Smaller Bioprosthetic Valves May Be Associated with Worse Clinical Outcomes and Reduced Freedom from Reoperation in sAVR
Abstract
1. Introduction
2. Materials and Methods
- “Aortic Valve Replacement” “[MeSH]”;
- “Bioprosthetic SAVR”;
- “Prosthesis Size” OR “Valve Size” OR “Aortic Valve Prosthesis Size”.
- Published in English;
- Provides paired data or analysis on the relationship between valve size and outcomes of interest;
- At least one study group only performing surgical aortic valve replacement;
- Majority usage of bioprosthetic valves—porcine, pericardial, bovine, etc.
- Published in languages other than English;
- Provides data on valve size but not linked to outcomes;
- Does not provide data on specific valve sizes used;
- Only TAVR investigated;
- Only mechanical valves used;
- Published before 2000.
3. Results
4. Discussion
4.1. Valve Sizing and Assessment
4.2. Impression
4.3. Technical Considerations Regarding PPM Assessment
5. Limitations
6. Recommendations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Aortic Insufficiency |
AVR | Aortic Valve Replacement |
BSA | Body Surface Area |
CaP | Calcium Phosphate |
CHF | Congestive Heart Failure |
EOA | Effective Orifice Area |
HVD | Haemodynamic Valve Deterioration |
INR | International Normalized Ratio |
iEOA | Indexed Effective Orifice Area |
NYHA | New York Heart Association |
PPM | Patient-Prosthesis Mismatch |
SAVR | Surgical Aortic Valve Replacement |
TAVR | Transcatheter Aortic Valve Replacement |
SVD | Structural Valve Deterioration |
ViV | Valve-in-Valve (Procedure) |
References
- Aluru, J.S.; Barsouk, A.; Saginala, K.; Rawla, P.; Barsouk, A. Valvular Heart Disease Epidemiology. Med. Sci. 2022, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Leviner, D.B.; Abraham, D.; Ronai, T.; Sharoni, E. Mechanical Valves: Past, Present, and Future—A Review. J. Clin. Med. 2024, 13, 3768. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Aranki, S.F. Anticoagulation for Prosthetic Valves. Thrombosis 2013, 2013, 346752. [Google Scholar] [CrossRef] [PubMed]
- Simonato, M.; Palma, J.H.; Alirhayim, Z.; Guddeti, R.; Kaneko, T.; Garcia, S. The Essential Aortic Valve-in-Valve Transcatheter Aortic Valve Replacement Update: Procedural Strategies and Current Clinical Results. Struct. Heart 2024, 9, 100318. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.R.; Mehta, C.; Malaisrie, S.C.; Baldridge, A.S.; Pham, D.T.; Bryner, B.; Medina, M.G.; Chiu, S.; Hodges, K.E.; McCarthy, P.M. Implanted size and structural valve deterioration in the Edwards Magna bioprosthesis. Ann. Cardiothorac. Surg. 2024, 13, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Medalion, B.; Blackstone, E.H.; Lytle, B.W.; White, J.D.; Arnold, J.; Cosgrove, D.M. Aortic valve replacement: Is valve size important? J. Thorac. Cardiovasc. Surg. 2000, 119, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Feier, H.; Grigorescu, A.; Falnita, L.; Rachita, O.; Gaspar, M.; Luca, C.T. Long-Term Results (up to 20 Years) of 19 mm or Smaller Prostheses in the Aortic Position. Does Size Matter? A Propensity-Matched Survival Analysis. J. Clin. Med. 2021, 10, 2055. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.; Hung, K.-C.; Chan, Y.-H.; Wu, V.C.-C.; Cheng, Y.-T.; Lin, C.-P.; Yeh, J.-K.; Chu, P.-H.; Chen, S.