Stroke Risk Stratification in Incident Atrial Fibrillation: A Sex-Specific Evaluation of CHA2DS2-VA and CHA2DS2-VASc
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Scope
2.3. Data Collection and Information Sources
- The HCC3 Patient Episode Dataset for Catalonia (CatSalut, Health Department), which includes demographic and clinical data on all daily inpatient and outpatient admissions in Catalonian hospitals.
- The 11 EAPs shared a clinical information database for all general practice (E-cap, HCC3) and hospital (E-sap) interactions, including clinical data, symptoms, investigations, diagnoses, comorbidities, prescribed medications, referrals to secondary and tertiary care, and status (alive/dead). Pharmacological variables were collected from the SIRE (Catalan acronym for Integrated Electronic Prescription System).
2.4. Study Population
2.5. Inclusion and Exclusion Criteria
2.5.1. Inclusion Criteria
2.5.2. Exclusion Criteria
2.6. Variables
- -
- For individuals diagnosed with AF during the follow-up period, relevant data were extracted at the time of their AF diagnosis and continued to be collected until the end of their individual follow-up period.
- -
- For patients who did not develop AF during the entire follow-up, their data were gathered as a mean value recorded throughout their observation period.
- -
- For cardiovascular risk factors and diagnostics using specific International Classification of Diseases (ICD–10) code prefixes for cerebrovascular disease (ischemic stroke or transient ischemic attack, I63, G45), heart failure (I50-51), ischemic heart disease (stable or unstable angina, percutaneous coronary intervention, coronary artery bypass grafting, or myocardial infarction) (I20-I25), hypertension (I10–I15), hypercholesterolemia (E78), diabetes mellitus (E10–E14), body mass index (BMI), chronic kidney disease (CKD) (N18), and estimated glomerular filtration rate (eGFR ml/min/1.73 m2).
- (a)
- Event Date Filtering: Each identified stroke or thromboembolic event record was time-stamped, and any event occurring on or prior to the date of AF diagnosis was systematically excluded from the outcome analysis.
- (b)
- Exclusion of Pre-existing Stroke: Furthermore, patients with a documented history of stroke/thromboembolism preceding their incident AF diagnosis were excluded from study enrolment.
- 1/
- Clinical scores: Charlson Comorbidity Index to assess a patient’s comorbidity burden, CHA2DS2-VASc and CHA2DS2-VA, and Pfeiffer Short Mental Status Questionnaire score. The annual stroke risk estimation was calculated according to CHA2DS2-VASc and CHA2DS2-VA scores [18]. The term “sex” has been used to refer to the biological and physical attributes as recorded in patient databases.
- 2/
- Antiplatelet and/or oral anticoagulation treatment.
- 3/
- Vital status (dead/alive) at the end of the study. All participants were followed from 1 January 2015 until 31 December 2024, loss to follow-up, or date of death, whichever occurred first.
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- 1/
- The application of the CHA2DS2-VA score notably redefined sex-based thromboembolic risk stratification profiles compared to the CHA2DS2-VASc score, leading to a substantial reduction in previously observed sex-based disparities in risk categories within this elderly cohort.
- 2/
- The 3.2% of women were reclassified to a low-risk category (CHA2DS2-VA < 2), suggesting that oral anticoagulation could be reconsidered or withheld for these individuals, guided by a patient-centered approach.
- 3/
- No statistically significant sex-based disparities were evident in the selection of OAC treatment modality.
