A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadoglou, N.P.E.; Khattab, E.; Velidakis, N.; Gkougkoudi, E. The Role of Osteopontin in Atherosclerosis and Its Clinical Manifestations (Atherosclerotic Cardiovascular Diseases)—A Narrative Review. Biomedicines 2023, 11, 3178. [Google Scholar] [CrossRef] [PubMed]
- Gigante, B. Present and Future Perspectives on the Role of Biomarkers in Atherosclerotic Cardiovascular Disease Risk Stratification. Eur. Cardiol. 2023, 18, e13. [Google Scholar] [CrossRef]
- Jigoranu, R.-A.; Roca, M.; Costache, A.-D.; Mitu, O.; Oancea, A.-F.; Miftode, R.-S.; Haba, M.Ș.C.; Botnariu, E.G.; Maștaleru, A.; Gavril, R.-S.; et al. Novel Biomarkers for Atherosclerotic Disease: Advances in Cardiovascular Risk Assessment. Life 2023, 13, 1639. [Google Scholar] [CrossRef]
- Available online: https://www.worldlifeexpectancy.com/slovakia-coronary-heart-disease (accessed on 22 July 2024).
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Medina-Leyte, D.J.; Zepeda García, O.; Domínguez-Pérez, M. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef]
- Shibata, K.; Sato, K.; Shirai, R.; Seki, T.; Okano, T.; Yamashita, T.; Koide, A.; Mitsuboshi, M.; Mori, Y.; Hirano, T.; et al. Lipocalin-2 exerts pro-atherosclerotic effects as evidenced by in vitro and in vivo experiments. Heart Vessel. 2020, 35, 1012–1024. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fu, Y.; Wang, S.; Chen, P.; Pei, Y.; Zhang, J.; Zhang, R.; Niu, G.; Gu, F.; Li, X.; et al. Clinical significance of neutrophil gelatinase-associated lipocalin and sdLDL-C for coronary artery disease in patients with type 2 diabetes mellitus aged ≥ 65 years. Cardiovasc. Diabetol. 2022, 21, 252. [Google Scholar] [CrossRef]
- Skrypnyk, N.I.; Gist, K.M.; Okamura, K.; Montford, J.R.; You, Z.; Yang, H.; Moldovan, R.; Bodoni, E.; Blaine, J.T.; Edelstein, C.L.; et al. IL-6-mediated hepatocyte production is the primary source of plasma and urine neutrophil gelatinase-associated lipocalin during acute kidney injury. Kidney Int. 2020, 97, 966–979. [Google Scholar] [CrossRef]
- Eilenberg, W.; Stojkovic, S.; Kaider, A.; Kozakowski, N.; Domenig, C.; Burghuber, C.; Nanobachvili, J.; Huber, K.; Klinger, M.; Neumayer, C.; et al. NGAL and MMP-9/NGAL as biomarkers of plaque vulnerability and targets of statins in patients with carotid atherosclerosis. Clin. Chem. Lab. Med. 2018, 56, 147–156. [Google Scholar] [CrossRef]
- Gager, G.; Biesinger, B.; Hofer, F.; Winter, M.P.; Hengstenberg, C.; Jilma, B.; Eyileten, C.; Postula, M.; Lang, I.M.; Siller-Matula, J.M.; et al. Interleukin-6 level is a powerful predictor of long-term cardiovascular mortality in patients with acute coronary syndrome. Vasc. Pharmacol. 2020, 135, 106806. [Google Scholar] [CrossRef]
