4%) | 184 (60.5%) | χ2 = 1.298 | 0.255 b |
Diabetes mellitus | 39 (41.1%) | 91 (43.5%) | 130 (42.8%) | χ2 = 0.165 | 0.684 b |
Hyperlipidemia | 49 (51.6%) | 87 (41.6%) | 136 (44.7%) | χ2 = 2.617 | 0.106 b |
Chronic lung disease | 2 (2.1%) | 11 (5.3%) | 13 (4.3%) | χ2 = 0.913 | 0.339 c |
Cerebrovascular abnormality | 17 (17.9%) | 39 (18.7%) | 56 (18.4%) | χ2 = 0.025 | 0.873 b |
Renal injury | 3 (3.2%) | 9 (4.3%) | 12 (3.9%) | χ2 = 0.025 | 0.874 c |
Atrial fibrillation | 0 (0.0%) | 9 (4.3%) | 9 (3.0%) | χ2 = 2.85 | 0.091 c |
Mitral insufficiency | 7 (7.4%) | 34 (16.3%) | 41 (13.5%) | χ2 = 4.433 | 0.035 b |
Aortic insufficiency | 3 (3.2%) | 19 (9.1%) | 22 (7.2%) | χ2 = 3.425 | 0.064 b |
Tricuspid insufficiency | 11 (11.6%) | 23 (11.0%) | 34 (11.2%) | χ2 = 0.022 | 0.883 b |
Peripheral arterial disease | 30 (31.6%) | 87 (41.6%) | 117 (38.5%) | χ2 = 2.785 | 0.095 b |
Prior myocardial infarction | 2 (2.1%) | 23 (11.0%) | 25 (8.2%) | χ2 = 6.854 | 0.009 b |
Prior PCI | 22 (23.2%) | 47 (22.5%) | 69 (22.7%) | χ2 = 0.017 | 0.897 b |
Smoking history | 57 (60.0%) | 125 (59.8%) | 182 (59.9%) | χ2 = 0.001 | 0.975 b |
Drinking history | 18 (18.9%) | 39 (18.7%) | 57 (18.8%) | χ2 = 0.004 | 0.953 b |
NYHA class | Z = −1.272 | 0.204 a | |||
Ⅱ | 57 (60.0%) | 109 (52.2%) | 166 (54.6%) | ||
Ⅲ | 38 (40.0%) | 100 (47.8%) | 138 (45.4%) |
Variables | MIDCAB | OPCAB | Total | Statistics | p-Values * |
---|---|---|---|---|---|
n = 95 (31.2%) | n = 209 (68.8%) | n = 304 (100%) | |||
Total surgery time, h | 4.03 ± 1.66 | 4.25 ± 1.33 | 4.17 ± 1.48 | Z = −2.418 | 0.016 |
Number of grafted vessels, n | 2 ± 2 | 3 ± 1 | 3 ± 1 | Z = −7.821 | <0.001 |
Ventilator-assisted time, h | 4.18 ± 1.75 | 4.40 ± 2.29 | 4.33 ± 2.29 | Z = −2.333 | 0.020 |
ICU length of stay, h | 20.47 ± 6.90 | 19.27 ± 7.50 | 19.91 ± 7.24 | Z = −0.644 | 0.520 |
Total intraoperative fluids, mL | 2000 ± 750 | 2500 ± 1000 | 2250 ± 740 | Z = −4.787 | <0.001 |
Intraoperative bleeding, mL | 400 ± 200 | 600 ± 300 | 600 ± 300 | Z = −8.948 | <0.001 |
Postoperative hospital stays, d | 5 ± 1 | 6 ± 1 | 6 ± 2 | Z = −5.379 | <0.001 |
Variables | MIDCAB | OPCAB | Total | Statistics | p-Values * |
---|---|---|---|---|---|
n= 95 (31.2%) | n = 209 (68.8%) | n = 304 (100%) | |||
6MWT | |||||
Time from surgery to 6MWT, d | 5 ± 2 | 5 ± 2 | 5 ± 2 | Z = −3.501 | <0.001 |
