High-Risk Plaque Characteristics in Patients with Suspected Stable Coronary Artery Disease and Impaired Glucose Tolerance: A Coronary Computed Tomography Angiography Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Clinical and Biochemical Assessments
2.4. Glucose Tolerance Testing and Stratification
2.5. CCTA Acquisition
2.6. Quantitative CCTA Analysis
High-Risk Plaque Characteristics
2.7. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. CCTA Findings
3.3. Univariate and Multivariate Analysis
4. Discussion
4.1. Prediabetes in a Clinical Context
4.2. IGT vs. IFG: Different Paths to CVD?
4.3. Plaque Burden in Prediabetes
4.4. High-Risk Plaque Features in Prediabetes
4.5. Methodological Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norhammar, A.; Tenerz, A.; Nilsson, G.; Hamsten, A.; Efendíc, S.; Rydén, L.; Malmberg, K. Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: A prospective study. Lancet 2002, 359, 2140–2144. [Google Scholar] [CrossRef]
- Ferrannini, G.; De Bacquer, D.; De Backer, G.; Kotseva, K.; Mellbin, L.; Wood, D.; Rydén, L. Screening for Glucose Perturbations and Risk Factor Management in Dysglycemic Patients With Coronary Artery Disease-A Persistent Challenge in Need of Substantial Improvement: A Report From ESC EORP EUROASPIRE V. Diabetes Care 2020, 43, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, G.; Tuomilehto, J.; De Backer, G.; Kotseva, K.; Mellbin, L.; Schnell, O.; Wood, D.; De Bacquer, D.; Rydén, L. Dysglycaemia screening and its prognostic impact in patients with coronary artery disease: Experiences from the EUROASPIRE IV and V cohort studies. Lancet Diabetes Endocrinol. 2024, 12, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; He, Y.; Wang, J.; Yu, L.; Gong, Q.; Chen, Y.; An, Y.; He, S.; Li, G.; Zhang, B. Influence of impaired glucose tolerance alone and combined with metabolic syndrome on long-term risk of cardiovascular events and mortality. J. Diabetes 2024, 16, e13598. [Google Scholar] [CrossRef]
- Suzuki, K.; Takano, H.; Kubota, Y.; Inui, K.; Nakamura, S.; Tokita, Y.; Kato, K.; Asai, K.; Shimizu, W. Plaque Characteristics in Coronary Artery Disease Patients with Impaired Glucose Tolerance. PLoS ONE 2016, 11, e0167645. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Kitagawa, T.; Ohashi, N.; Utsunomiya, H.; Kunita, E.; Oka, T.; Urabe, Y.; Tsushima, H.; Awai, K.; Kihara, Y. Noncalcified atherosclerotic lesions with vulnerable characteristics detected by coronary CT angiography and future coronary events. J. Cardiovasc. Comput. Tomogr. 2013, 7, 192–199. [Google Scholar]
- Thomsen, C.; Abdulla, J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: A systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 120–129. [Google Scholar] [PubMed]
- Motoyama, S.; Sarai, M.; Narula, J.; Ozaki, Y. Coronary CT angiography and high-risk plaque morphology. Cardiovasc. Interv. Ther. 2013, 28, 1–8. [Google Scholar] [CrossRef]
- Bittner, D.O.; Mayrhofer, T.; Puchner, S.B.; Lu, M.T.; Maurovich-Horvat, P.; Ghemigian, K.; Kitslaar, P.H.; Broersen, A.; Bamberg, F.; Truong, Q.A.; et al. Coronary Computed Tomography Angiography–Specific Definitions of High-Risk Plaque Features Improve Detection of Acute Coronary Syndrome. Circ. Cardiovasc. Imaging 2018, 11, e007657. [Google Scholar] [CrossRef] [PubMed]
