Hemodynamic Definitions, Phenotypes, Pathophysiology, and Evaluation of Pulmonary Hypertension Related to Left Heart Disease
Abstract
1. Hemodynamic Definitions
1.1. Hemodynamic Basics
1.1.1. Historical Context
1.1.2. Hemodynamic Definitions of Pulmonary Hypertension
1.2. Pulmonary Vascular Resistance vs. Pulmonary Vascular Compliance
2. Pathophysiology
2.1. Role of Systemic Co-Morbidities in PH-LHD
2.2. Molecular Pathways in PH-HFpEF
2.3. Dysregulation of Cardiovascular Remodeling
2.4. Hemodynamic and Structural Pathogenesis of PH-LHD
2.5. Right Ventricular Dysfunction and Ventricular-Arterial Uncoupling
3. Evaluation of PH-LHD
3.1. Right Heart Catheterization
3.2. Limitations of PCWP, MPAP, and PVR
4. Echocardiography
Semi-Recumbent Bicycle Stress Echocardiography
5. Pulmonary Vascular Phenotypes
5.1. Why May Phenotypes Be Needed?
5.2. Heterogeneity Within Type 2 PH
5.3. Tests to Aid Determination of Phenotypes
6. Current Evidence for Pharmacologic Treatment of PH-LHD
7. Prognostic Significance of Hemodynamic Factors in PH-LHD
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hewes, J.L.; Lee, J.Y.; Fagan, K.A.; Bauer, N.N. The changing face of pulmonary hypertension diagnosis: A historical perspective on the influence of diagnostics and biomarkers. Pulm. Circ. 2020, 10, 2045894019892801. [Google Scholar] [CrossRef]
- Kovacs, G.; Berghold, A.; Scheidl, S.; Olschewski, H. Pulmonary arterial pressure during rest and exercise in healthy subjects: A systematic review. Eur. Respir. J. 2009, 34, 888–894. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.A. Revised Definition of Pulmonary Hypertension and Approach to Management: A Clinical Primer. J. Am. Heart Assoc. 2023, 12, e029024. [Google Scholar] [CrossRef] [PubMed]
- Robbins, I.M.; Hemnes, A.R.; Pugh, M.E.; Brittain, E.L.; Zhao, D.X.; Piana, R.N.; Fong, P.P.; Newman, J.H. High Prevalence of Occult Pulmonary Venous Hypertension Revealed by Fluid Challenge in Pulmonary Hypertension. Circ. Heart Fail. 2014, 7, 116–122. [Google Scholar] [CrossRef]
- D’Alto, M.; Badesch, D.; Bossone, E.; Borlaug, B.A.; Brittain, E.; Humbert, M.; Naeije, R. A Fluid Challenge Test for the Diagnosis of Occult Heart Failure. Chest 2021, 159, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, N.; Borlaug, B.A.; Lewis, G.D.; Hastings, J.L.; Shafer, K.M.; Bhella, P.S.; Carrick-Ranson, G.; Levine, B.D. Hemodynamic Responses to Rapid Saline Loading. Circulation 2013, 127, 55–62. [Google Scholar] [CrossRef]
- Inampudi, C.; Silverman, D.; Simon, M.A.; Leary, P.J.; Sharma, K.; Houston, B.A.; Vachiéry, J.-L.; Haddad, F.; Tedford, R.J. Pulmonary Hypertension in the Context of Heart Failure with Preserved Ejection Fraction. Chest 2021, 160, 2232–2246. [Google Scholar] [CrossRef]
- Kolte, D.; Lakshmanan, S.; Jankowich, M.D.; Brittain, E.L.; Maron, B.A.; Choudhary, G. Mild Pulmonary Hypertension Is Associated with Increased Mortality: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2018, 7, e009729. [Google Scholar] [CrossRef]
- Maron, B.A.; Brittain, E.L.; Hess, E.; Waldo, S.W.; Barón, A.E.; Huang, S.; Goldstein, R.H.; Assad, T.; Wertheim, B.M.; Alba, G.A.; et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: A retrospective cohort study. Lancet Respir. Med. 2020, 8, 873–884. [Google Scholar] [CrossRef]
- Maron, B.A.; Hess, E.; Maddox, T.M.; Opotowsky, A.R.; Tedford, R.J.; Lahm, T.; Joynt, K.E.; Kass, D.J.; Stephens, T.; Stanislawski, M.A.; et al. Association of Borderline Pulmonary Hypertension with Mortality and Hospitalization in a Large Patient Cohort: Insights From the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. Circulation 2016, 133, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Peled, Y.; Beigel, R.; Ram, E.; Klempfner, R.; Lavee, J.; Patel, J.; Raanani, E. What is High Risk? Hemodynamic Definitions of Pulmonary Hypertension and Heart Transplantation Outcomes: A Contemporary Cohort Analysis. J. Heart Lung Transplant. 2021, 40, S124. [Google Scholar] [CrossRef]
- Al-Omary, M.S.; Sugito, S.; Boyle, A.J.; Sverdlov, A.L.; Collins, N.J. Pulmonary Hypertension Due to Left Heart Disease. Hypertension 2020, 75, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Adir, Y.; Guazzi, M.; Offer, A.; Temporelli, P.L.; Cannito, A.; Ghio, S. Pulmonary hemodynamics in heart failure patients with reduced or preserved ejection fraction and pulmonary hypertension: Similarities and disparities. Am. Heart J. 2017, 192, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Tedford, R.J.; Hassoun, P.M.; Mathai, S.C.; Girgis, R.E.; Russell, S.D.; Thiemann, D.R.; Cingolani, O.H.; Mudd, J.O.; Borlaug, B.A.; Redfield, M.M.; et al. Pulmonary Capillary Wedge Pressure Augments Right Ventricular Pulsatile Loading. Circulation 2012, 125, 289–297. [Google Scholar] [CrossRef]
- Saouti, N.; Westerhof, N.; Helderman, F.; Tim Marcus, J.; Boonstra, A.; Postmus, P.E.; Vonk-Noordegraaf, A. Right Ventricular Oscillatory Power Is a Constant Fraction of Total Power Irrespective of Pulmonary Artery Pressure. Am. J. Respir. Crit. Care Med. 2010, 182, 1315–1320. [Google Scholar] [CrossRef]
- Vonk Noordegraaf, A.; Westerhof, B.E.; Westerhof, N. The Relationship Between the Right Ventricle and its Load in Pulmonary Hypertension. J. Am. Coll. Cardiol. 2017, 69, 236–243. [Google Scholar] [CrossRef]