- Mossmann, M.; Wainstein, M.V.; Mariani, S.; Machado, G.P.; de Araújo, G.N.; Andrades, M.; Gonçalves, S.C.; Bertoluci, M.C. Increased serum IL-6 is predictive of long-term cardiovascular events in high-risk patients submitted to coronary angiography: An observational study. Diabetol. Metab. Syndr. 2022, 14, 125. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, L.; Yang, X.; Zhong, J. Roles of Growth Differentiation Factor 15 in Atherosclerosis and Coronary Artery Disease. J. Am. Heart Assoc. 2019, 8, e012826. [Google Scholar] [CrossRef]
- Schwarz, A.; Kinscherf, R.; Bonaterra, G.A. Role of the Stress- and Inflammation-Induced Cytokine GDF-15 in Cardiovascular Diseases: From Basic Research to Clinical Relevance. Rev. Cardiovasc. Med. 2023, 24, 81. [Google Scholar] [CrossRef]
- Zhang, J.; Zhan, F.; Liu, H. Expression Level and Significance of Tim-3 in CD4+ T Lymphocytes in Peripheral Blood of Patients with Coronary Heart Disease. Braz. J. Cardiovasc. Surg. 2022, 37, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Jia, Z.; Wang, L.; Liu, M.; Chen, X.; Gu, Z.; Chen, Y.; Li, Y.; Chen, M.; Hong, M. T-cell Immunoglobulin and Mucin Domain 3 in Circulating Monocytes as a Novel Biomarker for Coronary Artery Disease. J. Cardiovasc. Transl. Res. 2024, 17, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Dogon, G.; Rigal, E.; Potel, E.; Josse, M.; Rochette, L.; Bejot, Y.; Vergely, C. Growth/differentiation factor 15 (GDF15) expression in the heart after myocardial infarction and cardioprotective effect of pre-ischemic rGDF15 administration. Sci. Rep. 2024, 14, 12949. [Google Scholar] [CrossRef] [PubMed]
- Dogan, Z.; Ileri, C.; Kay, E.A.; Sunbul, M.; Gurel, E.Y.; Özben Sadıc, B.; Sayar, N.; Ergun, T.; Tigen, K.M. Evaluation of Arterial Stiffness Parameters and the Growth Differentiation Factor-15 Level in Patients with Premature Myocardial Infarction. J. Pers. Med. 2023, 13, 1489. [Google Scholar] [CrossRef]
- Avci, A.; Ozturk, B.; Demir, K.; Akyürek, F.; Altunkeser, B.B. The Prognostic Utility of Plasma NGAL Levels in ST Segment Elevation in Myocardial Infarction Patients. Adv. Prev. Med. 2020, 2020, 4637043. [Google Scholar] [CrossRef]
- Ferencik, M.; Mayrhofer, T.; Lu, M.T.; Bittner, D.O.; Emami, H.; Puchner, S.B.; Meyersohn, N.M.; Ivanov, A.V.; Adami, E.C.; Voora, D.; et al. Coronary Atherosclerosis, Cardiac Troponin, and Interleukin-6 in Patients With Chest Pain: The PROMISE Trial Results. JACC Cardiovasc. Imaging 2022, 15, 1427–1438. [Google Scholar] [CrossRef]
- Gerin, F.; Durmuş, E.; Yaman, A.; Sünbül, M.; Mammadov, C.; Bozbay, M.; Sarı, İ.; Kıvrak, T. Relation of interleukin-6 level with coronary artery disease severity in patients undergoing coronary angiography: Koroner anjiyografi yapılan hastalarda interlökin-6 düzeyi ile koroner arter hastalığının ciddiyeti arasındaki ilişki. Eur. J. Ther. 2017, 23, 117–121. [Google Scholar] [CrossRef]