- 4/
- While this study provides empirical evidence on the practical consequences of applying the CHA2DS2-VA score in a real-world, elderly cohort, the broader clinical utility of adopting this score for comprehensive stroke risk stratification across diverse AF populations remains a subject of ongoing debate and warrants further prospective research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | Atrial Fibrillation |
OAC | Oral Anticoagulants |
ESC-EACTS Guidelines | Guidelines developed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) |
GECATE | Acronym for “Gender perspective on cardiovascular diseases in the Terres de l’Ebre” |
ICS | Acronym for “Catalan Health Institute” |
EAPs | Acronym for “Primary Care teams” |
HCC3 | Acronym for “Shared clinical record of Catalonia” |
SIRE | Acronym for “Integrated Electronic Prescription System” |
COPD | Chronic Obstructive Pulmonary Disease |
BMI | Body Mass Index |
OSAHS | Obstructive Sleep Apnea/Hypopnea Syndrome |
VKAs | Vitamin K antagonists |
NOACs | Non-vitamin K oral anticoagulants |
Appendix A
References
- van der Endt, V.H.W.; Milders, J.; de Vries, B.B.L.P.; A Trines, S.; Groenwold, R.H.H.; Dekkers, O.M.; Trevisan, M.; Carrero, J.J.; van Diepen, M.; Dekker, F.W.; et al. Comprehensive comparison of stroke risk score performance: A systematic review and meta-analysis among 6 267 728 patients with atrial fibrillation. Europace 2022, 24, 1739–1753. [Google Scholar] [CrossRef] [PubMed]
- Boriani, G.; Vitolo, M.; A Mei, D. CHA2DS2-VA instead of CHA2DS2-VASc for stroke risk stratification in patients with atrial fibrillation: Not just a matter of sex. Europace 2024, 26, euae281. [Google Scholar] [CrossRef]
- Kalarus, Z.; Mairesse, G.H.; Sokal, A.; Boriani, G.; Średniawa, B.; Casado-Arroyo, R.; Wachter, R.; Frommeyer, G.; Traykov, V.; Dagres, N.; et al. Searching for atrial fibrillation: Looking harder, looking longer, and in increasingly sophisticated ways. An EHRA position paper. Europace 2022, 25, 185–198, Erratum in: Europace 2024, 26, euae167. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, C.; Wu, J.; Clegg, A.; Nadarajah, R.; Rockwood, K.; Todd, O.; Gale, C.P. Impact of oral anticoagulation on the association between frailty and clinical outcomes in people with atrial fibrillation: Nationwide primary care records on treatment analysis. Europace 2022, 24, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- on behalf Ebrictus Research Group; Lorman-Carbó, B.; Clua-Espuny, J.L.; Muria-Subirats, E.; Ballesta-Ors, J.; González-Henares, M.A.; Fernández-Sáez, J.; Martín-Luján, F.M. Complex chronic patients as an emergent group with high risk of intracerebral haemorrhage: An observational cohort study. BMC Geriatr. 2021, 21, 106. [Google Scholar] [CrossRef]
- Yoshimura, H.; Providencia, R.; Finan, C.; Schmidt, A.F.; Lip, G.Y.H. Refining the CHA2DS2VASc risk stratification scheme: Shall we drop the sex category criterion? Europace 2024, 26, euae280. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Teppo, K.; Nielsen, P.B. CHA2DS2-VASc or a non-sex score (CHA2DS2-VA) for stroke risk prediction in atrial fibrillation: Contemporary insights and clinical implications. Eur. Hear. J. 2024, 45, 3718–3720. [Google Scholar] [CrossRef]
- Teppo, K.; Lip, G.Y.H.; Airaksinen, K.E.J.; Halminen, O.; Haukka, J.; Putaala, J.; Mustonen, P.; Linna, M.; Hartikainen, J.; Lehto, M. Comparing CHA2DS2-VA and CHA2DS2-VASc scores for stroke risk stratification in patients with atrial fibrillation: A temporal trends analysis from the retrospective Finnish AntiCoagulation in Atrial Fibrillation (FinACAF) cohort. Lancet Reg. Health. Eur. 2024, 43, 100967. [Google Scholar] [CrossRef]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Hear. J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef]
- Wu, V.C.-C.; Wu, M.; Aboyans, V.; Chang, S.-H.; Chen, S.-W.; Chen, M.-C.; Wang, C.-L.; Hsieh, I.-C.; Chu, P.-H.; Lin, Y.-S. Female sex as a risk factor for ischaemic stroke varies with age in patients with atrial fibrillation. Heart 2019, 106, 534–540. [Google Scholar] [CrossRef]
- Rienstra, M.; Tzeis, S.; Bunting, K.V.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Sanders, P.; Svennberg, E.; Casado-Arroyo, R.; Dwight, J.; et al. Spotlight on the 2024 ESC/EACTS management of atrial fibrillation guidelines: 10 novel key aspects. Europace 2024, 26, euae298. [Google Scholar] [CrossRef] [PubMed]
- Ictus: Plan de Actuación en Europa (2018–2030). Ed Stroke Alliance for Europe (SAFE). Available online: www.safestroke.eu (accessed on 25 April 2025).