- Dragu, R.; Rispler, S.; Habib, M.; Sholy, H.; Hammerman, H.; Galie, N.; Aronson, D. Pulmonary arterial capacitance in patients with heart failure and reactive pulmonary hypertension. Eur. J. Heart Fail. 2015, 17, 74–80. [Google Scholar] [CrossRef]
- Lankhaar, J.-W.; Westerhof, N.; Faes, T.J.C.; Tji-Joong Gan, C.; Marques, K.M.; Boonstra, A.; van den Berg, F.G.; Postmus, P.E.; Vonk-Noordegraaf, A. Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur. Heart J. 2008, 29, 1688–1695. [Google Scholar] [CrossRef]
- Magder, S.; Malhotra, A.; Hibbert, K.; Hardin, C. Cardiopulmonary Monitoring Basic Physiology, Tools, and Bedside Management for the Critically Ill: Basic Physiology, Tools, and Bedside Management for the Critically Ill; Springer Nature: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Fayyaz, A.U.; Edwards, W.D.; Maleszewski, J.J.; Konik, E.A.; Dubrock, H.M.; Borlaug, B.A.; Frantz, R.P.; Jenkins, S.M.; Redfield, M.M. Global Pulmonary Vascular Remodeling in Pulmonary Hypertension Associated with Heart Failure and Preserved or Reduced Ejection Fraction. Circulation 2018, 137, 1796–1810. [Google Scholar] [CrossRef]
- Vachiéry, J.-L.; Tedford, R.J.; Rosenkranz, S.; Palazzini, M.; Lang, I.; Guazzi, M.; Coghlan, G.; Chazova, I.; De Marco, T. Pulmonary hypertension due to left heart disease. Eur. Respir. J. 2019, 53, 1801897. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.-F.; Su, Y.-C. Vascular Metabolic Mechanisms of Pulmonary Hypertension. Curr. Med. Sci. 2020, 40, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Guignabert, C.; Bonnet, S.; Dorfmüller, P.; Klinger, J.R.; Nicolls, M.R.; Olschewski, A.J.; Pullamsetti, S.S.; Schermuly, R.T.; Stenmark, K.R.; et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J. 2019, 53, 1801887. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Ouyang, Y.; Yang, Y.; Yao, S.; Chen, X.; Hu, Z. Adipokines in pulmonary hypertension: Angels or demons? Heliyon 2023, 9, e22482. [Google Scholar] [CrossRef]
- Ranchoux, B.; Nadeau, V.; Bourgeois, A.; Provencher, S.; Tremblay, É.; Omura, J.; Coté, N.; Abu-Alhayja’a, R.; Dumais, V.; Nachbar, R.T.; et al. Metabolic Syndrome Exacerbates Pulmonary Hypertension due to Left Heart Disease. Circ. Res. 2019, 125, 449–466. [Google Scholar] [CrossRef]
- Aradhyula, V.; Vyas, R.; Dube, P.; Haller, S.T.; Gupta, R.; Maddipati, K.R.; Kennedy, D.J.; Khouri, S.J. Novel insights into the pathobiology of pulmonary hypertension in heart failure with preserved ejection fraction. Am. J. Physiol.-Heart Circ. Physiol. 2024, 326, H1498–H1514. [Google Scholar] [CrossRef]
- Faul, C.; Amaral, A.P.; Oskouei, B.; Hu, M.-C.; Sloan, A.; Isakova, T.; Gutiérrez, O.M.; Aguillon-Prada, R.; Lincoln, J.; Hare, J.M.; et al. FGF23 induces left ventricular hypertrophy. J. Clin. Investig. 2011, 121, 4393–4408. [Google Scholar] [CrossRef]
- Widmann, L.; Keranov, S.; Jafari, L.; Liebetrau, C.; Keller, T.; Troidl, C.; Kriechbaum, S.; Voss, S.; Arsalan, M.; Richter, M.J.; et al. Fibroblast growth factor 23 as a biomarker of right ventricular dysfunction in pulmonary hypertension. Clin. Res. Cardiol. 2023, 112, 1382–1393. [Google Scholar] [CrossRef]
- Stasch, J.-P.; Evgenov, O.V. Soluble Guanylate Cyclase Stimulators in Pulmonary Hypertension. In Pharmacotherapy of Pulmonary Hypertension; Humbert, M., Evgenov, O.V., Stasch, J.-P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 279–313. [Google Scholar] [CrossRef]
- Triposkiadis, F.; Xanthopoulos, A.; Skoularigis, J.; Starling, R.C. Therapeutic augmentation of NO-sGC-cGMP signalling: Lessons learned from pulmonary arterial hypertension and heart failure. Heart Fail. Rev. 2022, 27, 1991–2003. [Google Scholar] [CrossRef]
- Madonna, R.; Biondi, F.; Ghelardoni, S.; D’Alleva, A.; Quarta, S.; Massaro, M. Pulmonary hypertension associated to left heart disease: Phenotypes and treatment. Eur. J. Intern. Med. 2024, 129, 1–15. [Google Scholar] [CrossRef]
- Agrawal, V.; Kropski, J.A.; Gokey, J.J.; Kobeck, E.; Murphy, M.B.; Murray, K.T.; Fortune, N.L.; Moore, C.S.; Meoli, D.F.; Monahan, K.; et al. Myeloid Cell Derived IL1β Contributes to Pulmonary Hypertension in HFpEF. Circ. Res. 2023, 133, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Yu, Z.; Li, H.; Cheng, J.; Wang, Y. Fatty acid-binding protein 5 aggravates pulmonary artery fibrosis in pulmonary hypertension secondary to left heart disease via activating wnt/β-catenin pathway. J. Adv. Res. 2022, 40, 197–206. [Google Scholar] [CrossRef]
- Allen, B.J.; Frye, H.; Ramanathan, R.; Caggiano, L.R.; Tabima, D.M.; Chesler, N.C.; Philip, J.L. Biomechanical and Mechanobiological Drivers of the Transition From PostCapillary Pulmonary Hypertension to Combined Pre−/PostCapillary Pulmonary Hypertension. J. Am. Heart Assoc. 2023, 12, e028121. [Google Scholar] [CrossRef]
- Dituri, F.; Cossu, C.; Mancarella, S.; Giannelli, G. The Interactivity between TGFβ and BMP Signaling in Organogenesis, Fibrosis, and Cancer. Cells 2019, 8, 1130. [Google Scholar] [CrossRef]
- Maruyama, H.; Sakai, S.; Ieda, M. Endothelin-1 alters BMP signaling to promote proliferation of pulmonary artery smooth muscle cells. Can. J. Physiol. Pharmacol. 2022, 100, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Weatherald, J.; Hemnes, A.R.; Maron, B.A.; Mielniczuk, L.M.; Gerges, C.; Price, L.C.; Hoeper, M.M.; Humbert, M. Phenotypes in pulmonary hypertension. Eur. Respir. J. 2024, 64, 2301633. [Google Scholar] [CrossRef] [PubMed]