- Ferencik, M.; Mayrhofer, T.; Bittner, D.O.; Emami, H.; Puchner, S.B.; Lu, M.T.; Meyersohn, N.M.; Ivanov, A.V.; Adami, E.C.; Patel, M.R.; et al. Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial. JAMA Cardiol. 2018, 3, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Puchner, S.B.; Liu, T.; Mayrhofer, T.; Truong, Q.A.; Lee, H.; Fleg, J.L.; Nagurney, J.T.; Udelson, J.E.; Hoffmann, U.; Ferencik, M. High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: Results from the ROMICAT-II trial. J. Am. Coll. Cardiol. 2014, 64, 684–692. [Google Scholar] [CrossRef]
- Nerlekar, N.; Ha, F.J.; Cheshire, C.; Rashid, H.; Cameron, J.D.; Wong, D.T.; Seneviratne, S.; Brown, A.J. Computed Tomographic Coronary Angiography–Derived Plaque Characteristics Predict Major Adverse Cardiovascular Events. Circ. Cardiovasc. Imaging 2018, 11, e006973. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, R.; Otake, H.; Konishi, A.; Iwasaki, M.; Koo, B.K.; Fukuya, H.; Shinke, T.; Hirata, K.; Leipsic, J.; Berman, D.S.; et al. Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: A comparison to optical coherence tomography. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Leipsic, J.A.; Indraratna, P.; Gulsin, G.; Khasanova, E.; Tzimas, G.; Lin, F.Y.; Shaw, L.J.; Lee, S.E.; Andreini, D.; et al. Association of Tube Voltage With Plaque Composition on Coronary CT Angiography: Results From PARADIGM Registry. JACC Cardiovasc. Imaging 2021, 14, 2429–2440. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl. S1), S14–S31. [Google Scholar] [CrossRef]
- Anand, S.S.; Dagenais, G.R.; Mohan, V.; Diaz, R.; Probstfield, J.; Freeman, R.; Shaw, J.; Lanas, F.; Avezum, A.; Budaj, A.; et al. Glucose levels are associated with cardiovascular disease and death in an international cohort of normal glycaemic and dysglycaemic men and women: The EpiDREAM cohort study. Eur. J. Prev. Cardiol. 2012, 19, 755–764. [Google Scholar] [CrossRef]
- Williams, M.C.; Kwiecinski, J.; Doris, M.; McElhinney, P.; D’Souza, M.S.; Cadet, S.; Adamson, P.D.; Moss, A.J.; Alam, S.; Hunter, A.; et al. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results From the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 2020, 141, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M., Jr.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef]
- Conte, E.; Annoni, A.; Pontone, G.; Mushtaq, S.; Guglielmo, M.; Baggiano, A.; Volpato, V.; Agalbato, C.; Bonomi, A.; Veglia, F.; et al. Evaluation of coronary plaque characteristics with coronary computed tomography angiography in patients with non-obstructive coronary artery disease: A long-term follow-up study. Eur. Heart J. Cardiovasc. Imaging 2016, 18, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Yahyavi, S.K.; Snorgaard, O.; Knop, F.K.; Schou, M.; Lee, C.; Selmer, C.; Gislason, G.; Torp-Pedersen, C.; Blomberg Jensen, M.; Nissen Bonde, A. Prediabetes Defined by First Measured HbA(1c) Predicts Higher Cardiovascular Risk Compared With HbA(1c) in the Diabetes Range: A Cohort Study of Nationwide Registries. Diabetes Care 2021, 44, 2767–2774. [Google Scholar] [CrossRef] [PubMed]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar]
- Marx, N.; Rydén, L.; Federici, M.; Marx-Schütt, K.; Verket, M.; Müller-Wieland, D.; Gerstein, H.C.; Chan, J.; Cosentino, F.; Holman, R.R.; et al. Great debate: Pre-diabetes is not an evidence-based treatment target for cardiovascular risk reduction. Eur. Heart J. 2024, 45, 5117–5126. [Google Scholar] [CrossRef] [PubMed]
- Glucose tolerance and mortality: Comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe. Lancet 1999, 354, 617–621.
