Paravalvular Leak in Transcatheter Aortic Valve Implantation: A Review of Current Challenges and Future Directions
Abstract
:1. Introduction
2. Incidence and Predictors of Paravalvular Leak
2.1. Epidemiology of PVL
2.2. Prevalence and Prognosis of Paravalvular Regurgitation
2.3. Predictors of PVL
2.3.1. Patient-Specific Predictors
- Body Mass Index (BMI): Low BMI is associated with suboptimal valve seating, likely due to reduced myocardial support and altered anatomical dynamics.
- Left Ventricular Ejection Fraction (LVEF): Reduced LVEF impairs hemodynamic efficiency and amplifies the adverse effects of residual PVL.
- Annular Size and Shape: Extreme annular dimensions (small or large) and non-circular annular shapes increase PVL risk due to challenges in device selection and sealing [25].
2.3.2. Anatomical Predictors
- Calcification Distribution: Heavy and asymmetric calcification within the aortic annulus or left ventricular outflow tract (LVOT) disrupts valve seating, leading to PVL.
- Bicuspid Aortic Valves: Bicuspid anatomy is associated with higher PVL rates due to asymmetrical annulus and calcification [15].
2.3.3. Device-Specific Predictors
2.4. Multifactorial Interactions and Predictive Models
3. Mechanisms and Pathophysiology
4. Diagnosis
4.1. Echocardiography
4.2. Cardiac Computed Tomography (CCT)
4.3. Cardiovascular Magnetic Resonance (CMR)
4.4. Angiography and Hemodynamic Assessment
5. Clinical Implications
5.1. Outcomes
5.2. Comparison of Valve Types
6. Prevention and Treatment
6.1. Prevention Strategies
6.2. Expanded Insights and Data
- Percutaneous Closure Success: In a multicenter registry involving patients with severe PVL post-TAVI, closure using Amplatzer Vascular Plugs III achieved a high procedural success rate, significantly improving functional outcomes and reducing hospitalizations for heart failure [95].
- Innovative Imaging Techniques: Arterio-arterial rail methods have enhanced closure success rates by enabling precise plug positioning, minimizing procedural risk [96].
6.3. Treatment Options for PVL
- Balloon Post-Dilation: In cases of acute leaks, repeated balloon post-dilation (PD) of an under-expanded valve may aid in achieving better expansion and a more effective seal, thereby reducing PVL [100]. Notably, an oversized balloon is recommended to fully expand the implanted valve. Several studies have demonstrated that balloon PD is both safe and effective in reducing significant regurgitation in the majority of patients, regardless of whether they have self-expandable or balloon-expandable prostheses. However, balloon PD may not always reduce PVL in certain patients, and it has been associated with an increased risk of stroke or transient ischemic attack [13]. Post-dilation is effective in reducing PVL severity by improving valve apposition, but this technique carries potential risks, including annular rupture and embolization. Therefore, the decision to perform post-dilation should be guided by intra-procedural imaging [94].
- Snare Technique: Improper implantation depth has been linked to an increased risk of developing PVL after TAVI. With the advent of newer-generation devices, it is now possible to reposition the prosthesis before final deployment if the operator is dissatisfied with its position. This technique has been shown to reduce the occurrence of PVL [98,101]. Additionally, a snare loop-assisted device has proven effective in repositioning a prosthesis that is implanted too deeply, as it allows the operator to pull the device upward by attaching a snare to one of the frame loops [102]. However, snaring should be performed with caution in patients with heavily calcified valves, as calcium deposits may become dislodged and lead to complications [103].
- Valve-in-Valve Implantation: Implanting a second valve may be an effective option when balloon post-dilation (PD) or other techniques are not suitable or fail to improve PVL severity. The valve-in-valve (ViV) procedure is particularly beneficial for patients with suboptimal positioning of their initial valve. In a study from the Italian registry involving 663 patients, 3.6% underwent a ViV procedure, and the outcomes at one-year follow-up showed comparable safety and efficacy to those who received a single valve [104]. A meta-analysis comparing the safety and efficacy of ViV-TAVI with redo-SAVR in failed bioprosthetic valves demonstrated that ViV-TAVI is a safe and feasible option for patients at high surgical risk [105]. This approach has proven to be highly effective in managing severe PVL, particularly in cases of undersized or malpositioned valves, with high procedural success rates and notable improvements in hemodynamic performance and symptom relief [13].
- Percutaneous Closure Devices: Interventional closure of PVL after TAVI has been reported for both self-expandable and balloon-expandable prostheses. Percutaneous transcatheter closure using an Amplatzer Vascular Plug (AGA Medical Corp., Plymouth, MN, USA) can be considered when significant PVL persists, particularly in cases with a localized aortic regurgitation (AR) jet, due to severely calcified native valves, despite multiple attempts at balloon post-dilatation [106]. However, there are several potential risks associated with percutaneous transcatheter device closure of PVL after TAVI, including embolization of the transcatheter heart valve (THV), embolization of the closure device itself, and the risk of stroke. This minimally invasive approach is associated with significant improvements in both symptoms and hemodynamic performance, particularly for high-risk surgical candidates [107].
- Emerging Techniques: New interventions, including arterio-arterial loops and imaging-guided approaches, are under investigation. These techniques aim to improve the accuracy and safety of PVL closure while minimizing procedural risks [107].