6MWD, m | 200 ± 125 | 178 ± 125 | 182 ± 126 | Z = −2.773 | 0.006 |
6MWD (% predicted), % | 35 ± 23 | 33 ± 20 | 33 ± 21 | Z = −2.506 | 0.012 |
METs, kcal/kg/h | 2.70 ± 0.80 | 2.60 ± 0.80 | 2.60 ± 0.90 | Z = −2.823 | 0.005 |
HRV during 6MWT | |||||
NNVGR, ms | 592.93 ± 104.11 | 579.33 ± 113.02 | 584.81 ± 111.08 | Z = −1.468 | 0.142 |
SDNN, ms | 23.20 ± 21.62 | 21.83 ± 16.88 | 22.11 ± 18.11 | Z = −0.109 | 0.913 |
RMSSD, ms | 22.12 ± 31.53 | 19.34 ± 26.31 | 19.90 ± 27.50 | Z = −0.144 | 0.885 |
SDSD, ms | 22.14 ± 31.57 | 19.35 ± 26.34 | 19.92 ± 27.52 | Z = −0.144 | 0.885 |
NN50, n | 3.00 ± 19.00 | 4.00 ± 13.00 | 4.00 ± 13.00 | Z = −0.742 | 0.458 |
PNN50, % | 0.51 ± 3.30 | 0.66 ± 1.96 | 0.62 ± 2.33 | Z = −0.609 | 0.542 |
TP, ms2 | 177.36 ± 291.58 | 155.83 ± 272.76 | 159.57 ± 282.09 | Z = −0.754 | 0.451 |
VLF, ms2 | 74.05 ± 95.39 | 76.75 ± 117.27 | 75.97 ± 106.14 | Z = −0.011 | 0.991 |
LF, ms2 | 34.49 ± 54.58 | 26.02 ± 47.32 | 27.80 ± 47.95 | Z = −1.544 | 0.123 |
HF, ms2 | 21.49 ± 135.08 | 26.36 ± 73.96 | 22.32 ± 83.51 | Z = −0.316 | 0.752 |
LF/HF | 1.12 ± 2.06 | 0.88 ± 1.35 | 0.95 ± 1.42 | Z = −1.225 | 0.221 |
VLF/HF | 3.03 ± 8.08 | 3.35 ± 6.91 | 3.14 ± 7.38 | Z = −0.074 | 0.941 |
SD1, ms | 16.25 ± 35.64 | 18.95 ± 28.49 | 17.83 ± 29.60 | Z = −0.305 | 0.761 |
SD2, ms | 27.66 ± 34.72 | 27.35 ± 29.14 | 27.39 ± 32.03 | Z = −0.334 | 0.739 |
SD2/SD1 | 1.54 ± 0.57 | 1.43 ± 0.78 | 1.46 ± 0.74 | Z = −1.404 | 0.160 |
UCG after surgery | |||||
LAD, mm | 36 ± 7 | 36 ± 9 | 36 ± 8 | Z = −0.078 | 0.938 |
LVEDD, mm | 44 ± 6 | 45 ± 7 | 45 ± 7 | Z = −0.587 | 0.557 |
LVEF, % | 60 ± 5 | 60 ± 7 | 60 ± 6 | Z = −2.886 | 0.004 |
Variables | Groups | Time | Statistical Effect | F | p-Value * | |
---|---|---|---|---|---|---|
Before 6MWT (Median ± IQR) | After 6MWT (Median ± IQR) | |||||
FVC (% predicted) | MIDCAB | 38.00 ± 22.00 | 39.00 ± 14.00 | Time × Groups | 1.297 | 0.256 |
OPCAB | 39.00 ± 22.00 | 39.00 ± 19.00 | Time | 0.123 | 0.726 | |
Groups | 0.046 | 0.830 | ||||
FEV1 (% predicted) | MIDCAB | 35.00 ± 13.00 | 39.00 ± 16.00 | Time × Groups | 0.768 | 0.382 |
OPCAB | 35.00 ± 13.50 | 38.00 ± 18.00 | Time | 14.503 | <0.001 | |
Groups | 0.046 | 0.831 | ||||
PEF (% predicted) | MIDCAB | 20.00 ± 17.00 | 23.00 ± 18.00 | Time × Groups | 0.148 | 0.701 |