- Kato, E.T.; Morrow, D.A.; Guo, J.; Berg, D.D.; Blazing, M.A.; Bohula, E.A.; Bonaca, M.P.; Cannon, C.P.; de Lemos, J.A.; Giugliano, R.P.; et al. Growth differentiation factor 15 and cardiovascular risk: Individual patient meta-analysis. Eur. Heart J. 2023, 44, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.I. Gender Differences in Coronary Artery Disease, Clinical Characteristics, and Angiographic Features in the Jazan Region, Saudi Arabia. Cureus 2022, 14, e30239. [Google Scholar] [CrossRef] [PubMed]
- Gilabert-Garcia, A.; Guerrero, C.; Dagio-Cuéllar, R.; Bermudez-Gonzalez, J.; Perez Partida, A.; Berarducci, J.; Armenta-Moreno, J.; Luna-Alvarez-Amezquita, J.; Straface, J.; Zavaleta, N.; et al. Coronary Artery Disease in Women: Getting to Know Gender Related Disparities. Int. J. Cardiovasc. Sci. 2023, 36, e20220022. [Google Scholar] [CrossRef]
- Kim, H.L. Sex differences in coronary atherogenesis: A narrative review. Ewha Med. J. 2024, 47, e15. [Google Scholar] [CrossRef]
- Nguyen, P.K.; Nag, D.; Wu, J.C. Sex differences in the diagnostic evaluation of coronary artery disease. J. Nucl. Cardiol. 2011, 18, 144–152. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Guo, W.; Bai, Y.; Li, H.; Chen, H.; Han, L.; Lyu, L.; Xu, C.; Liu, H. Multiple Biomarkers in the Context of Conventional Risk Factors in Patients With Coronary Artery Disease. J. Am. Coll. Cardiol. 2017, 69, 2769–2770. [Google Scholar] [CrossRef]
- Ho, J.E.; Lyass, A.; Courchesne, P.; Chen, G.; Liu, C.; Yin, X.; Hwang, S.J.; Massaro, J.M.; Larson, M.G.; Levy, D. Protein Biomarkers of Cardiovascular Disease and Mortality in the Community. J. Am. Heart Assoc. 2018, 7, e008108. [Google Scholar] [CrossRef]
- Surma, S.; Banach, M. Fibrinogen and Atherosclerotic Cardiovascular Diseases—Review of the Literature and Clinical Studies. Int. J. Mol. Sci. 2022, 23, 193. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, H.; Li, Y.-M.; Huang, B.-T.; Huang, F.-Y.; Xia, T.-L.; Chai, H.; Wang, P.-J.; Liu, W.; Zhang, C.; et al. Relation between admission plasma fibrinogen levels and mortality in Chinese patients with coronary artery disease. Sci. Rep. 2016, 6, 30506. [Google Scholar] [CrossRef]
- Safdar, B.; Spatz, E.S.; Dreyer, P.R.; Beltrame, J.F.; Lichtman, J.H.; Spertus, J.A.; Reynolds, H.R.; Geda, M.; Bueno, H.; Dziura, J.D.; et al. Presentation, Clinical Profile, and Prognosis of Young Patients with Myocardial Infarction With Nonobstructive Coronary Arteries (MINOCA): Results From the VIRGO Study. J. Am. Heart Assoc. 2018, 7, e009174. [Google Scholar] [CrossRef]