7. Future Directions
7.1. Device Innovations
7.2. Imaging Advancements
7.3. Need for Standardization of PVL Assessment
8. Limitations
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Wojakowski, W. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [PubMed]
- Adams, D.H.; Popma, J.J.; Reardon, M.J.; Yakubov, S.J.; Coselli, J.S.; Deeb, G.M.; Gleason, T.G.; Buchbinder, M.; Hermiller, J., Jr.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Prosthesis. N. Engl. J. Med. 2014, 370, 1790–1798. [Google Scholar] [PubMed]
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus Surgical Aortic-Valve Replacement in High-Risk Patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [PubMed]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef]
- Waksman, R.; Corso, P.J.; Torguson, R.; Gordon, P.; Ehsan, A.; Wilson, S.R.; Goncalves, J.; Levitt, R.; Hahn, C.; Parikh, P.; et al. TAVR in Low-Risk Patients. JACC Cardiovasc. Interv. 2019, 12, 901–907. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar]
- Biasco, L.; Ferrari, E.; Pedrazzini, G.; Faletra, F.; Moccetti, T.; Petracca, F.; Moccetti, M. Access Sites for TAVI: Patient Selection Criteria, Technical Aspects, and Outcomes. Front. Cardiovasc. Med. 2018, 5, 88. [Google Scholar] [CrossRef]
- Ando, T.; Briasoulis, A.; Telila, T.; Afonso, L.; Grines, C.L.; Takagi, H. Does mild paravalvular regurgitation post transcatheter aortic valve implantation affect survival? A meta-analysis. Catheter. Cardiovasc. Interv. 2018, 91, 135–147. [Google Scholar] [CrossRef]
- Chau, K.C.; Chen, S.; Crowley, A.; Redfors, B.; Li, D.; Hahn, R.H.; Douglas, P.D.; Alu, M.A.; Finn, M.F.; Kodali, S.; et al. Paravalvular regurgitation after transcatheter aortic valve replacement in intermediate-risk patients: A pooled PARTNER 2 study. EuroIntervention 2022, 17, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Pibarot, P.; Hahn, R.T.; Weissman, N.J.; Arsenault, M.; Beaudoin, J.; Bernier, M.; Dahou, A.; Khalique, O.K.; Asch, F.M.; Toubal, O.; et al. Association of Paravalvular Regurgitation With 1-Year Outcomes After Transcatheter Aortic Valve Replacement With the SAPIEN 3 Valve. JAMA Cardiol. 2017, 2, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, S.; Huang, X.; Li, Y.; He, S.; Mao, L.; Hong, W.; Xiao, Z. Paravalvular Leak After Transcatheter Aortic Valve Implantation Its Incidence, Diagnosis, Clinical Implications, Prevention, Management, and Future Perspectives: A Review Article. Curr. Probl. Cardiol. 2022, 47, 100957. [Google Scholar] [CrossRef] [PubMed]
- Schoechlin, S.; Hein, M.; Brennemann, T.; Eichenlaub, M.; Schulz, U.; Jander, N.; Neumann, F. 5-Year outcomes after transcatheter aortic valve implantation: Focus on paravalvular leakage assessed by echocardiography and hemodynamic parameters. Catheter. Cardiovasc. Interv. 2022, 99, 1582–1589. [Google Scholar] [CrossRef]
- Flores-Umanzor, E.; Cepas-Guillén, P.; Ruberti, A.; Regueiro, A.; Sanchis, L.; Gabani, R.; Rodés-Cabau, J.; Vidal, B.; Freixa, X. Paravalvular leak closure after TAVI with plugs: A literature review with a specific focus on arterio-arterial loop. Catheter. Cardiovasc. Interv. 2024, 104, 614–620. [Google Scholar] [CrossRef]
- Pibarot, P.; Salaun, E.; Dahou, A.; Avenatti, E.; Guzzetti, E.; Annabi, M.-S.; Toubal, O.; Bernier, M.; Beaudoin, J.; Ong, G.; et al. Echocardiographic Results of Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients. Circulation 2020, 141, 1527–1537. [Google Scholar] [CrossRef]
- Krishnaswamy, A.; Parashar, A.; Agarwal, S.; Modi, D.K.; Poddar, K.L.; Svensson, L.G.; Roselli, E.E.; Schoenhagen, P.; Tuzcu, E.M.; Kapadia, S.R. Predicting vascular complications during transfemoral transcatheter aortic valve replacement using computed tomography: A novel area-based index. Catheter. Cardiovasc. Interv. 2014, 84, 844–851. [Google Scholar] [CrossRef]
- Bavaria, J.E.; Tommaso, C.L.; Brindis, R.G.; Carroll, J.D.; Deeb, G.M.; Feldman, T.E.; Gleason, T.G.; Horlick, E.M.; Kavinsky, C.J.; Kumbhani, D.J.; et al. 2018 AATS/ACC/SCAI/STS Expert Consensus Systems of Care Document: Operator and Institutional Recommendations and Requirements for Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2019, 73, 340–374. [Google Scholar] [CrossRef]
- Baron, S.J.; Magnuson, E.A.; Lu, M.; Wang, K.; Chinnakondepalli, K.; Mack, M.; Thourani, V.H.; Kodali, S.; Makkar, R.; Herrmann, H.C.; et al. Health Status After Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients With Aortic Stenosis. J. Am. Coll. Cardiol. 2019, 74, 2833–2842. [Google Scholar] [CrossRef]
- Pineda, A.M.; Rymer, J.; Wang, A.; Koweek, L.H.; Williams, A.; Kiefer, T.; Wang, A.; Gaca, J.; Hughes, G.C.; Harrison, J.K. Trends and Outcomes of Alternative-Access Transcatheter Aortic Valve Replacement. J. Invasive Cardiol. 2019, 31, E184–E191. [Google Scholar]
- Auffret, V.; Lefevre, T.; Van Belle, E.; Eltchaninoff, H.; Iung, B.; Koning, R.; Motreff, P.; Leprince, P.; Verhoye, J.P.; Manigold, T.; et al. Temporal Trends in Transcatheter Aortic Valve Replacement in France. J. Am. Coll. Cardiol. 2017, 70, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Flores-Umanzor, E.; Cepas-Guillen, P.; Freixa, X. Enhancing success rate in transcatheter closure of paravalvular leaks post-TAVI with vascular plug technology. Eur. Heart J. 2023, 44, 4810. [Google Scholar] [CrossRef] [PubMed]
