Systemic Inflammation in the Genesis of Frailty and Sarcopenia: An Overview of the Preventative and Therapeutic Role of Exercise and the Potential for Drug Treatments
Abstract
:1. Introduction
2. Defining Frailty
“A condition, seen particularly in older patients, characterized by low functional reserve, easy tiring, decrease of libido, mood disturbance, accelerated osteoporosis, decreased muscle strength, and high susceptibility to disease. People with the frailty syndrome may take a sudden turn for the worse and die. However, the frailty syndrome may sometimes be reversible”.[1]
“Frailty is a distinctive health state related to the ageing process in which multiple body systems gradually lose their in-built reserves. Around 10% of people aged over 65 years have frailty, rising to between a quarter and a half of those aged over 85 years. Older people living with frailty are at risk of adverse outcomes such as dramatic changes in their physical and mental wellbeing after an apparently minor event which challenges their health, such as an infection or new medication”.
3. Sarcopenia—A Frequent Component of Frailty
“The presence of a low skeletal muscle mass and either low muscle strength (e.g., handgrip) or low muscle performance (e.g., walking speed or muscle power); when all three conditions are present severe sarcopenia may be diagnosed”.[6]
4. Systemic Inflammation as a Cause of Frailty
5. Background Inflammation in Old Age
6. The Case for Inflammation as a Pathogenic Factor
7. Skeletal Muscle, Exercise, Inflammation and the Role of IL-6
8. Exercise to Help Prevent, Delay or Ameliorate Frailty
9. Exercise to Reduce the Blood Markers of Inflammation in Old Age
10. Exercise to Avoid or Delay Frailty
11. When Exercise is Not Appropriate
12. The Rationale for Pharmacological Interventions
13. The Anti-Inflammatory Effects of Methyl-Xanthines
14. Other Drugs with Immune-Modulating Properties
15. Conclusions
- Chronic inflammation and prolonged post-acute inflammation predispose to frailty and sarcopenia.
- Whenever possible, the causes of inflammation, such as infection, should be treated promptly and nutrition should be optimized.
- Moderate exercise reduces inflammation and improves a wide range of health outcomes, and should be encouraged in as a preventive strategy and as part of the treatment for pro-inflammatory conditions.
- Drugs with immune modulating properties, such as theophylline, should be considered as adjunctive treatment for systemic inflammation, including those able to exercise, and might be particularly helpful for patients who are unable to take part in an exercise program.
- Clinical trials are needed to establish the role of anti-inflammatory drugs in this clinical context.
Conflicts of Interest
References
- Anonymous. Definition of Frailty Syndrome. Available online: www.medicinenet.com/script/main/art.asp?articlekey=26356 (accessed on 2 October 2016).
- BGS Guideline. Fit for Frailty. Available online: www.bgs.org.uk/index.php/fit-for-frailty (accessed on 2 October 2016).