- Yang, H.H.; Wang, X.; Li, S.; Liu, Y.; Akbar, R.; Fan, G.C. Lipocalin family proteins and their diverse roles in cardiovascular disease. Pharmacol. Ther. 2023, 244, 108385. [Google Scholar] [CrossRef] [PubMed]
- Zografos, T.; Haliassos, A.; Korovesis, S.; Giazitzoglou, E.; Voridis, E.; Katritsis, D. Association of neutrophil gelatinase-associated lipocalin with the severity of coronary artery disease. Am. J. Cardiol. 2009, 104, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, X.L.; Zhao, C.R.; Pan, C.L.; Zhang, Z. Interleukin-6 as a Predictor of the Risk of Cardiovascular Disease: A Meta-Analysis of Prospective Epidemiological Studies. Immunol. Investig. 2018, 47, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wu, Z.; Xu, Y.; Liu, Y.; Liu, W.; Wang, T.; Li, C.; Zhang, C.; Yi, F.; Gao, L.; et al. Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice. Cell. Mol. Immunol. 2019, 16, 878–886. [Google Scholar] [CrossRef] [PubMed]
Category | Maximum Stenosis | Interpretation |
---|---|---|
CAD-RADS 0 | 0% | CAD absence |
CAD-RADS 1 | 1–24% | Minimal non-obstructive CAD |
CAD-RADS 2 | 25–49% | Mild non-obstructive CAD |
CAD-RADS 3 | 50–69% | Moderate stenosis |
CAD-RADS 4 | 70–99% | Severe stenosis |
CAD-RADS 5 | 100% | Total coronary occlusion |
RADS 0 | RADS 1 | RADS 2 | RADS 3 | RADS 4 | RADS 5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Men, n = 18 | Women, n = 16 | Men, n = 5 | Women, n = 4 | Men, n = 6 | Women, n = 5 | Men, n = 14 | Women, n = 10 | Men, n = 27 | Women, n = 5 | Men, n = 15 | Women, n = 5 | |
age/years | 62 ± 11 | 62 ± 11 | 63 ± 9 | 72 ± 12 | 68 ± 8 | 68 ± 13 | 65 ± 9 | 69 ± 5 * | 64 ± 10 | 70 ± 5 * | 61 ± 9 | 67 ± 11 |
BMI | 30.69 ± 5.47 | 34.06 ± 11.4 | 28.08 ± 3.19 | 38.75 ± 5.46 | 30.97 ± 4.36 | 33.18 ± 9.56 | 31.76 ± 4.85 | 31.19 ± 4.99 | 31.48 ± 4.98 | 29.88 ± 8.70 | 29.81 ± 4.79 | 30.98 ± 3.58 |
BP * | 148.89 ± 13.4 | 144.06 ± 17.34 | 138 ± 8.37 | 145 ± 18.71 | 145.83 ± 12.01 | 147 ± 31.54 | 134.64 ± 19.66 * | 140 ± 11.55 | 138.98 ± 19.9 | 134.5 ± 11.24 | 137.00 ± 14.12 * | 147 ± 26.83 |
Urea [mmol/L] | 5.85 ± 1.42 | 5.54 ± 1.79 | 5.61 ± 1.21 | 6.37 ± 1.27 | 5.85 ± 0.75 | 5.29 ± 0.72 | 6.12 ± 1.27 | 7.08 ± 1.64 * | 5.65 ± 1.01 | 5.82 ± 1.11 | 5.87 ± 1.76 | 5.97 ± 1.37 |
CREAT ** [µmol/L] | 81.31 ± 24.6 | 65.99 ± 12.3 | 71.98 ± 7.45 | 72.87 ± 5.44 | 80.79 ± 9.25 | 71.24 ± 4.67 | 79.86 ± 20.1 | 74.6 ± 14.77 | 78.9 ± 16.44 | 67.84 ± 10.4 | 83.52 ± 20.7 | 72.78 ± 10.1 |
CRP [mg/L] | 1.71 (IQR) | 2.68 (IQR) | 2.86 (IQR) | 2.19 (IQR) | 2.13 (IQR) | 3.15 (IQR) | 1.66 (IQR) | 2.75 (IQR) | 2.63 (IQR) | 1.54 (IQR) | 2.80 (IQR) | 1.50 (IQR) |
FBG [g/L] | 3.34 ± 1.10 | 3.14 ± 0.52 | 3.06 ± 0.79 | 3.65 ± 0.11 ** | 3.1 ± 0.65 | 3.31 ± 0.28 | 3.3 ± 0.50 | 3.44 ± 0.70 | 3.27 ± 0.76 | 3.94 ± 0.62 ** | 3.49 ± 0.69 | 3.41 ± 0.51 |