- Alamri, A.K.; Ma, C.L.; Ryan, J.J. Left Heart Disease-Related Pulmonary Hypertension. Cardiol. Clin. 2022, 40, 69–76. [Google Scholar] [CrossRef]
- Rosenkranz, S.; Gibbs, J.S.R.; Wachter, R.; De Marco, T.; Vonk-Noordegraaf, A.; Vachiéry, J.-L. Left ventricular heart failure and pulmonary hypertension. Eur. Heart J. 2016, 37, 942–954. [Google Scholar] [CrossRef]
- Rosenkranz, S.; Lang, I.M.; Blindt, R.; Bonderman, D.; Bruch, L.; Diller, G.P.; Felgendreher, R.; Gerges, C.; Hohenforst-Schmidt, W.; Holt, S.; et al. Pulmonary hypertension associated with left heart disease: Updated Recommendations of the Cologne Consensus Conference 2018. Int. J. Cardiol. 2018, 272, 53–62. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhang, W. Dysregulation of Mitochondrial in Pulmonary Hypertension-Related Right Ventricular Remodeling: Pathophysiological Features and Targeting Drugs. Rev. Cardiovasc. Med. 2025, 26, 25781. [Google Scholar] [CrossRef]
- Lu, X.; Gong, J.; Dennery, P.A.; Yao, H. Endothelial-to-mesenchymal transition: Pathogenesis and therapeutic targets for chronic pulmonary and vascular diseases. Biochem. Pharmacol. 2019, 168, 100–107. [Google Scholar] [CrossRef]
- Peng, Q.; Shan, D.; Cui, K.; Li, K.; Zhu, B.; Wu, H.; Wang, B.; Wong, S.; Norton, V.; Dong, Y.; et al. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells 2022, 11, 1834. [Google Scholar] [CrossRef] [PubMed]
- Kaparianos, A.; Argyropoulou, E. Local renin-angiotensin II systems, angiotensin-converting enzyme and its homologue ACE2: Their potential role in the pathogenesis of chronic obstructive pulmonary diseases, pulmonary hypertension and acute respiratory distress syndrome. Curr. Med. Chem. 2011, 18, 3506–3515. [Google Scholar] [CrossRef] [PubMed]
- Kuba, K.; Imai, Y.; Penninger, J. Angiotensin-converting enzyme 2 in lung diseases. Curr. Opin. Pharmacol. 2006, 6, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Naeije, R.; Gerges, M.; Vachiery, J.-L.; Caravita, S.; Gerges, C.; Lang, I.M. Hemodynamic Phenotyping of Pulmonary Hypertension in Left Heart Failure. Circ. Heart Fail. 2017, 10, e004082. [Google Scholar] [CrossRef]
- Bermejo, J.; González-Mansilla, A.; Mombiela, T.; Fernández, A.I.; Martínez-Legazpi, P.; Yotti, R.; García-Orta, R.; Sánchez-Fernández, P.L.; Castaño, M.; Segovia-Cubero, J.; et al. Persistent Pulmonary Hypertension in Corrected Valvular Heart Disease: Hemodynamic Insights and Long-Term Survival. J. Am. Heart Assoc. 2021, 10, e019949. [Google Scholar] [CrossRef]
- Omura, J.; Bonnet, S.; Kutty, S. Right ventricular and pulmonary vascular changes in pulmonary hypertension associated with left heart disease. Am. J. Physiol.-Heart Circ. Physiol. 2019, 316, H1144–H1145. [Google Scholar] [CrossRef]
- Riley, J.M.; Fradin, J.J.; Russ, D.H.; Warner, E.D.; Brailovsky, Y.; Rajapreyar, I. Post-Capillary Pulmonary Hypertension: Clinical Review. J. Clin. Med. 2024, 13, 625. [Google Scholar] [CrossRef]
- Caravita, S.; Faini, A.; Carolino D’Araujo, S.; Dewachter, C.; Chomette, L.; Bondue, A.; Naeije, R.; Parati, G.; Vachiéry, J.-L. Clinical phenotypes and outcomes of pulmonary hypertension due to left heart disease: Role of the pre-capillary component. PLoS ONE 2018, 13, e0199164. [Google Scholar] [CrossRef]
- Rezaee, M.E.; Nichols, E.L.; Sidhu, M.; Brown, J.R. Combined Post- and Precapillary Pulmonary Hypertension in Patients with Heart Failure. Clin. Cardiol. 2016, 39, 658–664. [Google Scholar] [CrossRef]
- Fauvel, C.; Damy, T.; Berthelot, E.; Bauer, F.; Eicher, J.-C.; De Groote, P.; Trochu, J.-N.; Picard, F.; Renard, S.; Bouvaist, H.; et al. Post-capillary pulmonary hypertension in heart failure: Impact of current definition in the PH-HF multicentre study. Eur. Heart J. 2024, 45, 3274–3288. [Google Scholar] [CrossRef] [PubMed]
- Calcutteea, A.; Lindqvist, P.; Soderberg, S.; Henein, M.Y. Global and Regional Right Ventricular Dysfunction in Pulmonary Hypertension. Echocardiography 2014, 31, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, P.; Henein, M.Y. Right ventricular function in pulmonary hypertension. Imaging Med. 2012, 4, 657–665. [Google Scholar] [CrossRef]
- Lv, G.; Li, A.; Zhai, Y.; Li, L.; Deng, M.; Lei, J.; Tao, X.; Gao, Q.; Xie, W.; Zhai, Z. Assessment of right ventricle–to–pulmonary artery coupling by three-dimensional echocardiography in pre-capillary pulmonary hypertension: Comparison with tricuspid annular plane systolic excursion /systolic pulmonary artery pressure ratio. BMC Med. Imaging 2025, 25, 108. [Google Scholar] [CrossRef]
- Fang, H.; Wang, J.; Shi, R.; Li, Y.; Li, X.M.; Gao, Y.; Shen, L.T.; Qian, W.L.; Jiang, L.; Yang, Z.G. Biventricular Dysfunction and Ventricular Interdependence in Patients with Pulmonary Hypertension: A 3.0-T Cardiac MRI Feature Tracking Study. J. Magn. Reson. Imaging 2024, 60, 350–362. [Google Scholar] [CrossRef]
- Pinsky, M.R. The right ventricle: Interaction with the pulmonary circulation. Crit. Care 2016, 20, 266. [Google Scholar] [CrossRef]
- Ltaief, Z.; Yerly, P.; Liaudet, L. Pulmonary Hypertension in Left Heart Diseases: Pathophysiology, Hemodynamic Assessment and Therapeutic Management. Int. J. Mol. Sci. 2023, 24, 9971. [Google Scholar] [CrossRef]