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seman, T.; Tracy, R.; Kaplan, J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 58, M146–M156. [Google Scholar] [CrossRef]
- Searle, S.D.; Mitnitski, A.; Gahbauer, E.A.; Gill, T.M.; Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr. 2008, 8, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Dodds, R.M.; Sayer, A.A. Sarcopenia, frailty and mortality: The evidence is growing. Age Ageing 2016, 45, 570–571. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis—Report of the European working group on sarcopenia in older people. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Anker, S.D.; Argiles, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boiri, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by special interest groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults—Current consensus definition: Prevalence, etiology and consequences. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Abbatecola, A.M.; Argiles, J.M.; Baracos, V.; Bauer, J.; Bhasin, S.; Cederholm, T.; Stewart-Coats, A.J.; Cummings, S.R.; Evans, W.J.; et al. Sarcopenia with limited mobility: An international consensus. J. Am. Med. Dir. Assoc. 2011, 12, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Goisser, S.; Guyonnet, S.; Volkert, D. The role of nutrition in frailty: An overview. J. Frailty Aging 2016, 5, 74–77. [Google Scholar] [PubMed]
- Narici, M.V.; Maffulli, N. Sarcopenia: Characteristics, mechanisms and functional significance. Br. Med. Bull. 2010, 95, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Lexell, J.; Taylor, C.C.; Sjostrom, M. What is the cause of ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus medialis muscle from 15–83-year-old men. J. Neurol. Sci 1988, 84, 275–294. [Google Scholar] [CrossRef]
- Hogrel, J.Y.; Barnouin, Y.; Azzabou, N.; Butler-Browne, G.; Voit, T.; Moraux, A.; Leroux, G.; Behin, A.; McPhee, J.S.; Carlier, P.G. NMR imaging estimates of muscle volume and intramuscular fat infiltration in the thigh: Variations with muscle, gender and age. Age 2015, 27, 8798. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Batty, G.D.; Kivimaki, M. Sarcopenic obesity and risk of new onset depressive symptoms in older adults: English longitudinal study of ageing. Int. J. Obes. 2015, 39, 1717–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzetti, E.; Lees, H.A.; Wohlgemoth, S.E.; Leeuwenburgh, C. Sarcopenia of aging: Underlying cellular mechanisms and protection by calorie restriction. Biofactors 2009, 35, 28–35. [Google Scholar] [CrossRef]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, P. Clinical definition of sarcopenia. Clin. Cases Min. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef]
- Shaw, A.C.; Joshi, S.; Greenwood, H.; Panda, A.; Lord, J.M. Aging of the innate immune system. Curr. Opin. Immunol. 2010, 22, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Howcroft, T.K.; Campisi, J.; Louis, G.B.; Smith, M.T.; Wise, B.; Wyss-Coray, T.; Augustine, A.D.; McElhaney, J.E.; Kohanski, R.; Sierra, F. The role of inflammation in age-related disease. Aging 2013, 5, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Giacconi, R.; Malavolta, M.; Costarelli, L.; Provinciali, M. Cellular senescence and inflammatory burden as determinants of mortality in elderly people until extreme old age. EBioMedicine 2015, 2, 1316–1317. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.A.; Wilund, K.R.; Martin, S.A.; Kistler, B.M. Exercise, inflammation and aging. Aging Dis. 2012, 3, 130–140. [Google Scholar] [PubMed]
- Bruunsgaard, H.; Pedersen, B.K. Age-related inflammatory cytokines and disease. Immunol. Allergy Clin N. Am. 2003, 23, 15–39. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Wener, M.H.; Daum, P.R.; McQuillan, G.M. The influence of age, sex and race on the upper reference limit of serum C-reactive protein concentration. J. Rheumatol. 2000, 27, 2351–2359. [Google Scholar] [PubMed]