- Pla de salut de la Regió Sanitària Terres de l’Ebre 2021-Tortosa: Direcció General de Planificació i Recerca en Salut. Available online: https://scientiasalut.gencat.cat/handle/11351/7964 (accessed on 5 May 2025).
- Idescat. Indicadors Demogràfics i de Territori. Estructura per Edats, Envelliment i Dependència. Comarques i Aran. Available online: https://www.idescat.cat/pub/?id=inddt&n=916 (accessed on 5 May 2025).
- Generalitat de Catalunya. Projeccions de Població Principals Resultats 2013–2051. 2008. Available online: https://www.idescat.cat/serveis/biblioteca/docs/cat/pp2021-2041pr.pdf (accessed on 25 April 2025).
- Clua-Espuny, J.-L.; Molto-Balado, P.; Lucas-Noll, J.; Panisello-Tafalla, A.; Muria-Subirats, E.; Clua-Queralt, J.; Queralt-Tomas, L.; Reverté-Villarroya, S.; Investigators EBRICTUS Research. Early Diagnosis of Atrial Fibrillation and Stroke Incidence in Primary Care: Translating Measurements into Actions—A Retrospective Cohort Study. Biomedicines 2023, 11, 1116. [Google Scholar] [CrossRef] [PubMed]
- Clua-Espuny, J.-L.; Muria-Subirats, E.; Ballesta-Ors, J.; Lorman-Carbo, B.; Clua-Queralt, J.; Palà, E.; Lechuga-Duran, I.; Gentille-Lorente, D.; Bustamante, A.; Muñoz, M.Á.; et al. Risk of Atrial Fibrillation, Ischemic Stroke and Cognitive Impairment: Study of a Population Cohort ≥65 Years of Age. Vasc. Health Risk Manag. 2020, 16, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, A. Stroke in atrial fibrillation: Review of risk stratification and preventive therapy. J. Fam. Community Med. 2019, 26, 92–97. [Google Scholar] [CrossRef]
- Heidbuchel, H.; Van Gelder, I.C.; Desteghe, L.; for the EHRA-PATHS Investigators. ESC and EHRA lead a path towards integrated care for multimorbid atrial fibrillation patients: The Horizon 2020 EHRA-PATHS project. Eur. Hear. J. 2021, 43, 1450–1452. [Google Scholar] [CrossRef]
- Lam, S.H.M.; Romiti, G.F.; Corica, B.; Bucci, T.; Olshansky, B.; Chao, T.-F.; Huisman, M.V.; Lip, G.Y.H. Stroke risk stratifications according to CHA2DS2-VASc vs. CHA2DS2-VA in patients with Atrial Fibrillation: Insights from the GLORIA-AF registry. Eur. Hear. J.—Cardiovasc. Pharmacother. 2025, 00, 1–8. [Google Scholar] [CrossRef]
- Clua-Espuny, J.L.; Hernández-Pinilla, A.; Gentille-Lorente, D.; Muria-Subirats, E.; Forcadell-Arenas, T.; de Diego-Cabanes, C.; Ribas-Seguí, D.; Diaz-Vilarasau, A.; Molins-Rojas, C.; Palleja-Millan, M.; et al. Evidence Gaps and Lessons in the Early Detection of Atrial Fibrillation: A Prospective Study in a Primary Care Setting (PREFATE Study). Biomedicines 2025, 13, 119. [Google Scholar] [CrossRef] [PubMed]