- Okuno, T.; Tomii, D.; Heg, D.; Lanz, J.; Praz, F.; Stortecky, S.; Reineke, D.; Windecker, S.; Pilgrim, T. Five-year outcomes of mild paravalvular regurgitation after transcatheter aortic valve implantation. EuroIntervention 2022, 18, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Sá, M.P.; Jacquemyn, X.; Van den Eynde, J.; Tasoudis, P.; Erten, O.; Sicouri, S.; Macedo, F.Y.; Pasala, T.; Kaple, R.; Weymann, A.; et al. Impact of Paravalvular Leak on Outcomes After Transcatheter Aortic Valve Implantation: Meta-Analysis of Kaplan-Meier-derived Individual Patient Data. Struct. Heart 2023, 7, 100118. [Google Scholar] [CrossRef]
- Van Wely, M.; Rooijakkers, M.; Stens, N.; El Messaoudi, S.; Somers, T.; van Garsse, L.; Thijssen, D.; Nijveldt, R.; van Royen, N. Paravalvular regurgitation after transcatheter aortic valve replacement: Incidence, quantification, and prognostic impact. Eur. Heart J. Imaging Methods Pract. 2024, 2, qyae040. [Google Scholar] [CrossRef]
- Ducrocq, G.; Francis, F.; Serfaty, J.-M.; Himbert, D.; Maury, J.-M.; Pasi, N.; Marouene, S.; Provenchère, S.; Iung, B.; Castier, Y.; et al. Vascular complications of transfemoral aortic valve implantation with the Edwards SAPIENTM prosthesis: Incidence and impact on outcome. EuroIntervention 2010, 5, 666–672. [Google Scholar] [CrossRef]
- Kim, S.-J.; Samad, Z.; Bloomfield, G.S.; Douglas, P.S. A critical review of hemodynamic changes and left ventricular remodeling after surgical aortic valve replacement and percutaneous aortic valve replacement. Am. Heart J. 2014, 168, 150–159.e7. [Google Scholar] [CrossRef]
- Zoghbi, W.A.; Asch, F.M.; Bruce, C.; Gillam, L.D.; Grayburn, P.A.; Hahn, R.T.; Inglessis, I.; Islam, A.M.; Little, S.L.S.H.; Siegel, R.J.; et al. Guidelines for the Evaluation of Valvular Regurgitation After Percutaneous Valve Repair or Replacement: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Angiography and Interventions, Japanese Society of Echocardiography, and Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2019, 32, 431–475. [Google Scholar]
- Ali, O.F.; Schultz, C.; Jabbour, A.; Rubens, M.; Mittal, T.; Mohiaddin, R.; Davies, S.; Di Mario, C.; Van der Boon, R.; Ahmad, A.; et al. Predictors of paravalvular aortic regurgitation following self-expanding Medtronic CoreValve implantation: The role of annulus size, degree of calcification, and balloon size during pre-implantation valvuloplasty and implant depth. Int. J. Cardiol. 2015, 179, 539–545. [Google Scholar] [CrossRef]
- Athappan, G.; Patvardhan, E.; Tuzcu, E.M.; Svensson, L.G.; Lemos, P.A.; Fraccaro, C.; Tarantini, G.; Sinning, J.-M.; Nickenig, G.; Capodanno, D.; et al. Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement: Meta-analysis and systematic review of literature. J. Am. Coll. Cardiol. 2013, 61, 1585–1595. [Google Scholar] [CrossRef]
- Kong, W.K.F.; van Rosendael, P.J.; van der Kley, F.; de Weger, A.; Kamperidis, V.; Regeer, M.V.; Marsan, N.A.; Bax, J.J.; Delgado, V. Impact of Different Iterations of Devices and Degree of Aortic Valve Calcium on Paravalvular Regurgitation After Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2016, 118, 567–571. [Google Scholar] [PubMed]
- Seiffert, M.; Fujita, B.; Avanesov, M.; Lunau, C.; Schön, G.; Conradi, L.; Prashovikj, E.; Scholtz, S.; Börgermann, J.; Scholtz, W.; et al. Device landing zone calcification and its impact on residual regurgitation after transcatheter aortic valve implantation with different devices. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Khalique, O.K.; Hahn, R.T.; Gada, H.; Nazif, T.M.; Vahl, T.P.; George, I.; Kalesan, B.; Forster, M.; Williams, M.B.; Leon, M.B.; et al. Quantity and Location of Aortic Valve Complex Calcification Predicts Severity and Location of Paravalvular Regurgitation and Frequency of Post-Dilation After Balloon-Expandable Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2014, 7, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Pollari, F.; Dell’Aquila, A.M.; Söhn, C.; Marianowicz, J.; Wiehofsky, P.; Schwab, J.; Pauschinger, M.; Hitzl, W.; Fischlein, T.; Pfeiffer, S. Risk factors for paravalvular leak after transcatheter aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2019, 157, 1406–1415.e3. [Google Scholar]
- Kaneko, H.; Hoelschermann, F.; Tambor, G.; Yoon, S.-H.; Neuss, M.; Butter, C. Predictors of Paravalvular Regurgitation After Transcatheter Aortic Valve Implantation for Aortic Stenosis Using New-Generation Balloon-Expandable SAPIEN. Am. J. Cardiol. 2017, 119, 618–622. [Google Scholar]
- Blackman, D.J.; Meredith, I.T.; Dumonteil, N.; Tchétché, D.; Hildick-Smith, D.; Spence, M.S.; Walters, D.L.; Harnek, J.; Worthley, S.G.; Rioufol, G.; et al. Predictors of Paravalvular Regurgitation After Implantation of the Fully Repositionable and Retrievable Lotus Transcatheter Aortic Valve (from the REPRISE II Trial Extended Cohort). Am. J. Cardiol. 2017, 120, 292–299. [Google Scholar]
- Larroche, J.; Panh, L.; Lhermusier, T.; Bataille, V.; Marachet, M.-A.; Chollet, T.; Petermann, A.; Bouisset, F.; Boudou, N.; Marcheix, B.; et al. Impact of aortic valve calcification severity on device success after transcatheter aortic valve replacement. Int. J. Cardiovasc. Imaging 2020, 36, 731–740. [Google Scholar]
- Ewe, S.H.; Ng, A.C.T.; Schuijf, J.D.; van der Kley, F.; Colli, A.; Palmen, M.; de Weger, A.; Marsan, N.A.; Holman, E.R.; de Roos, A.; et al. Location and Severity of Aortic Valve Calcium and Implications for Aortic Regurgitation After Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2011, 108, 1470–1477. [Google Scholar]
- Hokken, T.W.; Veulemans, V.; Adrichem, R.; Ooms, J.F.; Kardys, I.; Nuis, R.-J.; Daemen, J.; Hirsch, A.; Budde, R.P.; Zeus, T.; et al. Sex-specific aortic valve calcifications in patients undergoing transcatheter aortic valve implantation. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 768–775. [Google Scholar]