-W. Association of Valve Size and Hemodynamic Performance with Clinical Outcomes in Aortic Valve Replacement—A Long-Term Follow-up in an Asian Population. Circ. J. 2024, 88, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Kiaii, B.; Moront, M.G.; Patel, H.J.; Ruel, M.; Bensari, F.N.; Kress, D.C.; Liu, F.; Klautz, R.J.M.; Sabik, J.F., III. Outcomes of Surgical Bioprosthetic Aortic Valve Replacement in Patients Aged ≤65 and >65 Years. Ann. Thorac. Surg. 2022, 116, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Kolkailah, A.A.; Hirji, S.A.; Ejiofor, J.I.; Del Val, F.R.; Chowdhury, R.; McGurk, S.; Lee, J.; Kaneko, T. Impact of Prosthesis Size and Prosthesis-Patient Mismatch on Outcomes in Younger Female Patients Undergoing Aortic Valve Replacement. Semin. Thorac. Cardiovasc. Surg. 2020, 32, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Salaun, E.; Mahjoub, H.; Girerd, N.; Dagenais, F.; Voisine, P.; Mohammadi, S.; Yanagawa, B.; Kalavrouziotis, D.; Juni, P.; Verma, S.; et al. Rate, Timing, Correlates, and Outcomes of Hemodynamic Valve Deterioration After Bioprosthetic Surgical Aortic Valve Replacement. Circulation 2018, 138, 971–985. [Google Scholar] [CrossRef] [PubMed]
- Danial, P.; Girdauskas, E.; Aissani, A.; Debauchez, M.; Lebreton, G.; Leprince, P.; Reichenspurner, H.; Petersen, J.; Lansac, E. Outcomes of surgical bioprosthetic aortic valve replacement for aortic insufficiency. Arch. Cardiovasc. Dis. 2022, 115, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Gutfinger, D.; Sultan, I.; Ailawadi, G.; Ramzy, D.; Kaneko, T.; Yu, Y.; Meka, G.; Prillinger, J.B.; Bavaria, J.E. Real-world outcomes and management considerations following surgical aortic valve replacement with the Trifecta valve. Cardiovasc. Revascularization Med. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.M.; Borisuk, M.J.; Sleeper, L.A.; Bacha, E.; Burchill, L.; Guleserian, K.; Ilbawi, M.; Razzouk, A.; Shinkawa, T.; Lu, M.; et al. Mortality and Reoperation Risk After Bioprosthetic Aortic Valve Replacement in Young Adults with Congenital Heart Disease. Semin. Thorac. Cardiovasc. Surg. 2021, 33, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Tadokoro, N.; Fukushima, S.; Shimahara, Y.; Saito, T.; Kawamoto, N.; Kakuta, T.; Minami, K.; Fujita, T. Comparison of safety and haemodynamic performance between the AvalusTM stented aortic valve bioprosthesis and MagnaTM valve in Japanese patients. Gen. Thorac. Cardiovasc. Surg. 2021, 69, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Salna, M.; Khalique, O.K.; Chiuzan, C.; Kurlansky, P.; Borger, M.A.; Hahn, R.T.; Leon, M.B.; Smith, C.R.; Kodali, S.K.; Geore, I. Impact of small prosthesis size on transcatheter or surgical aortic valve replacement outcomes. Catheter. Cardiovasc. Interv. 2018, 91, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Sénage, T.; Tourneau, T.; Le Foucher, Y.; Pattier, S.; Cueff, C.; Michel, M.; Serfaty, J.-M.; Mugniot, A.; Périgaud, C.; Carton, H.F.; et al. Early Structural Valve Deterioration of Mitroflow Aortic Bioprosthesis. Circulation 2014, 130, 2012–2020. [Google Scholar] [CrossRef] [PubMed]
- Suvitesh, L.; Malvindi, P.G.; Olevano, C.; Zingale, A.; Salem, H.; Ohri, S.K. Impact of valve size, predicted effective and indexed effective orifice area after aortic valve replacement. J. Card. Surg. 2021, 36, 961–968. [Google Scholar] [CrossRef] [PubMed]
- La Par, D.J.; Ailawadi, G.; Bhamidipati, C.M.; Stukenborg, G.; Crosby, I.K.; Kern, J.A.; Kron, I.L. Small Prosthesis Size in Aortic Valve Replacement Does Not Affect Mortality. Ann. Thorac. Surg. 2011, 92, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, A.; Guetta, V.; Konen, E.; Goitein, O.; Segev, A.; Raanani, E.; Speigelstein, D.; Hay, I.; Di Segni, E.; Eldar, M.; et al. Deformation Dynamics and Mechanical Properties of the Aortic Annulus by 4-Dimensional Computed Tomography. J. Am. Coll. Cardiol. 2012, 59, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Gabella, T.; Voisine, P.; Puri, R.; Pibarot, P.; Rodés-Cabau, J. Aortic Bioprosthetic Valve Durability. J. Am. Coll. Cardiol. 2017, 70, 1013–1028. [Google Scholar] [CrossRef] [PubMed]