- Gurudevan, S.; Garg, P.; Malik, S.; Khattar, R.; Saremi, F.; Hecht, H.; DeMaria, A.; Narula, J. Impaired fasting glucose is associated with increased severity of subclinical coronary artery disease compared to patients with diabetes and normal fasting glucose: Evaluation by coronary computed tomographic angiography. BMJ Open 2016, 6, e005148. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Pyörälä, K.; Pyörälä, M.; Nissinen, A.; Lindström, J.; Tilvis, R.; Tuomilehto, J. Two-hour glucose is a better risk predictor for incident coronary heart disease and cardiovascular mortality than fasting glucose. Eur. Heart J. 2002, 23, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, O.; Takano, M.; Yamamoto, M.; Shirakabe, A.; Kimata, N.; Inami, T.; Kobayashi, N.; Munakata, R.; Murakami, D.; Inami, S.; et al. Impact of prediabetic status on coronary atherosclerosis: A multivessel angioscopic study. Diabetes Care 2013, 36, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Sassa, S.; Shimada, K.; Yoshida, K.; Tanaka, H.; Jissho, S.; Yoshikawa, J. Comparison of 64-slice multi-detector computed tomography coronary angiography between asymptomatic, type 2 diabetes mellitus and impaired glucose tolerance patients. J. Cardiol. 2008, 52, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Larsson, J.; Auscher, S.; Shamoun, A.; Pararajasingam, G.; Heinsen, L.J.; Andersen, T.R.; Lindholt, J.S.; Diederichsen, A.C.P.; Lambrechtsen, J.; Egstrup, K. Insulin resistance is associated with high-risk coronary artery plaque composition in asymptomatic men between 65 and 75 years and no diabetes: A DANCAVAS cross-sectional sub-study. Atherosclerosis 2023, 385, 117328. [Google Scholar] [CrossRef] [PubMed]
- Neglia, D.; Caselli, C.; Maffei, E.; Cademartiri, F.; Meloni, A.; Bossone, E.; Saba, L.; Lee, S.E.; Sung, J.M.; Andreini, D.; et al. Rapid Plaque Progression Is Independently Associated With Hyperglycemia and Low HDL Cholesterol in Patients With Stable Coronary Artery Disease: A PARADIGM Study. Cardiovasc. Imaging 2024, 17, e016481. [Google Scholar] [CrossRef]
- Farhan, S.; Redfors, B.; Maehara, A.; McAndrew, T.; Ben-Yehuda, O.; De Bruyne, B.; Mehran, R.; Giustino, G.; Kirtane, A.J.; Serruys, P.W.; et al. Impact of Pre-Diabetes on Coronary Plaque Composition and Clinical Outcome in Patients With Acute Coronary Syndromes: An Analysis From the PROSPECT Study. JACC Cardiovasc. Imaging 2019, 12, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Maurovich-Horvat, P.; Mayrhofer, T.; Puchner, S.B.; Lu, M.T.; Ghemigian, K.; Kitslaar, P.H.; Broersen, A.; Pursnani, A.; Hoffmann, U.; et al. Quantitative coronary plaque analysis predicts high-risk plaque morphology on coronary computed tomography angiography: Results from the ROMICAT II trial. Int. J. Cardiovasc. Imaging 2018, 34, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Sheng, Z.; Liu, C.; Zhou, P.; Li, J.; Chen, R.; Song, L.; Zhao, H.; Yan, H. Association between Admission Hyperglycemia and Culprit Lesion Characteristics in Nondiabetic Patients with Acute Myocardial Infarction: An Intravascular Optical Coherence Tomography Study. J. Diabetes Res. 2020, 2020, 1763567. [Google Scholar] [CrossRef]