- Milhorini Pio, S.; Bax, J.; Delgado, V. How valvular calcification can affect the outcomes of transcatheter aortic valve implantation. Expert. Rev. Med. Devices 2020, 17, 773–784. [Google Scholar]
- Hansson, N.C.; Leipsic, J.; Pugliese, F.; Andersen, H.R.; Rossi, A.; Simonato, M.; Jensen, K.T.; Christiansen, E.H.; Terkelsen, C.J.; Blanke, P.; et al. Aortic valve and left ventricular outflow tract calcium volume and distribution in transcatheter aortic valve replacement: Influence on the risk of significant paravalvular regurgitation. J. Cardiovasc. Comput. Tomogr. 2018, 12, 290–297. [Google Scholar] [PubMed]
- Sá, M.P.; Van den Eynde, J.; Malin, J.H.; Torregrossa, G.; Sicouri, S.; Ramlawi, B. Impact of left ventricle outflow tract calcification on the outcomes of transcatheter aortic valve implantation: A study-level meta-analysis. J. Card. Surg. 2022, 37, 1379–1390. [Google Scholar] [PubMed]
- Almeida, J.G.; Ferreira, S.M.; Fonseca, P.; Dias, T.; Guerreiro, C.; Barbosa, A.; Teixeira, P.; Carvalho, M.; Ferreira, W.; Ferreira, N.D.; et al. Comparison of self-expanding and balloon-expandable transcatheter aortic valves morphology and association with paravalvular regurgitation: Evaluation using multidetector computed tomography. Catheter. Cardiovasc. Interv. 2018, 92, 533–541. [Google Scholar] [PubMed]
- Nusca, A.; Viscusi, M.M.; Circhetta, S.; Cammalleri, V.; Mangiacapra, F.; Ricottini, E.; Melfi, R.; Gallo, P.; Cocco, N.; Rinaldi, R.; et al. Impact of burden and distribution of aortic valve calcification on the hemodynamic performance and procedural outcomes of a self-expanding, intra-annular transcatheter aortic valve system. Int. J. Cardiovasc. Imaging 2024, 40, 2545–2558. [Google Scholar] [CrossRef]
- Détaint, D.; Lepage, L.; Himbert, D.; Brochet, E.; Messika-Zeitoun, D.; Iung, B.; Vahanian, A. Determinants of Significant Paravalvular Regurgitation After Transcatheter Aortic Valve Implantation. JACC Cardiovasc. Interv. 2009, 2, 821–827. [Google Scholar]
- Tang, G.H.L.; Zaid, S.; Schnittman, S.R.; Ahmad, H.; Kaple, R.; Undemir, C.; Dutta, T.; Poniros, A.; Bennett, J.; Feng, C.; et al. Novel predictors of mild paravalvular aortic regurgitation in SAPIEN 3 transcatheter aortic valve implantation. EuroIntervention 2018, 14, 58–68. [Google Scholar]
- Wong, D.T.L.; Bertaso, A.G.; Liew, G.Y.H.; Thomson, V.S.; Cunnington, M.S.; Richardson, J.D.; Gooley, R.; Lockwood, S.; Meredith, I.T.; Worthley, M.I.; et al. Relationship of Aortic Annular Eccentricity and Paravalvular Regurgitation Post Transcatheter Aortic Valve Implantation With CoreValve. J. Invasive Cardiol.® Orig. Contrib. 2013, 25, 190–195. [Google Scholar]
- Tang, G.H.L.; Zaid, S.; George, I.; Khalique, O.K.; Abramowitz, Y.; Maeno, Y.; Makkar, R.R.; Jilaihawi, H.; Kamioka, N.; Thourani, V.H.; et al. Impact of Aortic Root Anatomy and Geometry on Paravalvular Leak in Transcatheter Aortic Valve Replacement With Extremely Large Annuli Using the Edwards SAPIEN 3 Valve. JACC Cardiovasc. Interv. 2018, 11, 1377–1387. [Google Scholar]
- Jilaihawi, H.; Kashif, M.; Fontana, G.; Furugen, A.; Shiota, T.; Friede, G.; Makhija, R.; Doctor, N.; Leon, M.B.; Makkar, R.R. Cross-sectional computed tomographic assessment improves accuracy of aortic annular sizing for transcatheter aortic valve replacement and reduces the incidence of paravalvular aortic regurgitation. J. Am. Coll. Cardiol. 2012, 59, 1275–1286. [Google Scholar] [CrossRef]
- Khalique, O.K.; Kodali, S.K.; Paradis, J.M.; Nazif, T.M.; Williams, M.R.; Einstein, A.J.; Pearson, G.D.; Harjai, K.; Grubb, K.; George, I.; et al. Aortic annular sizing using a novel 3-dimensional echocardiographic method use and comparison with cardiac computed tomography. Circ. Cardiovasc. Imaging 2014, 7, 155–163. [Google Scholar]
- Willson, A.B.; Webb, J.G.; Labounty, T.M.; Achenbach, S.; Moss, R.; Wheeler, M.; Thompson, C.; Min, J.K.; Gurvitch, R.; Norgaard, B.L.; et al. 3-dimensional aortic annular assessment by multidetector computed tomography predicts moderate or severe paravalvular regurgitation after transcatheter aortic valve replacement: A multicenter retrospective analysis. J. Am. Coll. Cardiol. 2012, 59, 1287–1294. [Google Scholar] [PubMed]
- Barbanti, M.; Yang, T.H.; Rodès Cabau, J.; Tamburino, C.; Wood, D.A.; Jilaihawi, H.; Blanke, P.; Makkar, R.R.; Latib, A.; Colombo, A.; et al. Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation 2013, 128, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Maeno, Y.; Abramowitz, Y.; Kazuno, Y.; Kawamori, H.; Mangat, G.; Takahashi, N.; Chakravarty, T.; Nakamura, M.; Cheng, W.; Jilaihawi, H.; et al. Transcatheter Aortic Valve Implantation with Different Valve Designs for Severe Device Landing Zone Calcification. Int. Heart J. 2017, 58, 56–62. [Google Scholar] [PubMed]
- Hansson, N.C.; Nørgaard, B.L.; Barbanti, M.; Nielsen, N.E.; Yang, T.-H.; Tamburino, C.; Dvir, D.; Jilaihawi, H.; Blanke, P.; Makkar, R.R.; et al. The impact of calcium volume and distribution in aortic root injury related to balloon-expandable transcatheter aortic valve replacement. J. Cardiovasc. Comput. Tomogr. 2015, 9, 382–392. [Google Scholar]
- Girdauskas, E.; Owais, T.; Fey, B.; Kuntze, F.; Lauer, B.; Borger, M.A.; Conradi, L.; Reichenspurner, H.; Kuntze, T. Subannular perforation of left ventricular outflow tract associated with transcatheter valve implantation: Pathophysiological background and clinical implications. Eur. J. Cardio-Thorac. Surg. 2017, 51, 91–96. [Google Scholar]