- Kulik, A.; Al-Saigh, M.; Chan, V.; Masters, R.G.; Bédard, P.; Lam, B.K.; Rubens, F.D.; Hendry, P.J.; Mesana, T.G.; Ruel, M. Enlargement of the Small Aortic Root During Aortic Valve Replacement: Is There a Benefit? Ann. Thorac. Surg. 2008, 85, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, G.F.; Correia, P.M.; Paupério, G.; de Oliveira, F.; Antunes, M.J. Aortic root enlargement does not increase the surgical risk and short-term patient outcome? Eur. J. Cardiothorac. Surg. 2011, 40, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.D.; Borger, M.A.; Feindel, C.M.; David, T.E. Aortic Annular Enlargement During Aortic Valve Replacement: Improving Results with Time. Ann. Thorac. Surg. 2007, 83, 2044–2049. [Google Scholar] [CrossRef] [PubMed]
- Pibarot, P.; Dumesnil, J.G. Prosthesis-patient mismatch: Definition, clinical impact, and prevention. Heart 2006, 92, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Flameng, W.; Herregods, M.C.; Vercalsteren, M.; Herijgers, P.; Bogaerts, K.; Meuris, B. Prosthesis-Patient Mismatch Predicts Structural Valve Degeneration in Bioprosthetic Heart Valves. Circulation 2010, 121, 2123–2129. [Google Scholar] [CrossRef] [PubMed]
- Demirsoy, E.; Demir, İ.; Uğur, M. Management of Prosthesis-patient Mismatch After Aortic Valve Replacement. e-J. Cardiovasc. Med. 2019, 7, 60–65. [Google Scholar] [CrossRef]
- Herrmann, H.C.; Daneshvar, S.A.; Fonarow, G.C.; Stebbins, A.; Vemulapalli, S.; Desai, N.D.; Malenka, D.J.; Thourani, V.H.; Rymer, J.; Kosinski, A.S. Prosthesis–Patient Mismatch in Patients Undergoing Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2018, 72, 2701–2711. [Google Scholar] [CrossRef] [PubMed]
- Sá, M.P.; Jacquemyn, X.; Van den Eynde, J.; Chu, D.; Serna-Gallegos, D.; Ebels, T.; Clavel, M.-A.; Pibarot, P.; Sultan, I. Impact of Prosthesis-Patient Mismatch After Surgical Aortic Valve Replacement: Systematic Review and Meta-Analysis of Reconstructed Time-to-Event Data of 122 989 Patients with 592 952 Patient-Years. J. Am. Heart Assoc. 2024, 13, e033176. [Google Scholar] [CrossRef] [PubMed]
- Hanayama, N.; Christakis, G.T.; Mallidi, H.R.; Joyner, C.D.; Fremes, S.E.; Morgan, C.D.; Mitoff, P.R.R.; Goldman, B.S. Patient prosthesis mismatch is rare after aortic valve replacement: Valve size may be irrelevant. Ann. Thorac. Surg. 2002, 73, 1822–1829. [Google Scholar] [CrossRef] [PubMed]
- Cabrucci, F.; Baudo, M.; Yamashita, Y.; Dokollari, A.; Sicouri, S.; Ramlawi, B. Short and Long-Term Outcomes of Transcatheter Aortic Valve Implantation in the Small Aortic Annulus: A Systematic Literature Review. J. Pers. Med. 2024, 14, 937. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Herrera, G.A.; Battarbee, H.D. Role of Glutaraldehyde in Calcification of Porcine Aortic Valve Fibroblasts. Am. J. Pathol. 1999, 154, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Cremer, P.; Rodríguez, L.F.; Griffin, B.P.; Tan, C.D.; Rodriguez, E.; Johnston, D.R.; Petterson, G.B.; Menon, V. Early Bioprosthetic Valve Failure: Mechanistic Insights via Correlation between Echocardiographic and Operative Findings. J. Am. Soc. Echocardiogr. 2015, 28, 1131–1148. [Google Scholar] [CrossRef] [PubMed]
- Arjunon, S.; Rathan, S.; Jo, H.; Yoganathan, A.P. Aortic Valve: Mechanical Environment and Mechanobiology. Ann. Biomed. Eng. 2013, 41, 1331–1346. [Google Scholar] [CrossRef] [PubMed]
- Kostyunin, A.E.; Yuzhalin, A.E.; Rezvova, M.A.; Ovcharenko, E.A.; Glushkova, T.V.; Kutikhin, A.G. Degeneration of Bioprosthetic Heart Valves: Update 2020. J. Am. Heart Assoc. 2020, 9, e018506. [Google Scholar] [CrossRef] [PubMed]