- Patel, K.V.; Budoff, M.J.; Valero-Elizondo, J.; Lahan, S.; Ali, S.S.; Taha, M.B.; Blaha, M.J.; Blankstein, R.; Shapiro, M.D.; Pandey, A.; et al. Coronary Atherosclerosis Across the Glycemic Spectrum Among Asymptomatic Adults: The Miami Heart Study at Baptist Health South Florida. Circ. Cardiovasc. Imaging 2023, 16, e015314. [Google Scholar] [CrossRef] [PubMed]
- Selvin, E.; Crainiceanu, C.M.; Brancati, F.L.; Coresh, J. Short-term variability in measures of glycemia and implications for the classification of diabetes. Arch. Intern. Med. 2007, 167, 1545–1551. [Google Scholar] [CrossRef]
NGT n = 93 | IGT n = 55 | p-Value | |
---|---|---|---|
Age, years, n (SD) | 64.7 (8.8) | 61.0 (9.4) | 0.02 |
Sex, male, n (%) | 62 (67%) | 42 (76%) | 0.2 |
BMI, kg/m2 (SD) | 27.4 (6.0) | 28.9 (4.3) | 0.1 |
Systolic BP, mmHg (SD) | 144 (25) | 150 (22) | 0.2 |
Diastolic BP, mmHg (SD) | 80 (13) | 83 (12) | 0.2 |
Never smoker, n (%) | 44 (47%) | 20 (36%) | 0.7 |
Former smoker, n (%) | 38 (41%) | 25 (45%) | 0.1 |
Active smoker, n (%) | 11 (12%) | 9 (16%) | 0.4 |
Family history of CVD, n (%) | 29 (31%) | 22 (40%) | 0.3 |
Fasting glucose, mmol/L (SD) | 5.6 (0.3) | 6.1 (0.5) | <0.001 |
120 min glucose, mmol/L (SD) | 5.7 (1.1) | 8.7 (1.2) | <0.001 |
HbA1c, mmol/mol (SD) | 35 (4) | 37 (3) | 0.03 |
Pre-diabetic HbA1c, n (%) | 34 (37%) | 18 (33%) | 0.7 |
Total cholesterol, mmol/L (SD) | 5.0 (1.1) | 4.6 (1.2) | 0.06 |
HDL, mmol/L (SD) | 1.5 (0.4) | 1.3 (0.3) | <0.001 |
LDL, mmol/L (SD) | 2.9 (1.0) | 2.6 (1.1) | 0.2 |
Triglycerides, mmol/L (SD) | 1.3 (0.8) | 1.8 (0.9) | 0.003 |
CRP, mg/L (SD) | 2.1 (1.9) | 3.1 (2.8) | 0.02 |
Antihypertensive medication, n (%) | 49 (53%) | 32 (60%) | 0.2 |
Statins, n (%) | 26 (28%) | 26 (47%) | 0.02 |
Medical history | |||
AMI | 2 (2%) | 2(4%) | 0.6 |
PCI or CABG | 1 (1%) | 1 (2%) | 0.7 |
Stroke | 3 (3%) | 2(4%) | 0.8 |
Heart failure | 1(1%) | 0 | 0.6 |
Total CACS, (IQR) | 73 (4–233) | 76 (1–214) | 0.5 |
Inflammatory disease | 6(6%) | 4(7%) | 0.8 |
LAP lesions: | |||
NCP, n (%) | 36 (30%) | 30 (38%) | 0.2 |
Mixed mostly fibrous, n (%) | 72 (59%) | 42 (53%) | 0.4 |
Mixed mostly calcified, n (%) | 12 (10%) | 8 (10%) | 0.4 |
NGT n = 122 | IGT n = 80 | p-Value | |
---|---|---|---|
Plaque location | |||
Left anterior descending artery | 70 (57%) | 42 (53%) | - |
Circumflex artery | 18 (15%) | 5 (6%) | - |
Right coronary artery | 34 (28%) | 33 (41%) | - |
Plaque metrics | |||
Lesion length, mm | 17.5 (5.4) | 17.4 (5.8) | 0.9 |
TAV, mm3 | 155.6 (72.9) | 157.5 (76.0) | 0.9 |
Degree stenosis % | 31%(18, 59) | 37(16, 62%) | 0.3 |
Plaque volumes, mm3 | |||