- Tan, J.S.; Leipsic, J.; Perlman, G.; Stub, D.; Dvir, D.; Hansson, N.C.; Norgaard, B.L.; Blanke, P.; Cheung, A.; Ye, J.; et al. A Strategy of Underexpansion and Ad Hoc Post-Dilation of Balloon-Expandable Transcatheter Aortic Valves in Patients at Risk of Annular Injury: Favorable Mid-Term Outcomes. JACC Cardiovasc. Interv. 2015, 8, 1727–1732. [Google Scholar]
- Barbanti, M.; Leipsic, J.; Binder, R.; Dvir, D.; Tan, J.; Freeman, M.; Norgaard, B.; Hansson, N.; Cheung, A.; Ye, J.; et al. Underexpansion and ad hoc post-dilation in selected patients undergoing balloon-expandable transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2014, 63, 976–981. [Google Scholar]
- Sherif, M.A.; Abdel-Wahab, M.; Stöcker, B.; Geist, V.; Richardt, D.; Tölg, R.; Richardt, G. Anatomic and procedural predictors of paravalvular aortic regurgitation after implantation of the medtronic CoreValve bioprosthesis. J. Am. Coll. Cardiol. 2010, 56, 1623–1629. [Google Scholar]
- Abramowitz, Y.; Maeno, Y.; Chakravarty, T.; Kazuno, Y.; Takahashi, N.; Kawamori, H.; Mangat, G.; Cheng, W.; Jilaihawi, H.; Makkar, R.R. Aortic Angulation Attenuates Procedural Success Following Self-Expandable But Not Balloon-Expandable TAVR. JACC Cardiovasc. Imaging 2016, 9, 964–972. [Google Scholar]
- Gotzmann, M.; Lindstaedt, M.; Mügge, A. From pressure overload to volume overload: Aortic regurgitation after transcatheter aortic valve implantation. Am. Heart J. 2012, 163, 903–911. [Google Scholar]
- Carabello, B.A.; Puskas, J.D. Transcatheter Aortic Valve Replacement: The Leak Goes On. JACC Cardiovasc. Interv. 2014, 7, 1033–1035. [Google Scholar] [CrossRef]
- Généreux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; Blackstone, E.H.; et al. Valve Academic Research Consortium 3: Updated Endpoint Definitions for Aortic Valve Clinical Research. J. Am. Coll. Cardiol. 2021, 77, 2717–2746. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, C.E.; Hahn, R.T.; Berrebi, A.; Borer, J.S.; Cutlip, D.E.; Fontana, G.; Gerosa, G.; Ibrahim, R.; Jelnin, V.; Jilaihawi, H.; et al. Clinical Trial Principles and Endpoint Definitions for Paravalvular Leaks in Surgical Prosthesis. Eur. Heart J. 2018, 39, 1224–1245. [Google Scholar] [PubMed]
- Zoghbi, W.A.; Jone, P.N.; Chamsi-Pasha, M.A.; Chen, T.; Collins, K.A.; Desai, M.Y.; Grayburn, P.; Groves, D.W.; Hahn, R.T.; Little, S.H.; et al. Guidelines for the Evaluation of Prosthetic Valve Function With Cardiovascular Imaging: A Report From the American Society of Echocardiography Developed in Collaboration With the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography. J. Am. Soc. Echocardiogr. 2024, 37, 2–63. [Google Scholar] [PubMed]
- Lancellotti, P.; Pibarot, P.; Chambers, J.; Edvardsen, T.; Delgado, V.; Dulgheru, R.; Pepi, M.; Cosyns, B.; Dweck, M.R.; Garbi, M.; et al. Recommendations for the imaging assessment of prosthetic heart valves: A report from the European Association of Cardiovascular Imaging endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 589–590. [Google Scholar]
- Kronzon, I.; Jelnin, V.; Ruiz, C.E.; Saric, M.; Williams, M.R.; Kasel, A.M.; Shivaraju, A.; Colombo, A.; Kastrati, A. Optimal Imaging for Guiding TAVR: Transesophageal or Transthoracic Echocardiography, or Just Fluoroscopy? JACC Cardiovasc. Imaging 2015, 8, 361–370. [Google Scholar] [CrossRef]
- Kinno, M.; Cantey, E.P.; Rigolin, V.H. The transition from transesophageal to transthoracic echocardiography during transcatheter aortic valve replacement: An evolving field. J. Echocardiogr. 2019, 17, 25–34. [Google Scholar] [CrossRef]
- Granot, Y.N.; Passaniti, G.; Prandi, F.R.; Sharma, S.K.; Kini, A.; Lerakis, S. Do we still need intra-procedural TTE during Transcatheter aortic valve replacement? A high volume, single center experience. Cardiovasc. Revascularization Med. 2024, 68, 1–5. [Google Scholar] [CrossRef]
- Gonalves, A.; Almeria, C.; Marcos-Alberca, P.; Feltes, G.; Hernández-Antolín, R.; Rodríguez, E.; Cardoso, J.C.S.; Macaya, C.; Zamorano, J.L. Three-dimensional echocardiography in paravalvular aortic regurgitation assessment after transcatheter aortic valve implantation. J. Am. Soc. Echocardiogr. 2012, 25, 47–55. [Google Scholar]
- Altiok, E.; Frick, M.; Meyer, C.G.; Al Ateah, G.; Napp, A.; Kirschfink, A.; Almalla, M.; Lotfi, S.; Becker, M.; Herich, L.; et al. Comparison of two- and three-dimensional transthoracic echocardiography to cardiac magnetic resonance imaging for assessment of paravalvular regurgitation after transcatheter aortic valve implantation. Am. J. Cardiol. 2014, 113, 1859–1866. [Google Scholar]
- Pibarot, P.; Hahn, R.T.; Weissman, N.J.; Monaghan, M.J. Assessment of Paravalvular Regurgitation Following TAVR: A Proposal of Unifying Grading Scheme. JACC Cardiovasc. Imaging 2015, 8, 340–360. [Google Scholar] [PubMed]
- Ferreira-Neto, A.N.; Merten, C.; Beurich, H.W.; Zachow, D.; Richardt, G.; Larose, E.; Guimaraes, L.; Pibarot, P.; Pelletier-Beaumont, E.; Rodés-Cabau, J.; et al. Effect of Aortic Regurgitation by Cardiovascular Magnetic Resonance After Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2019, 124, 78–84. [Google Scholar] [PubMed]
- Papanastasiou, C.A.; Kokkinidis, D.G.; Jonnalagadda, A.K.; Oikonomou, E.K.; Kampaktsis, P.N.; Garcia, M.J.; Myerson, S.G.; Karamitsos, T.D. Meta-Analysis of Transthoracic Echocardiography Versus Cardiac Magnetic Resonance for the Assessment of Aortic Regurgitation After Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2019, 124, 1246–1251. [Google Scholar] [PubMed]
- Rooijakkers, M.J.P.; El Messaoudi, S.; Stens, N.A.; van Wely, M.H.; Habets, J.; Brink, M.; Rodwell, L.; Giese, D.; van der Geest, R.J.; van Royen, N.; et al. Assessment of paravalvular regurgitation after transcatheter aortic valve replacement using 2D multi-velocity encoding and 4D flow cardiac magnetic resonance. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 929–936. [Google Scholar]