- McNeil, K. Assessment of Patients with Pulmonary Hypertension. Respiration 2008, 76, 373–374. [Google Scholar] [CrossRef]
- Rosenkranz, S.; Preston, I.R. Right heart catheterisation: Best practice and pitfalls in pulmonary hypertension. Eur. Respir. Rev. 2015, 24, 642–652. [Google Scholar] [CrossRef]
- Viray, M.C.; Bonno, E.L.; Gabrielle, N.D.; Maron, B.A.; Atkins, J.; Amoroso, N.S.; Fernandes, V.L.C.; Maran, A.; Nielsen, C.D.; Powers, E.R.; et al. Role of Pulmonary Artery Wedge Pressure Saturation During Right Heart Catheterization. Circ. Heart Fail. 2020, 13, e007981. [Google Scholar] [CrossRef]
- LeVarge, B.L.; Channick, R.N. The changing paradigm in pulmonary hypertension trials: Longer duration, new endpoints. Curr. Opin. Pulm. Med. 2015, 21, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Boerrigter, B.G.; Waxman, A.B.; Westerhof, N.; Vonk-Noordegraaf, A.; Systrom, D.M. Measuring central pulmonary pressures during exercise in COPD: How to cope with respiratory effects. Eur. Respir. J. 2014, 43, 1316–1325. [Google Scholar] [CrossRef]
- Mathier, M.A. The Nuts and Bolts of Interpreting Hemodynamics in Pulmonary Hypertension Associated with Diastolic Heart Failure. Adv. Pulm. Hypertens. 2011, 10, 33–40. [Google Scholar] [CrossRef]
- Wattanachayakul, P.; Kittipibul, V.; Salah, H.M.; Yaku, H.; Gustafsson, F.; Baratto, C.; Caravita, S.; Fudim, M. Invasive haemodynamic assessment in heart failure with preserved ejection fraction. ESC Heart Fail. 2025, 12, 1558–1570. [Google Scholar] [CrossRef]
- Tonelli, A.R.; Mubarak, K.K.; Li, N.; Carrie, R.; Alnuaimat, H. Effect of Balloon Inflation Volume on Pulmonary Artery Occlusion Pressure in Patients with and Without Pulmonary Hypertension. Chest 2011, 139, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, K.; Oh-Ishi, S.; Akiyama, T.; Yabuuchi, Y.; Goto, H.; Nonaka, M.; Sasatani, Y.; Tachi, H.; Arai, N.; Ishikawa, H.; et al. Borderline pulmonary hypertension is associated with exercise intolerance and increased risk for acute exacerbation in patients with interstitial lung disease. BMC Pulm. Med. 2019, 19, 167. [Google Scholar] [CrossRef]
- Simonneau, G.; Hoeper, M.M. The revised definition of pulmonary hypertension: Exploring the impact on patient management. Eur. Heart J. Suppl. 2019, 21, K4–K8. [Google Scholar] [CrossRef]
- McLaughlin, V.V.; Shillington, A.; Rich, S. Survival in Primary Pulmonary Hypertension. Circulation 2002, 106, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Brusca, S.B.; Zou, Y.; Elinoff, J.M. How low should we go? Potential benefits and ramifications of the pulmonary hypertension hemodynamic definitions proposed by the 6th World Symposium. Curr. Opin. Pulm. Med. 2020, 26, 384–390. [Google Scholar] [CrossRef]
- Kempton, H.; Hungerford, S.; Muller, D.W.; Hayward, C.S. Pulmonary arterial compliance as a measure of right ventricular loading in mitral regurgitation. IJC Heart Vasc. 2024, 53, 101472. [Google Scholar] [CrossRef]
- Bech-Hanssen, O.; Lindow, T.; Astengo, M.; Bollano, E.; Ricksten, S.E. Echocardiographic Grading of Right Ventricular Afterload in Left Heart Disease: Relation to Right Ventricular Function, Pulsatile and Resistant Load, and Outcome. Pulm. Circ. 2024, 14, e70029. [Google Scholar] [CrossRef] [PubMed]
- Finkelhor, R.S.; Lewis, S.A.; Pillai, D. Limitations and Strengths of Doppler/Echo Pulmonary Artery Systolic Pressure–Right Heart Catheterization Correlations: A Systematic Literature Review. Echocardiography 2015, 32, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Bach, D.S.; Curtis, J.L.; Christensen, P.J.; Iannettoni, M.D.; Whyte, R.I.; Kazerooni, E.A.; Armstrong, W.; Martinez, F.J. Preoperative Echocardiographic Evaluation of Patients Referred for Lung Volume Reduction Surgery. Chest 1998, 114, 972–980. [Google Scholar] [CrossRef]
- Rich, J.D.; Shah, S.J.; Swamy, R.S.; Kamp, A.; Rich, S. Inaccuracy of Doppler Echocardiographic Estimates of Pulmonary Artery Pressures in Patients with Pulmonary Hypertension: Implications for Clinical Practice. Chest 2011, 139, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Cassandro, R.; Luisi, F.; Ferrante, D.; Nicolosi, G.L.; Lombardo, M.; Anzà, C.; Harari, S. Correlation Between Doppler Echocardiography and Right Heart Catheterisation-Derived Systolic and Mean Pulmonary Artery Pressures: Determinants of Discrepancies Between the Two Methods. Heart Lung Circ. 2021, 30, 656–664. [Google Scholar] [CrossRef]
- Rudski, L.G.; Gargani, L.; Armstrong, W.F.; Lancellotti, P.; Lester, S.J.; Grünig, E.; D’Alto, M.; Åström Aneq, M.; Ferrara, F.; Saggar, R.; et al. Stressing the Cardiopulmonary Vascular System: The Role of Echocardiography. J. Am. Soc. Echocardiogr. 2018, 31, 527–550.e511. [Google Scholar] [CrossRef]
- Mukherjee, M.; Rudski, L.G.; Addetia, K.; Afilalo, J.; D’Alto, M.; Freed, B.H.; Friend, L.B.; Gargani, L.; Grapsa, J.; Hassoun, P.M.; et al. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults and Special Considerations in Pulmonary Hypertension: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2025, 38, 141–186. [Google Scholar] [CrossRef]
- Luong, C.L.; Anand, V.; Padang, R.; Oh, J.K.; Arruda-Olson, A.M.; Bird, J.G.; Pislaru, C.; Thaden, J.J.; Pislaru, S.V.; Pellikka, P.A.; et al. Prognostic Significance of Elevated Left Ventricular Filling Pressures with Exercise: Insights from a Cohort of 14,338 Patients. J. Am. Soc. Echocardiogr. 2024, 37, 382–393.e1. [Google Scholar] [CrossRef]