OPCAB | 21.00 ± 15.00 | 22.00 ± 17.00 | Time | 4.562 | 0.033 | |
Groups | 0.792 | 0.374 | ||||
FEV1/FVC (% predicted) | MIDCAB | 81.00 ± 29.00 | 83.00 ± 20.00 | Time × Groups | <0.001 | 0.986 |
OPCAB | 81.00 ± 31.50 | 85.00 ± 23.50 | Time | 14.762 | <0.001 | |
Groups | 0.147 | 0.702 | ||||
FEF25 (% predicted) | MIDCAB | 17.00 ± 12.00 | 20.00 ± 16.00 | Time × Groups | 0.004 | 0.948 |
OPCAB | 17.00 ± 13.00 | 20.00 ± 16.00 | Time | 21.601 | <0.001 | |
Groups | 0.456 | 0.500 | ||||
FEF50 (% predicted) | MIDCAB | 27.00 ± 15.00 | 32.00 ± 18.00 | Time × Groups | 0.075 | 0.785 |
OPCAB | 27.00 ± 17.00 | 30.00 ± 20.50 | Time | 24.366 | <0.001 | |
Groups | 0.318 | 0.573 | ||||
FEF75 (% predicted) | MIDCAB | 64.00 ± 37.00 | 79.00 ± 45.00 | Time × Groups | 0.879 | 0.349 |
OPCAB | 65.00 ± 52.50 | 71.00 ± 66.00 | Time | 7.784 | 0.006 | |
Groups | 0.430 | 0.512 | ||||
FEF25–75 (% predicted) | MIDCAB | 33.00 ± 12.00 | 34.00 ± 15.00 | Time × Groups | 0.168 | 0.682 |
OPCAB | 32.00 ± 12.50 | 34.00 ± 16.00 | Time | 13.992 | <0.001 | |
Groups | 0.140 | 0.708 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Ren, B.; Li, J.; Chi, L.; Li, P.; Wu, J. Clinical Characteristics and Cardiac Rehabilitation Outcomes During the Perioperative Period After MIDCAB and OPCAB Surgery: A Comparative Study. J. Cardiovasc. Dev. Dis. 2025, 12, 331. https://doi.org/10.3390/jcdd12090331
Wu Y, Ren B, Li J, Chi L, Li P, Wu J. Clinical Characteristics and Cardiac Rehabilitation Outcomes During the Perioperative Period After MIDCAB and OPCAB Surgery: A Comparative Study. Journal of Cardiovascular Development and Disease. 2025; 12(9):331. https://doi.org/10.3390/jcdd12090331
Chicago/Turabian StyleWu, Yao, Bao Ren, Jing Li, Liqun Chi, Ping Li, and Jiahui Wu. 2025. "Clinical Characteristics and Cardiac Rehabilitation Outcomes During the Perioperative Period After MIDCAB and OPCAB Surgery: A Comparative Study" Journal of Cardiovascular Development and Disease 12, no. 9: 331. https://doi.org/10.3390/jcdd12090331
APA StyleWu, Y., Ren, B., Li, J., Chi, L., Li, P., & Wu, J. (2025). Clinical Characteristics and Cardiac Rehabilitation Outcomes During the Perioperative Period After MIDCAB and OPCAB Surgery: A Comparative Study. Journal of Cardiovascular Development and Disease, 12(9), 331. https://doi.org/10.3390/jcdd12090331