- Orwat, S.; Diller, G.-P.; Kaleschke, G.; Kempny, A.; Radke, R.M.; Buerke, B.; Burg, M.; Schülke, C.; Baumgartner, H. Aortic regurgitation severity after transcatheter aortic valve implantation is underestimated by echocardiography compared with MRI. Heart 2014, 100, 1933–1938. [Google Scholar]
- Haberka, M.; Malczewska, M.; Pysz, P.; Kozłowski, M.; Wojakowski, W.; Smolka, G. Cardiovascular magnetic resonance and transesophageal echocardiography in patients with prosthetic valve paravalvular leaks: Towards an accurate quantification and stratification. J. Cardiovasc. Magn. Reson. 2021, 23, 31. [Google Scholar] [CrossRef]
- Sellers, R.D.; Levy, M.J.; Amplatz, K.; Lillehei, C. Left retrograde cardioangiography in acquired cardiac disease. Am. J. Cardiol. 1964, 14, 437–447. [Google Scholar]
- Abdel-Wahab, M.; Abdelghani, M.; Miyazaki, Y.; Holy, E.W.; Merten, C.; Zachow, D.; Tonino, P.; Rutten, M.C.M.; van de Vosse, F.N.; Morel, M.-A.; et al. A Novel Angiographic Quantification of Aortic Regurgitation After TAVR Provides an Accurate Estimation of Regurgitation Fraction Derived From Cardiac Magnetic Resonance Imaging. JACC Cardiovasc. Interv. 2018, 11, 287–297. [Google Scholar]
- Modolo, R.; Chang, C.C.; Abdelghani, M.; Kawashima, H.; Ono, M.; Tateishi, H.; Miyazaki, Y.; Pighi, M.; Wykrzykowska, J.J.; de Winter, R.J.; et al. Quantitative Assessment of Acute Regurgitation Following TAVR: A Multicenter Pooled Analysis of 2258 Valves. JACC Cardiovasc. Interv. 2020, 13, 1303–1311. [Google Scholar]
- Patsalis, P.C.; Konorza, T.F.M.; Al-Rashid, F.; Plicht, B.; Riebisch, M.; Wendt, D.; Thielmann, M.; Jakob, H.; Eggebrecht, H.; Heusch, G.; et al. Incidence, outcome and correlates of residual paravalvular aortic regurgitation after transcatheter aortic valve implantation and importance of haemodynamic assessment. EuroIntervention 2013, 8, 1398–1406. [Google Scholar]
- Jilaihawi, H.; Chakravarty, T.; Shiota, T.; Rafique, A.; Harada, K.; Shibayama, K.; Doctor, N.; Kashif, M.; Nakamura, M.; Mirocha, J.; et al. Heart-rate adjustment of transcatheter haemodynamics improves the prognostic evaluation of paravalvular regurgitation after transcatheter aortic valve implantation. EuroIntervention 2015, 11, 456–464. [Google Scholar] [PubMed]
- Rooijakkers, M.J.P.; Stens, N.A.; Van Wely, M.H.; van der Wulp, K.; Rodwell, L.; Gehlmann, H.; Garsse, L.A.F.M.v.; Geuzebroek, G.S.C.; Verkroost, M.W.A.; Habets, J.; et al. Diastolic delta best predicts paravalvular regurgitation after transcatheter aortic valve replacement as assessed by cardiac magnetic resonance: The APPOSE trial. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 1072–1081. [Google Scholar] [PubMed]
- Sinning, J.M.; Hammerstingl, C.; Vasa-Nicotera, M.; Adenauer, V.; Cachiguango, S.J.L.; Scheer, A.-C.; Hausen, S.; Sedaghat, A.; Ghanem, A.; Müller, C.; et al. Aortic regurgitation index defines severity of peri-prosthetic regurgitation and predicts outcome in patients after transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 2012, 59, 1134–1141. [Google Scholar] [PubMed]
- Van Wely, M.; van der Wulp, K.; Rooijakkers, M.; Vart, P.; Morshuis, W.; van Royen, N.; Gehlmann, H.; Verkroost, M.; Kievit, P.; van Garsse, L.; et al. Aortic Regurgitation Index Ratio Is a Strong Predictor of 1-Year Mortality After Transcatheter Aortic Valve Implantation Using Self-Expanding Devices. Semin. Thorac. Cardiovasc. Surg. 2021, 33, 923–930. [Google Scholar]
- Sinning, J.-M.; Stundl, A.; Pingel, S.; Weber, M.; Sedaghat, A.; Hammerstingl, C.; Vasa-Nicotera, M.; Mellert, F.; Schiller, W.; Kovac, J.; et al. Pre-Procedural Hemodynamic Status Improves the Discriminatory Value of the Aortic Regurgitation Index in Patients Undergoing Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2016, 9, 700–711. [Google Scholar]
- Höllriegel, R.; Woitek, F.; Stativa, R.; Mangner, N.; Haußig, S.; Fuernau, G.; Holzhey, D.; Mohr, F.W.; Schuler, G.C.; Linke, A. Hemodynamic Assessment of Aortic Regurgitation After Transcatheter Aortic Valve Replacement: The Diastolic Pressure-Time Index. JACC Cardiovasc. Interv. 2016, 9, 1061–1068. [Google Scholar]
- Bugan, B.; Kapadia, S.; Svensson, L.; Krishnaswamy, A.; Tuzcu, E.M. Novel hemodynamic index for assessment of aortic regurgitation after transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 2015, 86, E174–E179. [Google Scholar]
- Kumar, A.; Sato, K.; Jobanputra, Y.; Betancor, J.; Halane, M.; George, R.; Banerjee, K.; Mohananey, D.; Menon, V.; Sammour, Y.M.; et al. Time-Integrated Aortic Regurgitation Index Helps Guide Balloon Postdilation During Transcatheter Aortic Valve Replacement and Predicts Survival. J. Am. Heart Assoc. 2019, 8, e012430. [Google Scholar] [CrossRef]
- Uebelacker, R.; Martin, S.S.; Vasa-Nicotera, M.; Mas-Peiro, S. Value of Post-/Pre-Procedural Aortic Regurgitation Ratio vs. Pre-Procedural Aortic Valve Calcium Score to Predict Moderate to Severe Paravalvular Leak Requiring Post-Dilation after Transcatheter Aortic Valve Implantation. J. Clin. Med. 2023, 12, 7735. [Google Scholar] [CrossRef]
- Colli, A.; Besola, L.; Salizzoni, S.; Gregori, D.; Tarantini, G.; Agrifoglio, M.; Chieffo, A.; Regesta, T.; Gabbieri, D.; Saia, F.; et al. Does pre-existing aortic regurgitation protect from death in patients who develop paravalvular leak after TAVI? Int. J. Cardiol. 2017, 233, 52–60. [Google Scholar]
