Habitual Aerobic Exercise Diminishes the Effects of Sarcopenia in Senescence-Accelerated Mice Prone8 Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Grouping
2.2. Exercise Protocol
2.3. Grip Strength Test
2.4. Sampling
2.5. Western Blot Analysis
2.6. Quantitative RT-PCR Analysis
2.7. Statistical Analysis
3. Results
3.1. Body Weight
3.2. Skeletal Muscle Mass and Muscle Strength Reduction
3.3. Protein Synthesis Related Protein Expression
3.4. Mitochondrial Functioning Gene and Protein Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morley, J.E.; Baumgartner, R.N.; Roubenoff, R.; Mayer, J.; Nair, K.S. Sarcopenia. J. Lab. Clin. Med. 2001, 137, 231. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, I. Summary comments: Epidemiological and methodological problems in determining nutritional status of older persons. Am. J. Clin. Nutr. 1989, 50, 1231–1233. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. A. Biol. 2006, 61, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Shepard, G.S.; Katzmarzyk, P.T.; Roubenoff, R. The healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 2004, 52, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, H.C.; Fujita, S.; Cadenas, J.G.; Chinkes, D.L.; Volpi, E.; Rasmussen, B.B. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J. Physiol. 2006, 576, 613–624. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, J.D.; Gibala, M.J.; Tarnopolsky, M.A.; MacDonald, J.R.; Interisano, S.A.; Yarasheski, K.E. The time course for elevated muscle protein synthesis following heavy resistance exercise. Can. J. Appl. 1995, 20, 480–486. [Google Scholar] [CrossRef]
- Kryger, A.I.; Andersen, J.L. Resistance training in the oldest old: Consequences for muscle strength, fiber types, fiber size, and MHC isoforms. Scand. J. Med. Sci. Sports. 2007, 17, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Capelli, C.; Rittveger, J.; Bruseghini, P.; Calabria, E.; Tam, E. Maximal aerobic power and anaerobic capacity in cycling across the age spectrum in male master athletes. Eur. J. Appl. Physiol. 2016, 116, 1395–1410. [Google Scholar] [CrossRef] [Green Version]
- Tromm, C.B.; Pozzi, B.G.; Paganini, C.S.; Marques, S.O.; Pedroso, G.S.; Souza, P.S. The role of continuous versus fractionated physical training on muscle oxidative stress parameters and calcium-handling proteins in aged rats. Aging Clin. Exp. Res. 2016, 28, 833–841. [Google Scholar] [CrossRef]
- Ziaaldini, M.M.; Koltai, E.; Csende, Z.; Goto, S.; Boldogh, I.; Taylor, A.W.; Radak, Z. Exercise training increases anabolic and attenuates catabolic and apoptotic processes in aged skeletal muscle of male rats. Exp. Gerontol. 2015, 67, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S.; Rasmussen, B.B.; Cadenas, J.G.; Drummond, M.J.; Glynn, E.L.; Sattler, F.R.; Volpi, E. Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/mammalian target of rapamycin signaling. Diabetes 2007, 56, 1615–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Li, C.; Parkhouse, W.S. Age-related differences in the des IGF-I-mediated activation of Akt-1 and p70S6K in mouse skeletal muscle. Mech Ageing Dev. 2003, 124, 771–778. [Google Scholar] [CrossRef]
- Paturi, S.; Gutta, A.K.; Katta, A. Effects of aging and gender on muscle mass and regulation of Akt-mTOR-p70s6k related signaling in the F344BN rat model. Mech Ageing Dev. 2010, 131, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Bua, E.; Johnson, J.; Herbst, A. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am. J. Hum. Genet. 2006, 70, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Zahn, J.; Sonu, R.; Vogeletal, H. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genetics 2006, 2, e115. [Google Scholar] [CrossRef]
- Coen, M.; Jubrias, S.A.; Distefano, G.; Amati, F.; Mackey, D.C.; Glynn, N.W.; Manini, T.M.; Wohlgemuth, S.E.; Leeuwenburgh, C.; Cummings, S.R.; et al. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 447–455. [Google Scholar] [CrossRef]
- Zane, C.; Reiter, D.A.; Shardell, M.; Cameron, D.; Simonsick, E.M.; Fishbein, K.W.; Studenski, S.A.; Spencer, R.G.; Ferrucci, L. Muscle strength mediates the relationship between mitochondrial energetics and walking performance. Aging Cell 2017, 16, 461–468. [Google Scholar] [CrossRef]