Leu [10 × 9/L] | 7.23 ± 2.07 | 6.87 ± 2.72 | 7.06 ± 1.56 | 7.73 ± 0.24 | 6.47 ± 1.83 | 6.48 ± 1.21 | 7.4 ± 2.05 | 7.68 ± 1.88 | 7.2 ± 1.30 | 9.81 ± 2.62 * | 6.58 ± 1.36 | 7.68 ± 1.54 |
LCN-2 [pg/mL] | 3593.6 ± 555 | 3175 ± 705.7 | - | 2948.84 ± 812 | 3245.8 ± 842.6 | 3067.6 ± 655.8 | 3558.4 ± 70.9 | 4207.7 ± 764 | 3652.9 ± 731.0 | 3418.3 ± 55.7 | 3681.4 ± 508.1 | 3277.2 ± 765.1 |
GDF-15 [pg/mL] | 1312 ± 386.1 | 1559.9 ± 669 | 1365.8 ± 569 | 1608.9 ± 611 | 1462.9 ± 135.7 | 1479.9 ± 125.1 | 1540.2 ± 291.9 | 1373.8 ± 536 | 1652.40 ± 391.73 ** | 1479.73 ± 154.51 | 1492.72 ± 358.21 | 1538.95 ± 203.03 |
IL-6 [pg/mL] | 5.03 (IQR) | 6.16 (IQR) | 5.52 (IQR) | 9.25 (IQR) | 1.65 * (IQR) | 0.48 (IQR) | 2.45 (IQR) | 3.81 (IQR) | 4.06 (IQR) | 1.71 (IQR) | 1.46 ** (IQR) | 1.59 (IQR) |
TIM-3 [pg/mL] | 79.43(IQR) | 129.43 (IQR) | 120.86 (IQR) | 80.14 (IQR) | 142.29 (IQR) | 225.14 (IQR) | 139.43(IQR) | 199.43(IQR) | 130.86 (IQR) | 99.43 (IQR) | 125.14 (IQR) | 219.43 * (IQR) |
Age | Gender 0-M 1-F | BP | Urea [mmol/L] | CREAT [µmol/L] | CRP [mg/L] | FBG [g/L] | Leu [10 × 9/L] | LCN-2 pg/mL | GDF-15 pg/mL | IL-6 pg/mL | TIM-3 pg/mL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pearson Correlation (2-tailed) | 0.044 | −0.225 ** | −0.186 * | 0.044 | 0.127 | −0.023 | 0.100 | 0.049 | 0.125 | 0.120 | −0.033 | 0.055 |
p-value | 0.618 | 0.010 | 0.035 | 0.619 | 0.151 | 0.796 | 0.256 | 0.585 | 0.273 | 0.176 | 0.709 | 0.546 |
N | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 129 | 79 | 128 | 128 | 125 |
Men | Women | ||||
---|---|---|---|---|---|
Finding | Frequency | Percentage | Finding | Frequency | Percentage |
RADS 0 | 18 | 21.2 | RADS 0 | 16 | 35.6 |
RADS 1 | 5 | 5.9 | RADS 1 | 4 | 8.9 |
RADS 2 | 6 | 7.1 | RADS 2 | 5 | 11.1 |
RADS 3 | 14 | 16.5 | RADS 3 | 10 | 22.2 |
RADS 4 | 27 | 31.8 | RADS 4 | 5 | 11.1 |
RADS 5 | 15 | 17.6 | RADS 5 | 5 | 11.1 |
Total | 85 | 100.0 | Total | 45 | 100.0 |
Finding | N | Mean | SD | Variance | Range | Min. | Max. |
---|---|---|---|---|---|---|---|
RADS 0 | 34 | 146.618 | 15.3603 | 235.940 | 70.0 | 110.0 | 180.0 |
RADS 1 | 9 | 141.111 | 13.4112 | 179.861 | 45.0 | 125.0 | 170.0 |
RADS 2 | 11 | 146.364 | 21.6900 | 470.455 | 85.0 | 115.0 | 200.0 |
RADS 3 | 24 | 136.875 | 16.6689 | 277.853 | 65.0 | 100.0 | 165.0 |
RADS 4 | 32 | 138.281 | 18.2880 | 334.451 | 80.0 | 100.0 | 180.0 |
RADS 5 | 20 | 139.500 | 17.370 | 318.158 | 75.0 | 105.0 | 180.0 |
Men | Women | |||||
---|---|---|---|---|---|---|
Pearson Correlation (2-Tailed) | p-Value | N | Pearson Correlation (2-Tailed) | p-Value | N | |
age [years] | −0.007 | 0.949 | 85 | 0.256 | 0.090 | 45 |
O_DM | 0.156 | 0.155 | 85 | 0.090 | 0.555 | 45 |