- Romiti, G.F.; Corica, B.; Mei, D.A.; Bisson, A.; Boriani, G.; Olshansky, B.; Chao, T.-F.; Huisman, M.V.; Proietti, M.; Lip, G.Y.H.; et al. Patterns of comorbidities in patients with atrial fibrillation and impact on management and long-term prognosis: An analysis from the Prospective Global GLORIA-AF Registry. BMC Med. 2024, 22, 151. [Google Scholar] [CrossRef]
- Overvad, T.F.; Larsen, T.B.; Nielsen, P.B. Response by Overvad et al to Letter Regarding Article, “Female Sex Is a Risk Modifier Rather Than a Risk Factor for Stroke in Atrial Fibrillation: Should We Use a CHA2DS2-VA Score Rather Than CHA2DS2-VASc?”. Circulation 2018, 138, 443–444. [Google Scholar] [CrossRef]
- Champsi, A.; Mobley, A.R.; Subramanian, A.; Nirantharakumar, K.; Wang, X.; Shukla, D.; Bunting, K.V.; Molgaard, I.; Dwight, J.; Arroyo, R.C.; et al. Gender and contemporary risk of adverse events in atrial fibrillation. Eur. Hear. J. 2024, 45, 3707–3717. [Google Scholar] [CrossRef]
- Lu, J.; Hutchens, R.; Hung, J.; Bennamoun, M.; McQuillan, B.; Briffa, T.; Sohel, F.; Murray, K.; Stewart, J.; Chow, B.; et al. Performance of multilabel machine learning models and risk stratification schemas for predicting stroke and bleeding risk in patients with non-valvular atrial fibrillation. Comput. Biol. Med. 2022, 150, 106126. [Google Scholar] [CrossRef] [PubMed]
- Moltó-Balado, P.; Reverté-Villarroya, S.; Alonso-Barberán, V.; Monclús-Arasa, C.; Balado-Albiol, M.T.; Clua-Queralt, J.; Clua-Espuny, J.-L. Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation. Technologies 2024, 12, 13. [Google Scholar] [CrossRef]
- Giner-Soriano, M.; Prat-Vallverdú, O.; Ouchi, D.; Vilaplana-Carnerero, C.; Morros, R. Sex and gender differences in the use of oral anticoagulants for non-valvular atrial fibrillation: A population-based cohort study in primary health care in catalonia. Front. Pharmacol. 2023, 14, 1110036. [Google Scholar] [CrossRef]
- Teppo, K.; Airaksinen, K.E.J.; Jaakkola, J.; Halminen, O.; Salmela, B.; Kalatsova, K.; Kouki, E.; Haukka, J.; Putaala, J.; Linna, M.; et al. Temporal trends of gender disparities in oral anticoagulant use in patients with atrial fibrillation. Eur. J. Clin. Investig. 2023, 54, e14107. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.B.; Overvad, T.F. Female Sex as a Risk Modifier for Stroke Risk in Atrial Fibrillation: Using CHA2DS2-VASc versus CHA2DS2-VA for Stroke Risk Stratification in Atrial Fibrillation: A Note of Caution. Thromb. Haemost. 2020, 120, 894–898. [Google Scholar] [CrossRef]
- Salmasi, S.; Loewen, P.S.; Tandun, R.; Andrade, J.G.; De Vera, M.A. Adherence to oral anticoagulants among patients with atrial fibrillation: A systematic review and meta-analysis of observational studies. BMJ Open 2020, 10, e034778. [Google Scholar] [CrossRef]