- Dweik, R.A.; Rounds, S.; Erzurum, S.C.; Archer, S.; Fagan, K.; Hassoun, P.M.; Hill, N.S.; Humbert, M.; Kawut, S.M.; Krowka, M.; et al. An Official American Thoracic Society Statement: Pulmonary Hypertension Phenotypes. Am. J. Respir. Crit. Care Med. 2014, 189, 345–355. [Google Scholar] [CrossRef]
- Hemnes, A.R.; Beck, G.J.; Newman, J.H.; Abidov, A.; Aldred, M.A.; Barnard, J.; Berman Rosenzweig, E.; Borlaug, B.A.; Chung, W.K.; Comhair, S.A.A.; et al. PVDOMICS. Circ. Res. 2017, 121, 1136–1139. [Google Scholar] [CrossRef]
- Hemnes, A.R.; Leopold, J.A.; Radeva, M.K.; Beck, G.J.; Abidov, A.; Aldred, M.A.; Barnard, J.; Rosenzweig, E.B.; Borlaug, B.A.; Chung, W.K.; et al. Clinical Characteristics and Transplant-Free Survival Across the Spectrum of Pulmonary Vascular Disease. J. Am. Coll. Cardiol. 2022, 80, 697–718. [Google Scholar] [CrossRef]
- Jellis, C.L.; Park, M.M.; Abidov, A.; Borlaug, B.A.; Brittain, E.L.; Frantz, R.; Hassoun, P.M.; Horn, E.M.; Jaber, W.A.; Jiwon, K.; et al. Comprehensive echocardiographic evaluation of the right heart in patients with pulmonary vascular diseases: The PVDOMICS experience. Eur. Heart J.—Cardiovasc. Imaging 2022, 23, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Larive, B.; Frantz, R.P.; Hassoun, P.; Hemnes, A.; Horn, E.; Leopold, J.; Rischard, F.; Berman-Rosenzweig, E.; Beck, G.; et al. Pulmonary hypertension across the spectrum of left heart and lung disease. Eur. J. Heart Fail. 2024, 26, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.P.; Lyass, A.; Kraigher-Krainer, E.; Massaro, J.M.; Lee, D.S.; Ho, J.E.; Levy, D.; Redfield, M.M.; Pieske, B.M.; Benjamin, E.J.; et al. Cardiac Dysfunction and Noncardiac Dysfunction as Precursors of Heart Failure with Reduced and Preserved Ejection Fraction in the Community. Circulation 2011, 124, 24–30. [Google Scholar] [CrossRef]
- Shah, S.J.; Katz, D.H.; Selvaraj, S.; Burke, M.A.; Yancy, C.W.; Gheorghiade, M.; Bonow, R.O.; Huang, C.-C.; Deo, R.C. Phenomapping for Novel Classification of Heart Failure with Preserved Ejection Fraction. Circulation 2015, 131, 269–279. [Google Scholar] [CrossRef]
- Harder, E.M.; Divo, M.J.; Washko, G.R.; Leopold, J.A.; Rahaghi, F.N.; Waxman, A.B. Implications of Mean Pulmonary Arterial Wedge Pressure Trajectories in Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2024, 209, 316–324. [Google Scholar] [CrossRef]
- McLaughlin, V.V.; Vachiery, J.-L.; Oudiz, R.J.; Rosenkranz, S.; Galiè, N.; Barberà, J.A.; Frost, A.E.; Ghofrani, H.-A.; Peacock, A.J.; Simonneau, G.; et al. Patients with pulmonary arterial hypertension with and without cardiovascular risk factors: Results from the AMBITION trial. J. Heart Lung Transplant. 2019, 38, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; Frantz, R.P.; Hassoun, P.M.; Hemnes, A.R.; Horn, E.; Leopold, J.A.; Rischard, F.; Rosenzweig, E.B.; Hill, N.S.; Erzurum, S.C.; et al. Clinical Implications of Pretest Probability of HFpEF on Outcomes in Precapillary Pulmonary Hypertension. J. Am. Coll. Cardiol. 2024, 84, 2196–2210. [Google Scholar] [CrossRef]
- Omote, K.; Verbrugge, F.H.; Sorimachi, H.; Omar, M.; Popovic, D.; Obokata, M.; Reddy, Y.N.V.; Borlaug, B.A. Central haemodynamic abnormalities and outcome in patients with unexplained dyspnoea. Eur. J. Heart Fail. 2023, 25, 185–196. [Google Scholar] [CrossRef]
- Opitz, C.F.; Hoeper, M.M.; Gibbs, J.S.R.; Kaemmerer, H.; Pepke-Zaba, J.; Coghlan, J.G.; Scelsi, L.; D’Alto, M.; Olsson, K.M.; Ulrich, S.; et al. Pre-Capillary, Combined, and Post-Capillary Pulmonary Hypertension: A Pathophysiological Continuum. J. Am. Coll. Cardiol. 2016, 68, 368–378. [Google Scholar] [CrossRef]
- Mak, S.; Kolker, S.; Girdharry, N.R.; Bentley, R.F.; Valle, F.H.; Gurtu, V.; Mok, K.H.; Moric, J.; Thenganatt, J.; Granton, J.T. The role of exercise right heart catheterization to guide pulmonary hypertension therapy in older adults. Pulm. Circ. 2022, 12, e12103. [Google Scholar] [CrossRef] [PubMed]
- Ameri, P.; Mercurio, V.; Pollesello, P.; Anker, M.S.; Backs, J.; Bayes-Genis, A.; Borlaug, B.A.; Burkhoff, D.; Caravita, S.; Chan, S.Y.; et al. A roadmap for therapeutic discovery in pulmonary hypertension associated with left heart failure. A scientific statement of the Heart Failure Association (HFA) of the ESC and the ESC Working Group on Pulmonary Circulation. Eur. J. Heart Fail. 2024, 26, 707–729. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Reddy, Y.N.V.; Braun, A.; Sorimachi, H.; Omar, M.; Popovic, D.; Alogna, A.; Jensen, M.D.; Carter, R. Cardiac and Metabolic Effects of Dapagliflozin in Heart Failure with Preserved Ejection Fraction: The CAMEO-DAPA Trial. Circulation 2023, 148, 834–844. [Google Scholar] [CrossRef]
- Kayano, H.; Koba, S.; Hirano, T.; Matsui, T.; Fukuoka, H.; Tsuijita, H.; Tsukamoto, S.; Hayashi, T.; Toshida, T.; Watanabe, N.; et al. Dapagliflozin Influences Ventricular Hemodynamics and Exercise-Induced Pulmonary Hypertension in Type 2 Diabetes Patients ―A Randomized Controlled Trial―. Circ. J. 2020, 84, 1807–1817. [Google Scholar] [CrossRef] [PubMed]
- Nassif, M.E.; Qintar, M.; Windsor, S.L.; Jermyn, R.; Shavelle, D.M.; Tang, F.; Lamba, S.; Bhatt, K.; Brush, J.; Civitello, A.; et al. Empagliflozin Effects on Pulmonary Artery Pressure in Patients with Heart Failure. Circulation 2021, 143, 1673–1686. [Google Scholar] [CrossRef]