- Chung, H.Y.; Cesari, M.; Anton, S.; Marzetti, E.; Giovannini, S.; Seo, A.Y.; Carter, C.; Yu, B.P.; Leeuwenburgh, C. Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Res. Rev. 2009, 8, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Pereira, M.A.; Curran, K.M. Changes in physical activity patterns in the United States, by sex and cross-sectional age. Med. Sci. Sports Exerc. 2000, 32, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Driver, J.A.; Djousse, L.; Logroscino, G.; Gaziano, J.M.; Kurth, T. Incidence of cardiovascular disease and cancer in advanced age: Prospective cohort study. BMJ 2008, 337, a2467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowie, C.C.; Rust, K.F.; Byrd-Holt, D.D.; Gregg, E.W.; Ford, E.S.; Geiss, L.S.; Bainbridge, K.E.; Fradkin, J.E. Prevalence of diabetes and impaired fasting glucose in adults in the US population: NHANES survey 1999–2002. Diabetes Care 2006, 29, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Starr, M.E.; Saito, H. Sepsis in old age: Review of human and animal studies. Aging Dis. 2014, 5, 126–136. [Google Scholar] [PubMed]
- Boyd, A.R.; Orihuela, C.J. Dysregulated inflammation as a risk factor for pneumonia in the elderly. Aging Dis. 2011, 2, 487–500. [Google Scholar] [PubMed]
- Kalaria, R.N.; Maestre, G.E.; Arizaga, R.N.; Friedland, R.P.; Galasko, D.; Hall, K.; Luchsinger, J.A.; Ogunniyi, A.; Perry, E.K.; Potocnik, F.; et al. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol. 2008, 7, 812–826. [Google Scholar] [CrossRef]
- Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; van Lente, F.; Levey, A.S. Prevalence of chronic kidney disease in the United States. JAMA 2007, 298, 2038–2047. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, S.; Garbedian, S.; Wai, E.K. Systematic review of the prevalence of radiographic primary hip osteoarthritis. Clin. Orthop. Relat. Res. 2009, 467, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Ballou, S.P.; Lozanski, F.B.; Hodder, S.; Rzewnicki, D.L.; Mion, L.C.; Sipe, J.D.; Ford, A.B.; Kushner, I. Quantitative and qualitative alterations of acute-phase proteins in healthy elderly persons. Age Ageing 1996, 25, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Ershler, W.B.; Sun, W.H.; Binkley, N.; Gravenstein, S.; Volk, M.J.; Kamoske, G.; Klopp, R.G.; Roecker, E.B.; Daynes, R.A.; Weindruch, R. Interleukin-6 and aging: Blood levels and mononuclear cell production increase with advancing age and in vitro production is modifiable by dietary restriction. Lymphokine Cytokine Res. 1993, 12, 225–230. [Google Scholar] [PubMed]
- Wei, J.; Xu, H.; Davies, J.L.; Hemmings, G.P. Increase in plasma IL-6 concentration with age in healthy subjects. Life Sci. 1992, 51, 1953–1956. [Google Scholar] [CrossRef]
- Ahluwalia, N.; Mastro, A.M.; Ball, R.; Miles, M.P.; Rajendra, R.; Handte, G. Cytokine production by stimulated mononuclear cells did not change with aging in apparently healthy, well-nourished women. Mech. Ageing Dev. 2001, 122, 1269–1279. [Google Scholar] [CrossRef]
- Beharka, A.A.; Meydani, M.; Wu, D.; Leka, L.S.; Meydani, A.; Meydani, S.N. Interleukin-6 production does not increase with age. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 81–88. [Google Scholar] [CrossRef]
- Kabagambe, E.K.; Judd, S.E.; Howard, V.J.; Zakai, N.A.; Jenny, N.S.; Hsieh, M.; Warnock, D.G.; Cushman, M. Inflammation biomarkers and risk of all-cause mortality in the RCARDS cohort. Am. J. Epidemiol. 2011, 174, 284–292. [Google Scholar] [CrossRef] [PubMed]
- DeMartinis, M.; Franceschi, C.; Monti, D.; Ginaldi, L. Inflammation markers predicting frailty and mortality in the elderly. Exp. Mol. Pathol. 2006, 80, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.L. Inflammation: Roles in aging and sarcopenia. J. Parenter. Enter. Nutr. 2008, 32, 656–659. [Google Scholar] [CrossRef] [PubMed]
- Penninx, B.W.; Kritchevsky, S.B.; Newman, A.B.; Nicklas, B.J.; Simonsick, E.M.; Rubin, S.; Nevitt, M.; Visser, M.; Harris, T.; Pahor, M. Inflammatory markers and incident mobility limitation in the elderly. J. Am. Geriatr. Soc. 2004, 52, 1105–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christian, L.M.; Glaser, R.; Porter, K.; Malarkey, W.B.; Beversdorf, D.; Kiecolt-Glaser, J.K. Poorer self-related health is associated with elevated inflammatory markers among older adults. Psychoneuroendocrinology 2011, 36, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Michaud, M.; Balardy, L.; Moulis, G.; Gaudin, C.; Peyrot, C.; Vellas, B.; Cesari, M.; Nourhashemi, F. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 2013, 14, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Golbidi, S.; Laher, I. Exercise and the aging endothelium. J. Diabetes Res. 2013. [Google Scholar] [CrossRef] [PubMed]