- Ghosh, S.; Lertwattanarak, R.; Lefort, N.; Molina-Carrion, M.; Joya-Galeana, J.; Bowen, B.; Musi, N. Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance. Diabetes 2011, 60, 2051–2060. [Google Scholar] [CrossRef] [Green Version]
- Short, K.R.; Vittone, J.L.; Bigelow, M.L.; Proctor, D.N.; Rizza, R.A.; Coenen-Schimke, J.M.; Nair, K.S. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 2003, 52, 1888–1896. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, A.; Naidoo, K.; Yende-zuma, N.; Gengiah, T.N. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol. Aging 2015, 19, 161–169. [Google Scholar]
- Safdar, A.; Little, J.P.; Stokl, A.J.; Hettinga, B.P.; Akhtar, M.; Tarnopolsky, M.A. Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J. Biol. Chem. 2011, 286, 10605–10617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, T.; Matsushita, M.; Kurozumi, M.; Takemura, K.; Higuchi, K.; Hosokawa, M. Pathobiology of the senescence-accelerated mouse (SAM). Exp. Gerontol. 1997, 32, 117–127. [Google Scholar] [CrossRef]
- Wim, D.; Bert, E.; Monique, R.; Peter, H. Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence. Exp. Gerontol. 2005, 40, 562–572. [Google Scholar]
- Guo, A.Y.; Leung, K.S.; Siu, P.M. Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8). Exp. Anim. 2015, 64, 425–433. [Google Scholar]
- Murase, T.; Haramizu, S.; Ota, N.; Hase, T. Suppression of the aging-associated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice. Biogerontology 2009, 10, 423–434. [Google Scholar] [CrossRef]
- Liu, H.W.; Chan, Y.C.; Wei, C.C.; Chen, Y.A.; Wang, M.F.; Chang, S.J. An alternative model for studying age-associated metabolic complications: Senescence-accelerated mouse prone 8. Exp. Gerontol. 2017, 99, 61–68. [Google Scholar] [CrossRef]
- Takeshita, H.; Yamamoto, K.; Nozato, S. Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice. Sci. Rep. 2017, 7, 42323. [Google Scholar] [CrossRef]
Product Code | Protein Name | Spiecies | Dilution |
---|---|---|---|
CST #4691T | Akt | Rabbit | 1:2000 |
CST #4060T | p-Akt (Ser473) | Rabbit | 1:2000 |
CST #2708T | p70S6K | Rabbit | 1:2000 |
CST #9205S | p-p70S6K (Thr389) | Rabbit | 1:2000 |
CST #4850 | CoxIV | Rabbit | 1:2000 |
CST #7074 | Anti-rabbit IgG, HRP-linked Antibody | Rabbit | 1:2000 |
Accession No. | Gene Name | Primer Sequence | bp |
---|---|---|---|
NM_008904.2 | PPAR gamma coactivator 1-alpha | 5′-GCGAACCTTAAGTGTGGAACTC-3′ | 93 |
(PGC-1α) | 5′-GCCTTGAAAGGGTTATCTTGG-3′ | ||
NM_001293559.1 | Cytochrome c oxidase subunit 4 | 5′-TGATGTGGCCCATGTCAC-3′ | 121 |
(CoxV) | 5′-GTTAAACTGGATGCGGTACAACT-3′ | ||
NM_007505.2 | mitochondrial H+-ATP synthase alpha subunit | 5′-TCCATGCCTCTAACACTCGAC-3′ | 122 |
(Atp5a1) | 5′-GCTTAACACACGCCCAGTCT-3′ | ||
NM_013684.3 | TATA box binding protein | 5′-CCAATGACTCCTATGACCCCTA-3′ | 104 |
(Tbp) | 5′-CAGCCAAGATTCACGGTAGAT-3′ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoki, K.; Konno, M.; Honda, K.; Abe, T.; Nagata, T.; Takehara, M.; Sugasawa, T.; Takekoshi, K.; Ohmori, H. Habitual Aerobic Exercise Diminishes the Effects of Sarcopenia in Senescence-Accelerated Mice Prone8 Model. Geriatrics 2020, 5, 48. https://doi.org/10.3390/geriatrics5030048
Aoki K, Konno M, Honda K, Abe T, Nagata T, Takehara M, Sugasawa T, Takekoshi K, Ohmori H. Habitual Aerobic Exercise Diminishes the Effects of Sarcopenia in Senescence-Accelerated Mice Prone8 Model. Geriatrics. 2020; 5(3):48. https://doi.org/10.3390/geriatrics5030048
Chicago/Turabian StyleAoki, Kai, Masaki Konno, Katsunari Honda, Takuya Abe, Takeshi Nagata, Masaaki Takehara, Takehito Sugasawa, Kazuhiro Takekoshi, and Hajime Ohmori. 2020. "Habitual Aerobic Exercise Diminishes the Effects of Sarcopenia in Senescence-Accelerated Mice Prone8 Model" Geriatrics 5, no. 3: 48. https://doi.org/10.3390/geriatrics5030048
APA StyleAoki, K., Konno, M., Honda, K., Abe, T., Nagata, T., Takehara, M., Sugasawa, T., Takekoshi, K., & Ohmori, H. (2020). Habitual Aerobic Exercise Diminishes the Effects of Sarcopenia in Senescence-Accelerated Mice Prone8 Model. Geriatrics, 5(3), 48. https://doi.org/10.3390/geriatrics5030048