- Ge, T.; Yang, Y.; Zhao, Y. A study of the efficacy of sacubitril/valsartan plus dapagliflozin combination treatment in pulmonary arterial hypertension due to left heart disease. Perfusion 2022, 38, 1697–1704. [Google Scholar] [CrossRef]
- Codina, P.; Domingo, M.; Barceló, E.; Gastelurrutia, P.; Casquete, D.; Vila, J.; Abdul-Jawad Altisent, O.; Spitaleri, G.; Cediel, G.; Santiago-Vacas, E.; et al. Sacubitril/valsartan affects pulmonary arterial pressure in heart failure with preserved ejection fraction and pulmonary hypertension. ESC Heart Fail. 2022, 9, 2170–2180. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Jackson, A.M.; Lam, C.S.P.; Redfield, M.M.; Anand, I.S.; Ge, J.; Lefkowitz, M.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; et al. Effects of Sacubitril-Valsartan Versus Valsartan in Women Compared with Men with Heart Failure and Preserved Ejection Fraction. Circulation 2020, 141, 338–351. [Google Scholar] [CrossRef]
- Shah, S.J.; Bonderman, D.; Borlaug, B.A.; Cleland, J.G.F.; Lack, G.; Lu, W.; Voors, A.A.; Zannad, F.; Gladwin, M.T. Macitentan for Heart Failure with Preserved or Mildly Reduced Ejection Fraction and Pulmonary Vascular Disease: Results of the SERENADE Randomized Clinical Trial and Open-Label Extension Study. Circ. Heart Fail. 2025, 18, e011381. [Google Scholar] [CrossRef]
- Cooper, T.J.; Cleland, J.G.F.; Guazzi, M.; Pellicori, P.; Ben Gal, T.; Amir, O.; Al-Mohammad, A.; Clark, A.L.; McConnachie, A.; Steine, K.; et al. Effects of sildenafil on symptoms and exercise capacity for heart failure with reduced ejection fraction and pulmonary hypertension (the SilHF study): A randomized placebo-controlled multicentre trial. Eur. J. Heart Fail. 2022, 24, 1239–1248. [Google Scholar] [CrossRef]
- Burkhoff, D.; Borlaug, B.A.; Shah, S.J.; Zolty, R.; Tedford, R.J.; Thenappan, T.; Zamanian, R.T.; Mazurek, J.A.; Rich, J.D.; Simon, M.A.; et al. Levosimendan Improves Hemodynamics and Exercise Tolerance in PH-HFpEF: Results of the Randomized Placebo-Controlled HELP Trial. JACC Heart Fail. 2021, 9, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef]
- Udelson, J.E.; Lewis, G.D.; Shah, S.J.; Zile, M.R.; Redfield, M.M.; Burnett, J., Jr.; Parker, J.; Seferovic, J.P.; Wilson, P.; Mittleman, R.S.; et al. Effect of Praliciguat on Peak Rate of Oxygen Consumption in Patients with Heart Failure with Preserved Ejection Fraction: The CAPACITY HFpEF Randomized Clinical Trial. JAMA 2020, 324, 1522–1531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Chen, M.; Xie, D.-J.; Kan, J.; Yu, W.; Li, X.-B.; Xu, T.; Gu, Y.; Dong, J.; et al. Pulmonary Artery Denervation Significantly Increases 6-Min Walk Distance for Patients with Combined Pre- and Post-Capillary Pulmonary Hypertension Associated with Left Heart Failure: The PADN-5 Study. JACC Cardiovasc. Interv. 2019, 12, 274–284. [Google Scholar] [CrossRef]
- Vachiéry, J.-L.; Delcroix, M.; Al-Hiti, H.; Efficace, M.; Hutyra, M.; Lack, G.; Papadakis, K.; Rubin, L.J. Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur. Respir. J. 2018, 51, 1701886. [Google Scholar] [CrossRef]
- Koller, B.; Steringer-Mascherbauer, R.; Ebner, C.H.; Weber, T.; Ammer, M.; Eichinger, J.; Pretsch, I.; Herold, M.; Schwaiger, J.; Ulmer, H.; et al. Pilot Study of Endothelin Receptor Blockade in Heart Failure with Diastolic Dysfunction and Pulmonary Hypertension (BADDHY-Trial). Heart Lung Circ. 2017, 26, 433–441. [Google Scholar] [CrossRef]
- Hoendermis, E.S.; Liu, L.C.Y.; Hummel, Y.M.; Van Der Meer, P.; De Boer, R.A.; Berger, R.M.F.; Van Veldhuisen, D.J.; Voors, A.A. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: A randomized controlled trial. Eur. Heart J. 2015, 36, 2565–2573. [Google Scholar] [CrossRef]
- Bonderman, D.; Ghio, S.; Felix, S.B.; Ghofrani, H.-A.; Michelakis, E.; Mitrovic, V.; Oudiz, R.J.; Boateng, F.; Scalise, A.-V.; Roessig, L.; et al. Riociguat for Patients with Pulmonary Hypertension Caused by Systolic Left Ventricular Dysfunction. Circulation 2013, 128, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Shah, R.; Shahzad, K.; Camuso, J.M.; Pappagianopoulos, P.P.; Hung, J.; Tawakol, A.; Gerszten, R.E.; Systrom, D.M.; Bloch, K.D.; et al. Sildenafil Improves Exercise Capacity and Quality of Life in Patients with Systolic Heart Failure and Secondary Pulmonary Hypertension. Circulation 2007, 116, 1555–1562. [Google Scholar] [CrossRef]
- Califf, R.M.; Adams, K.F.; McKenna, W.J.; Gheorghiade, M.; Uretsky, B.F.; McNulty, S.E.; Darius, H.; Schulman, K.; Zannad, F.; Handberg-Thurmond, E.; et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am. Heart J. 1997, 134, 44–54. [Google Scholar] [CrossRef]
- Gerges, C.; Gerges, M.; Lang, M.B.; Zhang, Y.; Jakowitsch, J.; Probst, P.; Maurer, G.; Lang, I.M. Diastolic Pulmonary Vascular Pressure Gradient: A Predictor of Prognosis in “Out-of-Proportion” Pulmonary Hypertension. Chest 2013, 143, 758–766. [Google Scholar] [CrossRef]
- Zotter-Tufaro, C.; Duca, F.; Kammerlander, A.A.; Koell, B.; Aschauer, S.; Dalos, D.; Mascherbauer, J.; Bonderman, D. Diastolic Pressure Gradient Predicts Outcome in Patients with Heart Failure and Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2015, 66, 1308–1310. [Google Scholar] [CrossRef] [PubMed]