Variables | Men | (%) | Women | (%) | p | All (%) |
---|---|---|---|---|---|---|
All (n%) | 19,531 | 48.7% | 20,548 | 51.3% | - | 40,077 |
AF | 1928 | 9.9% | 1442 | 7.0% | <0.001 | 3370 (8.4%) |
Age average | 77.28 ± 6.56 | 77.6 ± 6.63 | <0.001 | 77.4 ± 6.60 | ||
CHA2DS2-VASc | 2.7 ± 1.1 | 3.6 ± 1.1 | <0.001 | 3.2 ± 1.2 | ||
CHA2DS2-VA | 2.8 ± 1.1 | 2.6 ± 1.1 | <0.001 | 2.68 ± 1.1 | ||
Heart failure | 1790 | 9.2% | 1558 | 7.6% | <0.001 | 3348 (8.4%) |
Hypertension arterial | 11,526 | 59.0% | 12,218 | 59.5% | 0.360 | 23,744 (59.2%) |
Age 65 to 74 years | 7748 | 39.6% | 7765 | 37.8% | <0.001 | 15,513 (38.7%) |
Age ≥ 75 years | 11,783 | 60.3% | 12,783 | 62.6% | <0.001 | 24,566 (61.3%) |
Diabetes mellitus | 5763 | 29.5% | 4498 | 21.9% | <0.001 | 10,261 (25.6%) |
Stroke/TIA/Systemic embolism | 843 | 4.7% | 724 | 3.5% | <0.001 | 1567 (3.9%) |
Vascular peripheral disease | 1983 | 10.2% | 798 | 3.9% | <0.001 | 2781 (6.9%) |
Ischemic cardiomyopathy | 2073 | 10.6% | 917 | 4.5% | <0.001 | 2990 (7.5%) |
BMI 1 (kg/m2) | 28.1 ± 4.5 | 28.4 ± 5.7 | <0.001 | 28.3 ± 5.2 | ||
Charlson index | 1.5 ± 1.4 | 1.2 ± 1.2 | <0.001 | 1.38 ± 1.9 | ||
Dementia/cognitive impairment | 1452 | 7.4% | 2225 | 10.8% | <0.001 | 3677 (9.2%) |
Pfeiffer score | 2.72 ± 3.20 | 3.63 ± 3.35 | <0.001 | 3.23 ± 3.3 | ||
Chronic Kidney Disease | 3181 | 16.3% | 3080 | 15.0% | <0.001 | 6261 (15.6%) |
Glomerular filtration rate (ml/min/1.73 m2) | 72.2 ± 18.0 | 73.4 ± 17.6 | <0.001 | 72.9 ± 17.7 | ||
COPD 2/asthma/bronchitis | 2895 | 14,8% | 2224 | 10.8% | <0.001 | 5119 (12.8%) |
OSAHS 3 | 966 | 4.9% | 473 | 2.3% | <0.001 | 1439 (3.6%) |
Dyslipidemia | 8394 | 43.0% | 10,623 | 51.7% | <0.001 | 19,017 (47.5%) |
Statins | 6006 | 30.8% | 6326 | 30.8% | 0.940 | 12,332 (30.8%) |
Antiaggregants | 3411 | 17.5% | 2335 | 11.4% | <0.001 | 5746 (14.3%) |
Anticoagulation | 1977 | 10.1% | 1468 | 7.1% | <0.001 | 3445 (8.6%) |
Hospital visits | 0.36 ± 1.3 | 0.27 ± 0.95 | <0.001 | 0.31 ± 1.15 | ||
Active medications | 5.17 ± 4.3 | 5.76 ± 4.40 | <0.001 | 5.48 ± 4.36 | ||
Exitus | 14,492 | 74.2% | 17,173 | 83.6% | <0.001 | 31,665 (79.0%) |
Variables | Men | (%) | Women | (%) | p | All (%) |
---|---|---|---|---|---|---|
All (n%) | 1928 | 57.2% | 1442 | 42.8% | <0.001 | 3370 |
Age average | 79.5 ± 6.23 | 80.9 ± 6.1 | <0.001 | 80.1 ± 6.24 | ||
CHA2DS2-VASc | 3.58 ± 1.18 | 4.51 ± 1.12 | <0.001 | 3.98 ± 1.24 | ||
CHA2DS2-VA | 3.58 ± 1.18 | 3.51 ± 1.12 | 0.071 | 3.55 ± 1.16 | ||
Heart failure | 690 | 35.8% | 543 | 37.7% | 0.278 | 1233 (36.6%) |
Hypertension arterial | 1439 | 74.6% | 1091 | 75.7% | 0.520 | 2530 (75.1%) |