Calcified | 25.7 (37.7) | 22.1 (27.5) | 0.5 |
Non-calcified | 109.8 (48.2) | 114.3 (61.4) | 0.6 |
Low-attenuation | 12.6 (9.7) | 16.5 (12.5) | 0.01 |
Plaque burdens, % | |||
Calcified | 14.2 (14.2) | 12.8 (11.8) | 0.5 |
Non-calcified | 72.3 (12.8) | 73.1 (10.5) | 0.7 |
Low-attenuation | 8.623 (5.9) | 10.8 (6.8) | 0.02 |
HRP features, n (%) | |||
Positive remodeling | 21 (17%) | 15 (19%) | 0.8 |
Spotty calcification | 28 (23%) | 26 (32%) | 0.1 |
Napkin-ring sign | 5 (5%) | 10 (12%) | 0.02 |
HRP ≥ 2 | 46 (38%) | 39 (49%) | 0.1 |
HRP ≥ 3 | 8 (7%) | 10 (13%) | 0.1 |
NGT vs. IGT | p-Value | NGT vs. IGT | p-Value | |
---|---|---|---|---|
Univariate | Multivariate | |||
β | β | |||
Plaque volumes, mm3 | ||||
Calcified | 0.3 | 0.08 | 0.02 | 0.1 |
Non-calcified | 4.4 | 0.5 | 0.04 | 0.6 |
Low-attenuation | 3.7 | 0.02 | 2.9 | 0.06 |
Plaque burdens, % | ||||
Calcified | −0.1 | 0.7 | 0.3 | 0.3 |
Non-calcified | 0.8 | 0.7 | 0.3 | 0.9 |
Low-attenuation | 0.4 | 0.02 | 0.3 | 0.03 |
HRP features, n | OR | OR | ||
Positive remodeling | 1.1 | 0.8 | 1.04 | 0.9 |
Spotty calcifications | 1.6 | 0.1 | 1.4 | 0.4 |
Napkin-ring sign | 2.7 | 0.02 | 2.2 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersen, T.R.; Overgaard, K.S.; Heinsen, L.J.; Mohamed, R.A.; Madsen, F.S.; Precht, H.; Lambrechtsen, J.; Auscher, S.; Egstrup, K. High-Risk Plaque Characteristics in Patients with Suspected Stable Coronary Artery Disease and Impaired Glucose Tolerance: A Coronary Computed Tomography Angiography Study. J. Cardiovasc. Dev. Dis. 2025, 12, 37. https://doi.org/10.3390/jcdd12020037
Andersen TR, Overgaard KS, Heinsen LJ, Mohamed RA, Madsen FS, Precht H, Lambrechtsen J, Auscher S, Egstrup K. High-Risk Plaque Characteristics in Patients with Suspected Stable Coronary Artery Disease and Impaired Glucose Tolerance: A Coronary Computed Tomography Angiography Study. Journal of Cardiovascular Development and Disease. 2025; 12(2):37. https://doi.org/10.3390/jcdd12020037
Chicago/Turabian StyleAndersen, Thomas Rueskov, Katrine Schultz Overgaard, Laurits Juhl Heinsen, Roda Abdulkadir Mohamed, Freja Sønder Madsen, Helle Precht, Jess Lambrechtsen, Søren Auscher, and Kenneth Egstrup. 2025. "High-Risk Plaque Characteristics in Patients with Suspected Stable Coronary Artery Disease and Impaired Glucose Tolerance: A Coronary Computed Tomography Angiography Study" Journal of Cardiovascular Development and Disease 12, no. 2: 37. https://doi.org/10.3390/jcdd12020037
APA StyleAndersen, T. R., Overgaard, K. S., Heinsen, L. J., Mohamed, R. A., Madsen, F. S., Precht, H., Lambrechtsen, J., Auscher, S., & Egstrup, K. (2025). High-Risk Plaque Characteristics in Patients with Suspected Stable Coronary Artery Disease and Impaired Glucose Tolerance: A Coronary Computed Tomography Angiography Study. Journal of Cardiovascular Development and Disease, 12(2), 37. https://doi.org/10.3390/jcdd12020037