- Werner, P.; Gritsch, J.; Scherzer, S.; Gross, C.; Russo, M.; Coti, I.; Kocher, A.; Laufer, G.; Andreas, M. Structural valve deterioration after aortic valve replacement with the Trifecta valve. Interact. Cardiovasc. Thorac. Surg. 2021, 32, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Perez, D.; Lees, B.; Flather, M.; Nugara, F.; Husebye, T.; Jasinski, M.; Cisowski, M.; Khan, M.; Henein, M.; Gaer, J.; et al. Randomized Comparison of Stentless Versus Stented Valves for Aortic Stenosis. Circulation 2005, 112, 2696–2702. [Google Scholar] [CrossRef] [PubMed]
- Yun, K.L.; Jamieson, W.R.; Khonsari, S.; Burr, L.H.; Munro, A.I.; Sintek, C.F. Prosthesis-patient mismatch: Hemodynamic comparison of stented and stentless aortic valves. Semin. Thorac. Cardiovasc. Surg. 1999, 11 (Suppl. S1), 98–102. [Google Scholar] [PubMed]
- Bonow, R.O.; Carabello, B.A.; Chatterjee, K.; de Leon, A.C.; Faxon, D.P.; Freed, M.D.; Gaasch, W.H.; Lytle, B.W.; Nishimura, R.A.; O’Gara, P.T.; et al. 2008 Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients with Valvular Heart Disease. Circulation 2008, 118, e1–e142. [Google Scholar] [CrossRef] [PubMed]
- Bajorek, N.; Filip, G.; Malinowski, K.; Kędziora, A.; Mazur, P.; Ramaprabhu, K.; Bartuś, K.; Batko, J.; Rams, D.J.; Deja, M.; et al. Comparison of four aortic bioprostheses: Hancock II vs. St Jude Trifecta vs. Carpentier-Edwards Perimount Magna vs. Magna Ease-mid-term results (COMPARE SAVR study). J. Thorac. Dis. 2024, 16, 5018–5030. [Google Scholar] [CrossRef] [PubMed]
- Malvindi, P.G.; Kattach, H.; Luthra, S.; Ohri, S. Modes of failure of Trifecta aortic valve prosthesis. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac086. [Google Scholar] [CrossRef] [PubMed]
- 43 Poh, K.K.; Levine, R.A.; Solis, J.; Shen, L.; Flaherty, M.; Kang, Y.J.; Guerrero, J.L.; Hung, J. Assessing aortic valve area in aortic stenosis by continuity equation: A novel approach using real-time three-dimensional echocardiography. Eur. Heart J. 2008, 29, 2526–2535. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.E.; Julien, T.; Philippe, P.; Xu, K.; Alu, M.; Rogers, E.; Hahn, R.T.; Leon, M.; Thourani, V.H. Impact of Flow on Prosthesis-Patient Mismatch Following Transcatheter and Surgical Aortic Valve Replacement. Circ. Cardiovasc. Imaging 2021, 14, e012364. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, J.; Schima, H.; Maurer, G.; Baumgartner, H. Importance of Pressure Recovery for the Assessment of Aortic Stenosis by Doppler Ultrasound. Circulation 1996, 94, 1934–1940. [Google Scholar] [CrossRef] [PubMed]
- Généreux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; Blackstone, E.H.; et al. Valve Academic Research Consortium 3: Updated Endpoint Definitions for Aortic Valve Clinical Research. J. Am. Coll. Cardiol. 2021, 77, 2717–2746. [Google Scholar] [CrossRef] [PubMed]
Study Author | Country of Publication | Year of Publication | Study Size | Size Ranges | Average Time to Follow-Up (Years) |
---|---|---|---|---|---|
Johnston et al. [5] | USA | 2024 | 2100 | 19–29 | 5.8 |
Medallion et al. [6] | USA | 2000 | 892 | 19–33 | 5.0 |
Feier et al. [7] | Switzerland | 2021 | 670 | 18–21 | 6.25 |
Yen et al. [8] | Japan | 2024 | 695 | 19–27 | NR |
Kiaii et al. [9] | USA | 2022 | 1118 | 17–29 | 5.0 |
Kolkailah et al. [10] | USA | 2020 | 451 | 17–29 | 6.1 |
Salaun et al. [11] | USA | 2018 | 1387 | NR | 6.2 |
Danial et al. [12] | France | 2022 | 289 | 19–29 | 4.0 |
Gutfinger et al. [13] | USA | 2024 | 23,197 | NR | NR |
Fuller et al. [14] | USA | 2021 | 314 | NR | 2.9 |
Tadokoro et al. [15] | Japan | 2021 | 474 | 19–27 | 1.3 |
Salna et al. [16] | USA | 2017 | 2143 | 19–23 | 0.9 |