Age 65 to 74 years | 460 | 23.8% | 246 | 17.1% | <0.001 | 706 (20.94%) |
Age ≥ 75 years | 1468 | 76.1% | 1196 | 82.9% | <0.001 | 2664 (79.1%) |
Diabetes mellitus | 727 | 37.7% | 461 | 32.0% | 0.001 | 1188 (35.3%) |
Stroke/TIA/Systemic embolism | 194 | 10.1% | 137 | 9.5% | 0.599 | 331 (9.8%) |
Vascular peripheral disease | 351 | 18.2% | 119 | 8.3% | <0.001 | 470 (13.8%) |
Ischemic cardiomyopathy | 375 | 19.5% | 162 | 11.2% | <0.001 | 537 (15.8%) |
BMI 1 (kg/m2) | 29.07 ± 5.1 | 28.53 ± 6.2 | 0.022 | 29.2 ± 5.5 | ||
Charlson index | 2.27 ± 1.5 | 1.91 ± 1.38 | <0.001 | 2.10 ± 1.45 | ||
Dementia/cognitive impairment | 196 | 10.2% | 212 | 14.7% | <0.001 | 408 (12.1%) |
Pfeiffer score | 2.14 ± 2.7 | 3.31 ± 3.0 | <0.001 | 2.71 ± 2.9 | ||
Chronic Kidney Disease | 581 | 30.1% | 417 | 28.9% | 0.446 | 998 (29.6%) |
Glomerular filtration rate (ml/min/1.73 m2) | 65.5 ± 20.0 | 64.7 ± 19.8 | 0.356 | 65.16 ± 19.9 | ||
COPD 3/asthma/bronchitis | 454 | 23.5% | 223 | 15.5% | <0.001 | 677 (20.1%) |
OSAHS 2 | 170 | 8.8% | 54 | 3.7% | <0.001 | 224 (6.6%) |
Dyslipidemia | 933 | 48.4% | 774 | 53.7% | 0.002 | 1707 (50.7%) |
Statins | 721 | 37.4% | 505 | 35.0% | 0.158 | 1226 (36.4%) |
Antiaggregants | 122 | 6.3% | 48 | 3.3% | <0.001 | 170 (5.0%) |
Anticoagulation | 1522 | 78.9% | 1140 | 79.0% | 0.9694 | 2662 (78.9%) |
VKAs 4 | 492 | 32.3% | 378 | 33.1% | 0.6810 | 870 (32.6%) |
NOACs 5 | 1030 | 67.6% | 762 | 66.8% | 0.6810 | 1792 (67.3%) |
Hospital visits | 0.68 ± 1.7 | 0.58 ± 1.51 | 0.070 | 0.64 ± 1.64 | ||
Active medications | 8.03 ± 4.6 | 8.57 ± 4.7 | 0.001 | 8.26 ± 4.68 | ||
Exitus | 1445 | 74.9% | 1125 | 78.0% | 0.095 | 2570 (76.3%) |
Tab | CHA2DS2VASc | CHA2DS2VA | |||||
---|---|---|---|---|---|---|---|
Score | Women N1 (%) | Men n1 (%) | p | Women N2 (%) | Men n2 (%) | p | Total Registered Stroke |
1 | - | 61 (3.1%) | <0.001 | 46 (3.2%) | 61 (3.1%) | 0.9549 | - |
2 | 46 (3.2%) | 276 (14.3%) | <0.001 | 210 (14.5%) | 276 (14.3%) | 0.8784 | 10 (2.99%) |
3 | 210 (14.6%) | 593 (30.7%) | <0.001 | 459 (31.8%) | 593 (30.8%) | 0.5301 | 49 (14.67%) |
4 | 459 (31.8%) | 589 (30.5%) | 0.4489 | 481 (33.3%) | 589 (30.5%) | 0.0902 | 112 (33.53%) |
5 | 481 (33.5%) | 307 (15.9%) | <0.001 | 183 (12.7%) | 307 (15.9%) | 0.0098 | 86 (25.74%) |
6 | 183 (12.6%) | 88 (4.5%) | <0.001 | 58 (4.0%) | 88 (4.5%) | 0.4969 | 58 (17.36%) |
7 | 58 (4.0%) | 14 (0.7%) | <0.001 | 5 (0.3%) | 14 (0.7%) | 0.2214 | 19 (5.68%) |
8 | 5 (0.3%) | - | 0.0327 | - | - | - | |
9 | - | - | - | - | - | ||
Total | 1442 (7.0%) | 1928 (9.9%) | <0.001 | 1442 (7.0%) | 1928 (9.9%) | <0.001 | 334 |
CHA2DS2VASc | CHA2DS2-VA | ||||||
---|---|---|---|---|---|---|---|