- Tampakakis, E.; Leary, P.J.; Selby, V.N.; De Marco, T.; Cappola, T.P.; Felker, G.M.; Russell, S.D.; Kasper, E.K.; Tedford, R.J. The Diastolic Pulmonary Gradient Does Not Predict Survival in Patients with Pulmonary Hypertension Due to Left Heart Disease. JACC Heart Fail. 2015, 3, 9–16. [Google Scholar] [CrossRef]
- Brittain, E.L.; Assad, T.R.; Hemnes, A.R.; Newman, J.H. The Diastolic Pressure Gradient Does Not—And Should Not—Predict Outcomes. JACC Heart Fail. 2015, 3, 845. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.; Eitan, A.; Dragu, R.; Burger, A.J. Relationship Between Reactive Pulmonary Hypertension and Mortality in Patients with Acute Decompensated Heart Failure. Circ. Heart Fail. 2011, 4, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Palazzini, M.; Dardi, F.; Manes, A.; Bacchi Reggiani, M.L.; Gotti, E.; Rinaldi, A.; Albini, A.; Monti, E.; Galiè, N. Pulmonary hypertension due to left heart disease: Analysis of survival according to the haemodynamic classification of the 2015 ESC/ERS guidelines and insights for future changes. Eur. J. Heart Fail. 2018, 20, 248–255. [Google Scholar] [CrossRef]
- Vanderpool, R.R.; Saul, M.; Nouraie, M.; Gladwin, M.T.; Simon, M.A. Association Between Hemodynamic Markers of Pulmonary Hypertension and Outcomes in Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2018, 3, 298–306. [Google Scholar] [CrossRef]
- Pellegrini, P.; Rossi, A.; Pasotti, M.; Raineri, C.; Cicoira, M.; Bonapace, S.; Dini, F.L.; Temporelli, P.L.; Vassanelli, C.; Vanderpool, R.; et al. Prognostic Relevance of Pulmonary Arterial Compliance in Patients with Chronic Heart Failure. Chest 2014, 145, 1064–1070. [Google Scholar] [CrossRef]
- Al-Naamani, N.; Preston, I.R.; Paulus, J.K.; Hill, N.S.; Roberts, K.E. Pulmonary Arterial Capacitance Is an Important Predictor of Mortality in Heart Failure with a Preserved Ejection Fraction. JACC Heart Fail. 2015, 3, 467–474. [Google Scholar] [CrossRef]
- Mohammed, S.F.; Hussain, I.; Abouezzeddine, O.F.; Takahama, H.; Kwon, S.H.; Forfia, P.; Roger, V.L.; Redfield, M.M. Right Ventricular Function in Heart Failure with Preserved Ejection Fraction. Circulation 2014, 130, 2310–2320. [Google Scholar] [CrossRef]
- Pacher, R.; Stanek, B.; Hülsmann, M.; Koller-Strametz, J.; Berger, R.; Schuller, M.; Hartter, E.; Ogris, E.; Frey, B.; Heinz, G.; et al. Prognostic impact of big endothelin-1 plasma concentrations compared with invasive hemodynamic evaluation in severe heart failure. J. Am. Coll. Cardiol. 1996, 27, 633–641. [Google Scholar] [CrossRef] [PubMed]
Definition | Hemodynamics | Clinical Groups |
---|---|---|
Pulmonary Hypertension | mPAP > 20 mmHg | Disease Categories/States |
Precapillary PH | mPAP > 20 mmHg PVR > 2 WU PCWP < 15 mmHg | Pulmonary arterial hypertension PH due to lung disease CTEPH |
Combined precapillary + postcapillary PH (CpcPH) | mPAP > 20 mmHg PVR > 3 WU PCWP > 15 mmHg PCWP/LVEDP > 15 mmHg TPG > 12 mmHg DPG > 7 mmHg | Left-sided heart disease Left heart disease + lung disease overlap |
Isolated postcapillary PH | mPAP > 20 mmHg PVR < 3 WU PCWP/LVEDP > 15 mmHg TPG < 12 mmHg DPG < 7 mmHg | Left-sided heart disease |
Exercise PH | mPAP/CO slope between rest and exercise > 3 mmHg/L per min | Exertional dyspnea with preserved ejection fraction and normal resting PCWP |
Diagnostic Test | Importance for Phenotypic Determination |
---|---|
Right heart catheterization (RHC) | RV and RA pressures showing RV-PA coupling |
RHC with CMR, SPECT, or 3D Echo | Can add examination of RV volume |
Exercise RHC | Slope of mPAP/CO showing hemodynamic response to exercise Increase in PCWP > 25 mmHg with exercise |
RHC with volume challenge | Hemodynamic response to volume overload |
Semi-recumbent exercise bicycle echocardiography | Worsening rest-stress mitral E/e′ > 12 and worsening MR and/or TR + high RVSP in response to exercise (suggest post-capillary PH) |
Cardiac MR | RV strain to show RV-PA coupling |
Lung ultrasound Chest CT | Congestion score—shows pulmonary congestion Extravascular lung water (EVLW) assessment |
Pulmonary CT angiography/VQ scan | Perfusion defects and ventilation-perfusion mismatch |
Pulmonary HRCT | Pulmonary interstitial congestion |
Pulmonary function tests (PFTs) | DLCO shows pulmonary vascular remodeling and pulmonary congestion Decreased FVC suggests Type 3 PH |
Exhaled breath analysis | Mass spectrometry of exhaled breath can show volatile compounds indicating heart failure |
CardioMEMs | Implantable PAP sensors showing PAP, PA changing in different settings over time PA pressure response to exercise |
Phenomapping with machine learning | Phenotyping of PH-LHD |
Trial/Study | Author | Year | Intervention | Design | Population | Key Findings | Conclusion |
---|---|---|---|---|---|---|---|
SERENADE | Shah et al. [101] | 2025 | Macitentan (ERA) | RCT, n = 142 | HFpEF/HFmrEF (≥40%) and pulmonary vascular disease: PVR ≥ 3 WU or PH + RV dysfunction | No improvement in NTproBNP or clinical status; higher rate of fluid retention and cardiac events. | Macitentan did not improve outcomes and showed potential harm; ERAs should be avoided in PH-HFpEF. |