Sénage et al. [17] | USA | 2014 | 617 | 19–27 | 3.8 |
Suvitesh et al. [18] | USA | 2021 | 3444 | NR | 6.4 |
La Par et al. [19] | USA | 2012 | 4621 | 19–31 | NR |
Study Author | Transvalvular Gradient | Reintervention | Valvular Degeneration | Survival |
---|---|---|---|---|
Johnston et al. [5] | Smaller valves associated with higher gradients | Valve size not associated with reintervention; PPM and higher gradients associated with reintervention | Not specifically reported but reintervention deemed as surrogate | NR |
Medallion et al. [6] | NR | NR | NR | Small valve sizes weakly associated with lower survival |
Feier et al. [7] | Smaller valves more prone to PPM and thus higher gradients | Size not an independent risk factor for reintervention | NR | Small valve size group had lowest survival |
Yen et al. [8] | Smaller sizes associated with higher gradients; PPM associated with higher gradients | Valve size not an independent factor for reintervention | NR | No association of valve size with survival |
Kiaii et al. [9] | Smaller valves associated with increased gradients | NR | No cases of degeneration | NR |
Kolkailah et al. [10] | NR | NR | NR | Severe PPM associated with reduced survival |
Salaun et al. [11] | Smaller valves had higher post-operative gradients | Smaller valves linked with HVD incidence, requiring reintervention | Smaller valves and PPM more prone to degeneration | Smaller valves linked with higher HVD rates, deemed as predictor of survival |
Danial et al. [12] | NR | No relationship described between valve size and reintervention | No relationship described between valve size and degeneration | No relationship described between valve size and survival |
Gutfinger et al. [13] | NR | Smaller valves linked to higher rates of reintervention | NR | Valve size deemed as independent predictor of mortality |
Fuller et al. [14] | NR | Smaller valve size linked to reintervention | NR | NR |
Tadokoro et al. [15] | No relationship between valve size and mean gradients | NR | NR | NR |
Salna et al. [16] | NR | NR | NR | Small valves associated with higher mortality |
Sénage et al. [17] | Smaller valves had higher post-operative gradients | Small valves linked to earlier SVD, which may then necessitate reintervention | Small sizes linked to earlier SVD | Small valves linked to earlier SVD, which was linked to reduced survival |
Suvitesh et al. [18] | NR | NR | NR | Larger sizes associated with increased survival |
La Par et al. [19] | NR | NR | NR | Prosthesis size not associated with increased mortality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, O.; Derish, D.; Shum-Tim, D. Smaller Bioprosthetic Valves May Be Associated with Worse Clinical Outcomes and Reduced Freedom from Reoperation in sAVR. J. Cardiovasc. Dev. Dis. 2025, 12, 277. https://doi.org/10.3390/jcdd12070277
Lee O, Derish D, Shum-Tim D. Smaller Bioprosthetic Valves May Be Associated with Worse Clinical Outcomes and Reduced Freedom from Reoperation in sAVR. Journal of Cardiovascular Development and Disease. 2025; 12(7):277. https://doi.org/10.3390/jcdd12070277
Chicago/Turabian StyleLee, Oliver, David Derish, and Dominique Shum-Tim. 2025. "Smaller Bioprosthetic Valves May Be Associated with Worse Clinical Outcomes and Reduced Freedom from Reoperation in sAVR" Journal of Cardiovascular Development and Disease 12, no. 7: 277. https://doi.org/10.3390/jcdd12070277
APA StyleLee, O., Derish, D., & Shum-Tim, D. (2025). Smaller Bioprosthetic Valves May Be Associated with Worse Clinical Outcomes and Reduced Freedom from Reoperation in sAVR. Journal of Cardiovascular Development and Disease, 12(7), 277. https://doi.org/10.3390/jcdd12070277