Score | AF (N) | Stroke (n) | Incidence Rate Per 100 Person-Years CI95% | AF (N) | Stroke (n) | Incidence Rate Per 100 Person-Years CI95% | Rate Ratio CI95% |
1 | 61 | - | 107 | - | - | ||
2 | 322 | 7 | 0.45 [0.18–0.90] | 486 | 10 | 0.41 [0.20–0.76] | 1.08 [0.41–2.84] |
3 | 803 | 32 | 0.81 [0.56–1.15] | 1052 | 49 | 0.94 [0.70–1.25] | 0.85 [0.55–1.34] |
4 | 1048 | 77 | 1.48 [1.17–1.85] | 1070 | 112 | 2.11 [1.74–2.54] | 0.70 [0.52–0.93] |
5 | 788 | 112 | 2.82 [2.35–3.43] | 490 | 86 | 3.50 [2.80–4.33] | 0.81 [0.61–1.07] |
6 | 271 | 60 | 4.42 [3.37–5.69] | 146 | 58 | 7.75 [5.89–10.02] | 0.56 [0.39–0.81] |
7 | 72 | 41 | 10.93 [7.85–14.83] | 19 | 19 | 19.00 [11.44–29.67] | 0.56 [0.33–0.98] |
8 | 5 | 5 | - | -- | - | ||
9 | - | - | - | - | |||
Total | 3370 | 334 | 2.00 [1.79–2.22] | 3370 | 334 | 2.00 [1.79–2.22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clua-Espuny, J.L.; Panisello-Tafalla, A.; Lucas-Noll, J.; Muria-Subirats, E.; Forcadell-Arenas, T.; Carrera-Ortiz, J.M.; Molto-Balado, P.; Clua-Queralt, J.; Fusté-Anguera, I.; Reverte-Vilarroya, S., on behalf of GECATE Project. Stroke Risk Stratification in Incident Atrial Fibrillation: A Sex-Specific Evaluation of CHA2DS2-VA and CHA2DS2-VASc. J. Cardiovasc. Dev. Dis. 2025, 12, 259. https://doi.org/10.3390/jcdd12070259
Clua-Espuny JL, Panisello-Tafalla A, Lucas-Noll J, Muria-Subirats E, Forcadell-Arenas T, Carrera-Ortiz JM, Molto-Balado P, Clua-Queralt J, Fusté-Anguera I, Reverte-Vilarroya S on behalf of GECATE Project. Stroke Risk Stratification in Incident Atrial Fibrillation: A Sex-Specific Evaluation of CHA2DS2-VA and CHA2DS2-VASc. Journal of Cardiovascular Development and Disease. 2025; 12(7):259. https://doi.org/10.3390/jcdd12070259
Chicago/Turabian StyleClua-Espuny, Jose L., Anna Panisello-Tafalla, Jorgina Lucas-Noll, Eulàlia Muria-Subirats, Teresa Forcadell-Arenas, Juan M. Carrera-Ortiz, Pedro Molto-Balado, Josep Clua-Queralt, Immaculada Fusté-Anguera, and Silvia Reverte-Vilarroya on behalf of GECATE Project. 2025. "Stroke Risk Stratification in Incident Atrial Fibrillation: A Sex-Specific Evaluation of CHA2DS2-VA and CHA2DS2-VASc" Journal of Cardiovascular Development and Disease 12, no. 7: 259. https://doi.org/10.3390/jcdd12070259
APA StyleClua-Espuny, J. L., Panisello-Tafalla, A., Lucas-Noll, J., Muria-Subirats, E., Forcadell-Arenas, T., Carrera-Ortiz, J. M., Molto-Balado, P., Clua-Queralt, J., Fusté-Anguera, I., & Reverte-Vilarroya, S., on behalf of GECATE Project. (2025). Stroke Risk Stratification in Incident Atrial Fibrillation: A Sex-Specific Evaluation of CHA2DS2-VA and CHA2DS2-VASc. Journal of Cardiovascular Development and Disease, 12(7), 259. https://doi.org/10.3390/jcdd12070259