Sacubitril-Valsartan + Dapagliflozin for PH-LHD | Ge T et al. [98] | 2023 | Sacubitril-Valsartan (ARNI) + Dapagliflozin (SGLT2i) | RCT, n = 120 | PH due to left heart disease (mPAP ≥ 25 mmHg, PAWP > 15 mmHg) | Combination therapy significantly improved LVEF, 6MWD, mPAP, PASP, endothelial function (↑ NO, ↓ ET-1), NT-proBNP + inflammatory markers vs. sac/val alone. No increase in ADRs. | Sacubitril-Valsartan+ Dapagliflozin safely improves cardiac function, vascular health, and inflammation in PH-LHD. |
SilHF | Cooper et al. [102] | 2022 | Sildenafil (PDE5i) | RCT, n = 69 | HFrEF + PASP ≥ 40 mmHg | No improvement in symptoms, QoL, PASP, or 6MWT vs. placebo. | Sildenafil was safe but ineffective in PH-HFrEF. |
HELP Trial | Burkhoff et al. [103] | 2021 | Levosimendan (Ca sensitizer) | RCT, n = 37 | PH-HFpEF (LVEF ≥ 40% and NYHA class II–III, mPAP ≥ 35 mmHg, and baseline PCWP ≥ 20 mmHg) | No significant reduction in PCWP at peak exercise, but reduced PCWP across all stages and improved 6MWD. | Levosimendan improved hemodynamics and exercise tolerance in PH-HFpEF, but warrants further investigation due to limited participants. |
EMBRACE-HF | Nassif et al. [97] | 2021 | Empagliflozin (SGLT2i) | RCT, n = 65 | HF (EF 44%), CardioMEMS sensor | ↓ PA diastolic pressure by 1.7 mmHg; no change in QoL or NT-proBNP. | Empagliflozin reduces PA pressures in HF regardless of EF. |
VICTORIA | Armstrong et al. [104] | 2020 | Vericiguat (sGC stimulator) | RCT, n = 5050 | HFrEF with recent hospitalization or IV diuretic use | Modest but significant reduction in primary composite outcome of cardiovascular death or first HF hospitalization. | Vericiguat modestly reduced HF hospitalization and CV death in high-risk HFrEF patients. |
CAPACITY HFpEF | Udelson et al. [105] | 2020 | Praliciguat (sGC stimulator) | RCT, n = 181 | HFpEF (EF ≥ 40%), NO-deficiency phenotype | No significant change in peak VO2, 6MWT, or ventilatory efficiency. | Praliciguat did not improve exercise capacity or symptoms in HFpEF. |
PADN-5 | Zhang et al. [106] | 2019 | PADN (Pulmonary Artery Denervation) vs. Sildenafil + sham | RCT, n = 128 | PH-LHD (mPAP ≥ 25 mmHg, PCWP > 15 mmHg, PVR > 3 WU) | PADN improved 6MWD, NT-proBNP, mPAP, and PVR vs. Sildenafil group. | PADN was superior to Sildenafil for improving functional and hemodynamic status in PH-LHD. |
MELODY-1 | Vachiery et al. [107] | 2018 | Macitentan (ERA) | RCT, n = 63 | CpcPH with LVEF ≥ 30%, PVR ≥ 3 WU | No benefit; higher fluid retention and adverse events. | Not recommended for PH-LHD. Fluid overload risk evident early in treatment. |
SIOVAC | Bermejo et al. [48] | 2021 | Sildenafil (PDE5i) | RCT, n = 200 | PH after successful valve surgery | Sildenafil arm had worse clinical outcomes; increased clinical events and reduced 6MWD. | Contraindicated in post-VHD PH-LHD. |
BADDHY Trial | Koller et al. [108] | 2017 | Bosentan (ERAs) | RCT, n = 20 | PH-HFpEF and RV dysfunction | No improvement in 6 MWD or pulmonary pressure in Bosentan group; better outcomes in placebo group; trial. terminated early. | Bosentan offered no benefit and may be harmful. in PH-HFpEF. |
Effects of Sildenafil on Invasive Hemodynamics and Exercise Capacity in HFpEF and PH | Hoendermis et al. [109] | 2015 | Sildenafil (PDE5i) | RCT, n = 52 | PH-HFpEF (LVEF ≥ 45% and NYHA class II–IV) | No significant change in pulmonary hemodynamics or exercise capacity. | Sildenafil did not significantly improve outcomes in PH-HFpEF patients. |
LEPHT | Bonderman et al. [110] | 2013 | Riociguat (sGC stimulator) | RCT, n = 201 | HFrEF with mPAP ≥ 25 mmHg and LVEF ≤ 40% | Primary endpoint (mPAP reduction) not met. However, significant improvement in CI, PVR, SVR, and QoL. | Promising hemodynamic signal but insufficient for routine use. |
Sildenafil Improves Exercise Capacity and QoL in Patients With Systolic Heart Failure and Secondary PH | Lewis et al. [111] | 2007 | Sildenafil (PDE5i) | RCT, n = 34 | HFrEF + PH | Sildenafil significantly improved peak VO2, reduced PVR, improved 6MWT, QoL, and RVEF; no change in PAP on RHC. | Sildenafil improved exercise capacity, hemodynamics, and QoL in HFrEF with PH. |
FIRST | Califf et al. [112] | 1997 | Epoprostenol (Prostacyclin) | RCT, n = 471 | Advanced HF (LVEF < 25%) | ↑ CI and ↓ PCWP, but ↑ mortality, no QoL or walk distance benefit. | Stopped early due to harm; not effective for PH-LHD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghandakly, E.C.; Banga, A.; Kaw, R. Hemodynamic Definitions, Phenotypes, Pathophysiology, and Evaluation of Pulmonary Hypertension Related to Left Heart Disease. J. Cardiovasc. Dev. Dis. 2025, 12, 238. https://doi.org/10.3390/jcdd12070238
Ghandakly EC, Banga A, Kaw R. Hemodynamic Definitions, Phenotypes, Pathophysiology, and Evaluation of Pulmonary Hypertension Related to Left Heart Disease. Journal of Cardiovascular Development and Disease. 2025; 12(7):238. https://doi.org/10.3390/jcdd12070238
Chicago/Turabian StyleGhandakly, Elizabeth C., Akshat Banga, and Roop Kaw. 2025. "Hemodynamic Definitions, Phenotypes, Pathophysiology, and Evaluation of Pulmonary Hypertension Related to Left Heart Disease" Journal of Cardiovascular Development and Disease 12, no. 7: 238. https://doi.org/10.3390/jcdd12070238
APA StyleGhandakly, E. C., Banga, A., & Kaw, R. (2025). Hemodynamic Definitions, Phenotypes, Pathophysiology, and Evaluation of Pulmonary Hypertension Related to Left Heart Disease. Journal of Cardiovascular Development and Disease, 12(7), 238. https://doi.org/10.3390/jcdd12070238