- Laakso, T.; Laine, M.; Moriyama, N.; Dahlbacka, S.; Airaksinen, J.; Virtanen, M.; Husso, A.; Tauriainen, T.; Niemelä, M.; Mäkikallio, T.; et al. Impact of paravalvular regurgitation on the mid-term outcome after transcatheter and surgical aortic valve replacement. Eur. J. Cardio-Thorac. Surg. 2020, 58, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, K.; Lefèvre, T. Treatment and prevention of aortic regurgitation after transcatheter aortic valve implantation. EuroIntervention 2012, 8, Q34–Q40. [Google Scholar] [CrossRef]
- Perl, L.; Cohen, A.; Dadashev, A. Long-term outcomes of catheter-based intervention for clinically significant paravalvular leak: Long-term outcomes of percutaneous PVL closure. EuroIntervention 2021, 17, 736. [Google Scholar] [CrossRef]
- Gozdek, M.; Kuźma, Ł.; Dąbrowski, E.J.; Janiak, M.; Pietrzak, M.; Skonieczna, K.; Woźnica, M.; Wydeheft, L.; Makhoul, M.; Matteucci, M.; et al. Outcomes of Transcatheter Aortic Valve Implantation Comparing Medtronic’s Evolut PRO and Evolut R: A Systematic Review and Meta-Analysis of Observational Studies. Int. J. Environ. Res. Public Health 2023, 20, 3439. [Google Scholar] [CrossRef] [PubMed]
- Mahtta, D.; Elgendy, I.Y.; Bavry, A.A. From CoreValve to Evolut PRO: Reviewing the Journey of Self-Expanding Transcatheter Aortic Valves. Cardiol. Ther. 2017, 6, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, G.; Ielasi, A.; Pellicano, M.; Latib, A.; Tespili, M.; Donatelli, F. An Update on New Generation Transcatheter Aortic Valves and Delivery Systems. J. Clin. Med. 2022, 11, 499. [Google Scholar] [CrossRef]
- Paweł, K.; Dziewierz, A.; Daniec, M.; Bagieński, M.; Rzeszutko, Ł.; Sorysz, D.; Trębacz, J.; Sobczyński, R.; Tomala, M.; Dudek, D. Impact of post-dilatation on the reduction of paravalvular leak and mortality after transcatheter aortic valve implantation. Pol. Heart J. 2017, 75, 742–748. [Google Scholar]
- Stundl, A.; Rademacher, M.C.; Descoups, C.; Weber, M.; Sedaghat, A.; Grube, M.; Hammerstingl, C.; Mellert, F.; Vasa-Nicotera, M.; Welz, A.; et al. Balloon post-dilation and valve-in-valve implantation for the reduction of paravalvular leakage with use of the self-expanding CoreValve prosthesis. EuroIntervention 2016, 11, 1140–1147. [Google Scholar] [CrossRef]
- Nerla, R.; Castriota, F.; Micari, A.; Martins, E.D.C.; Cremonesi, A. Repositionable and retrievable Lotus Valve System for the treatment of bicuspid aortic stenosis: Is it time to treat all valves? Expert. Rev. Med. Devices 2017, 14, 557–563. [Google Scholar] [CrossRef]
- Hovasse, T.; Tchétché, D. TAVI dans la bicuspidie aortique. Ann. Cardiol. Angeiol. 2019, 68, 450–452. [Google Scholar] [CrossRef]
- Nalluri, N.; Atti, V.; Abdullah, I.; Munir, A.B.; Karam, B.; Patel, N.J.; Kumar, V.; Vemula, P.; Edla, S.; Asti, D.; et al. Valve in valve transcatheter aortic valve implantation (ViV-TAVI) versus redo—Surgical aortic valve replacement (redo-SAVR): A systematic review and meta-analysis. J. Interv. Cardiol. 2018, 31, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Al-Abcha, A.; Saleh, Y.; Boumegouas, M.; Prasad, R.; Herzallah, K.; Baloch, Z.Q.; Abdelkarim, O.; Rayamajhi, S.; Abela, G. Meta-analysis of valve-in-valve transcatheter aortic valve implantation versus redo-surgical aortic valve replacement in failed bioprosthetic aortic valve. Am. J. Cardiol. 2021, 146, 74–81. [Google Scholar] [PubMed]
- Eleid, M.F.; Cabalka, A.K.; Malouf, J.F.; Sanon, S.; Hagler, D.J.; Rihal, C.S. Techniques and outcomes for the treatment of paravalvular leak. Circ. Cardiovasc. Interv. 2015, 8, e001945. [Google Scholar] [CrossRef] [PubMed]
- De Biase, C.; Mastrokostopoulos, A.; Philippart, R.; Desroche, L.; Blanco, S.; Rehal, K.; Dumonteil, N.; Tchetche, D. Aortic valve anatomy and outcomes after transcatheter aortic valve implantation in bicuspid aortic valves. Int. J. Cardiol. 2018, 266, 56–60. [Google Scholar]
- Flores-Umanzor, E.; Nogic, J.; Cepas-Guillén, P.; Hascoet, S.; Pysz, P.; Baz, J.A.; Cruz-González, I.; Amat-Santos, I.J.; Antúnez-Muiños, P.; González, J.C.; et al. Percutaneous paravalvular leak closure after transcatheter aortic valve implantation: The international PLUGinTAVI Registry. EuroIntervention 2023, 19, E442–E449. [Google Scholar] [CrossRef]
- Asch, F.M.; Vannan, M.A.; Singh, S.; Khandheria, B.; Little, S.; Allocco, D.; Meredith, I.; Feldman, T.; Reardon, M.; Weissman, N. Hemodynamic and echocardiographic comparison of the lotus and corevalve transcatheter aortic valves in patients with high and extreme surgical risk: An analysis from the REPRISE III randomized controlled trial. Circulation 2018, 137, 2557–2567. [Google Scholar] [CrossRef]
- Ben-Shoshan, J.; Konigstein, M.; Zahler, D.; Margolis, G.; Chorin, E.; Steinvil, A.; Arbel, Y.; Aviram, G.; Granot, Y.; Barkagan, M.; et al. Comparison of the Edwards SAPIEN S3 Versus Medtronic Evolut-R Devices for Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2017, 119, 302–307. [Google Scholar]
- Tamm, A.R.; Hell, M.M.; Geyer, M.; Kreidel, F.; Silva, J.G.; Seidl, M.; Ruf, T.F.; Kornberger, A.; Beiras-Fernandez, A.; Münzel, T.; et al. Minimizing Paravalvular Regurgitation With the Novel SAPIEN 3 Ultra TAVR Prosthesis: A Real-World Comparison Study. Front. Cardiovasc. Med. 2021, 8, 623146. [Google Scholar] [CrossRef]
- Möllmann, H.; Hengstenberg, C.; Hilker, M.; Kerber, S.; Schäfer, U.; Rudolph, T.; Linke, A.; Franz, N.; Kuntze, T.; Nef, H.; et al. Real-world experience using the ACURATE neo prosthesis: 30-day outcomes of 1000 patients enrolled in the SAVI TF registry. EuroIntervention 2018, 13, e1764–e1770. [Google Scholar]