blood pressure | −0.238 * | 0.028 | 85 | −0.067 | 0.663 | 45 |
Urea [mmol/L] | −0.013 | 0.904 | 85 | 0.174 | 0.253 | 45 |
CREAT [µmol/L] | 0.029 | 0.795 | 85 | 0.201 | 0.187 | 45 |
CRP [mg/L] | 0.030 | 0.784 | 85 | −0.152 | 0.318 | 45 |
FBG [g/L] | 0.051 | 0.644 | 85 | 0.294 | 0.050 | 45 |
Leu [10 × 9/L] | −0.060 | 0.588 | 84 | 0.262 | 0.082 | 45 |
lipocalin 2 [pg/mL] | 0.099 | 0.483 | 52 | 0.135 | 0.504 | 27 |
GDF-15 [pg/mL] | 0.271 * | 0.013 | 83 | −0.081 | 0.595 | 45 |
IL-6 [pg/mL] | 0.010 | 0.928 | 84 | −0.109 | 0.483 | 44 |
TIM-3 [pg/mL] | 0.017 | 0.877 | 82 | 0.218 | 0.160 | 43 |
Finding | N | Mean | Median | SD | Variance | Range | Min. | Max. |
---|---|---|---|---|---|---|---|---|
RADS 0 | 17.00 | 1312.14 | 1278.00 | 386.15 | 149,114.67 | 1626.05 | 694.65 | 2320.70 |
RADS 1 | 5.00 | 1365.84 | 1580.36 | 569.27 | 324,070.84 | 1292.38 | 751.09 | 2043.47 |
RADS 2 | 6.00 | 1462.93 | 1491.41 | 135.78 | 18,435.04 | 314.40 | 1292.28 | 1606.68 |
RADS 3 | 13.00 | 1540.23 | 1533.77 | 291.90 | 85,203.77 | 1249.67 | 1052.25 | 2301.92 |
RADS 4 | 27.00 | 1652.40 | 1643.20 | 381.73 | 145,720.32 | 1428.50 | 951.61 | 2380.11 |
RADS 5 | 15.00 | 1492.72 | 1427.98 | 358.21 | 128,311.75 | 1433.74 | 1111.36 | 2545.10 |
FBG | N | Mean | Median | SD | Variance | Range | Min. | Max. |
---|---|---|---|---|---|---|---|---|
RADS 0 | 16 | 3.14 | 3.10 | 0.52 | 0.27 | 1.70 | 2.30 | 4.00 |
RADS 1 | 4 | 3.65 | 3.62 | 0.11 | 0.01 | 0.25 | 3.56 | 3.81 |
RADS 2 | 5 | 3.31 | 3.25 | 0.28 | 0.08 | 0.74 | 3.00 | 3.74 |
RADS 3 | 10 | 3.44 | 3.47 | 0.70 | 0.49 | 2.61 | 2.39 | 5.00 |
RADS 4 | 5 | 3.94 | 3.70 | 0.62 | 0.39 | 1.55 | 3.37 | 4.92 |
RADS 5 | 5 | 3.41 | 3.47 | 0.51 | 0.26 | 1.24 | 2.87 | 4.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hostačná, L.; Mašlanková, J.; Pella, D.; Hubková, B.; Mareková, M.; Pella, D. A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease. J. Cardiovasc. Dev. Dis. 2024, 11, 258. https://doi.org/10.3390/jcdd11090258
Hostačná L, Mašlanková J, Pella D, Hubková B, Mareková M, Pella D. A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease. Journal of Cardiovascular Development and Disease. 2024; 11(9):258. https://doi.org/10.3390/jcdd11090258
Chicago/Turabian StyleHostačná, Lenka, Jana Mašlanková, Dominik Pella, Beáta Hubková, Mária Mareková, and Daniel Pella. 2024. "A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease" Journal of Cardiovascular Development and Disease 11, no. 9: 258. https://doi.org/10.3390/jcdd11090258
APA StyleHostačná, L., Mašlanková, J., Pella, D., Hubková, B., Mareková, M., & Pella, D. (2024). A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease. Journal of Cardiovascular Development and Disease, 11(9), 258. https://doi.org/10.3390/jcdd11090258