- Aigner, P.; Sella Bart, E.; Panfili, S.; Körner, T.; Mach, M.; Andreas, M.; Königshofer, M.; Saitta, S.; Redaelli, A.; Schmid, A.; et al. Quantification of paravalvular leaks associated with TAVI implants using 4D MRI in an aortic root phantom made possible by the use of 3D printing. Front. Cardiovasc. Med. 2023, 10, 1083300. [Google Scholar]
- Lisi, C.; Catapano, F.; Brilli, F.; Scialò, V.; Corghi, E.; Figliozzi, S.; Cozzi, O.F.; Monti, L.; Stefanini, G.G. CT imaging post-TAVI: Murphy’s first law in action—Preparing to recognize the unexpected. Insights Imaging 2024, 15, 157. [Google Scholar]
- Binder, R.K.; Webb, J.G.; Willson, A.B.; Urena, M.; Hansson, N.C.; Norgaard, B.L.; Pibarot, P.; Barbanti, M.; Larose, E.; Freeman, M.; et al. The impact of integration of a multidetector computed tomography annulus area sizing algorithm on outcomes of transcatheter aortic valve replacement: A prospective, multicenter, controlled trial. J. Am. Coll. Cardiol. 2013, 62, 431–438. [Google Scholar]
Three-Class Grading Scheme | None/Trace | Mild | Moderate | Severe | ||
---|---|---|---|---|---|---|
Five-Class Grading Scheme | None/Trace | Mild | Mild-Moderate | Moderate | Moderate-Severe | Severe |
Doppler parameters (qualitative or semi-quantitative) | ||||||
Jet features | ||||||
Extensive/wide jet origin | Absent | Absent | Absent | Present | Present | Present |
Multiple jets | Possible | Possible | Often present | Often present | Usually present | Usually present |
Jet path visible along the stent | Absent | Absent | Possible | Often present | Usually present | Present |
Proximal flow convergence visible | Absent | Absent | Absent | Possible | Often present | Often present |
E/A ratio | <1.0 | <1.0 | <1.0 | ≥1.5 | ≥1.5 | ≥1.5 |
Vena contracta width (mm) (color Doppler) | Not quantifiable | <2 | 2 to <4 | 4 to <5 | 5 to <6 | ≥6 |
Vena contracta area (mm2) (3D color Doppler) | Not quantifiable | <5 | 5 to <10 | 10 to <20 | 20 to <30 | ≥30 |
Jet width at its origin (%LVOT diameter) (color Doppler) | Narrow (<5) | Narrow (5 to <15) | Intermediate (15 to <30) | Intermediate (30 to <45) | Large (45 to <60) | Large (≥60) |
Jet density (CW Doppler) | Incomplete or faint | Incomplete or faint | Variable | Dense | Dense | Dense |
Jet deceleration rate (PHT, ms) (CW Doppler) | Slow (>500) | Slow (>500) | Variable (200 to <500) | Variable (200 to <500) | Variable (200 to <500) | Steep (<200) |
Diastolic flow reversal in proximal descending aorta (PW Doppler) | Absent | Absent or brief early diastolic | Intermediate | Intermediate | Holodiastolic (end-diastolic velocity 20 to <30 cm/s) | Holodiastolic (end-diastolic velocity ≥30 cm/s) |
Circumferential extent of PVL (%) (color Doppler) | Not quantifiable | <5 | 5 to <10 | 10 to <20 | 20 to <30 | ≥30 |
Doppler parameters (quantitative) | ||||||
Regurgitant volume (mL/beat) | <15 | <15 | 15 to <30 | 30 to <45 | 45 to <60 | ≥60 |
Regurgitant orifice area (mm2) | <5 | <5 | 5 to <10 | 10 to <20 | 20 to <30 | ≥30 |
Regurgitant fraction (%) | <15 | <15 | 15 to <30 | 30 to <40 | 40 to <50 | ≥50 |
Parameter | Formula | Cutoff for Significance |
---|---|---|
DD [81,83] | DAP − LVEDP | DD ≤ 32 mmHg highest predictive value for relevant PVL DD ≤ 18 mmHg predictor of 30-day and 1-year mortality |
HR-DD or CHAI score [82] | (DD/heart rate) × 80 | HR-DD or CHAI score < 25 mmHg/bpm (indicating ≥moderate PVL) predictor of 1-year mortality |
ARI [84] | ([DBP − LVEDP]/SBP) × 100 | ARI < 25 predictor of 1-year mortality |
ARI ratio [85,86,90] | Post-procedural ARI/pre-procedural ARI | ARI ratio < 0.60 predictor of 1-year mortality ARI ratio < 0.60 improves 1-year mortality prediction of post-TAVI ARI < 25 Higher predictive value than MSCT AVCS for PVL after TAVI requiring PD |
DPTI [87] | [(area between aortic and LV diastolic pressure-time curves/diastolic duration)/SBP] × 100 | DPTI ≤ 27.9 predictor of 1-year mortality |
TIARI [88,89] | (DPTI/LV SPTI) × 100 | TIAR index < 80 associated with ≥mild AR Higher TIARI is associated with better survival after TAVI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Synetos, A.; Ktenopoulos, N.; Katsaros, O.; Vlasopoulou, K.; Drakopoulou, M.; Koliastasis, L.; Kachrimanidis, I.; Apostolos, A.; Tsalamandris, S.; Latsios, G.; et al. Paravalvular Leak in Transcatheter Aortic Valve Implantation: A Review of Current Challenges and Future Directions. J. Cardiovasc. Dev. Dis. 2025, 12, 125. https://doi.org/10.3390/jcdd12040125
Synetos A, Ktenopoulos N, Katsaros O, Vlasopoulou K, Drakopoulou M, Koliastasis L, Kachrimanidis I, Apostolos A, Tsalamandris S, Latsios G, et al. Paravalvular Leak in Transcatheter Aortic Valve Implantation: A Review of Current Challenges and Future Directions. Journal of Cardiovascular Development and Disease. 2025; 12(4):125. https://doi.org/10.3390/jcdd12040125
Chicago/Turabian StyleSynetos, Andreas, Nikolaos Ktenopoulos, Odysseas Katsaros, Konstantina Vlasopoulou, Maria Drakopoulou, Leonidas Koliastasis, Ioannis Kachrimanidis, Anastasios Apostolos, Sotirios Tsalamandris, George Latsios, and et al. 2025. "Paravalvular Leak in Transcatheter Aortic Valve Implantation: A Review of Current Challenges and Future Directions" Journal of Cardiovascular Development and Disease 12, no. 4: 125. https://doi.org/10.3390/jcdd12040125
APA StyleSynetos, A., Ktenopoulos, N., Katsaros, O., Vlasopoulou, K., Drakopoulou, M., Koliastasis, L., Kachrimanidis, I., Apostolos, A., Tsalamandris, S., Latsios, G., Toutouzas, K., Patrikios, I., & Tsioufis, C. (2025). Paravalvular Leak in Transcatheter Aortic Valve Implantation: A Review of Current Challenges and Future Directions. Journal of Cardiovascular Development and Disease, 12(4), 125. https://doi.org/10.3390/jcdd12040125