- Bruunsgaard, H.; Skinhoj, P.; Qvist, J.; Pedersen, B.K. Elderly humans show prolonged in vivo inflammatory activity during pneumococcal infections. J. Infect. Dis. 1999, 180, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Krabbe, K.S.; Bruunsgaard, H.; Hansen, C.M.; Møller, K.; Fonsmark, L.; Qvist, J.; Madsen, P.L.; Kronborg, G.; Andersen, H.O.; Skinhøj, P.; Pedersen, B.K. Ageing is associated with a prolonged fever in human endotoxemia. Clin. Diagn. Lab. Immunol. 2001, 8, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xia, S.; Kalonis, B.; Wan, W.; Sun, T. The role of oxidative stress and inflammation in cardiovascular aging. BioMed Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- McFarlin, B.K.; Flynn, M.G.; Campbell, W.W.; Craig, B.A.; Robinson, J.P.; Stewart, L.K.; Timmerman, K.L.; Coen, P.M. Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor 4. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Rotman-Pikielny, P.; Roash, V.; Chen, O.; Limor, R.; Stern, N.; Gur, H.G. Serum cortisol levels in patients admitted to the department of medicine: Prognostic correlations and effects of age, infection and co-morbidity. Am. J. Med. Sci. 2006, 332, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Kip, K.E.; Marroquin, O.C.; Ridker, P.M.; Kelsey, S.F.; Shaw, L.J.; Pepine, C.J.; Sharaf, B.; Bairey Merz, C.N.; Sopko, G.; et al. Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women. Circulation 2004, 109, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Beavers, K.M.; Brinkley, T.E.; Nicklas, B.J. Effect of exercise on chronic inflammation. Clin. Chem. Acta 2010, 411, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Everett, B.M.; Bansal, S.; Rifai, N.; Buring, J.E.; Ridker, P.M. Interleukin-18 and the risk of future cardiovascular disease among initially healthy women. Atherosclerosis 2009, 202, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Gokkusu, C.; Aydin, M.; Ozkok, E.; Tulubas, F.; Elitok, A.; Pamukcu, B.; Umman, B. Influences of genetic variants in interleukin-15 gene and interleukin-15 levels on coronary heart disease. Cytokine 2010, 49, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.J.; Carmack, A.J.; Lockeshwar, V.B.; Duncan, R.C.; Soloway, M.S.; Lockeshwar, B.L. Osteopontin and interleukin-8 expression is independently associated with prostate cancer recurrence. Clin. Cancer Res. 2008, 14, 4111–4118. [Google Scholar] [CrossRef] [PubMed]
- Gauldie, J.; Saunder, D.N.; McAdam, K.P.; Dinarello, C.A. Purified interleukin-1 from human monocytes stimulates acute phase protein synthesis by rodent hepatocytes in vitro. Immunology 1987, 60, 203–207. [Google Scholar] [PubMed]
- Mahesh, V.N. Albumin: A marker of inflammation. BMJ 2006, 333, 1044. [Google Scholar]
- Pan, W.; Stone, K.P.; Hsuchou, H.; Manda, V.K.; Kastin, A.J. Cytokine signalling modulates blood-brain barrier function. Curr. Pharm. Des. 2011, 17, 3729–3740. [Google Scholar] [CrossRef] [PubMed]
- Allison, D.J.; Ditor, D.S. The common inflammatory etiology of depression and cognitive impairment: A therapeutic target. J. Neuroinflamm. 2014. [Google Scholar] [CrossRef] [PubMed]
- Tizard, I. Sickness behaviour, its mechanisms and significance. Anim. Health Res. 2008, 9, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Zotova, E.; Nicoll, J.A.R.; Kalaria, R.; Holmes, C.; Bocke, D. Inflammation in Alzheimer’s disease: Relevance to pathogenesis and therapy. Alzheimers Res. Ther. 2010, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Ohman, H.; Savikko, N.; Strandberg, T.E.; Pitkala, K.H. Effect of physical exercise on cognitive performance in older adults with mild cognitive impairment or dementia: A systematic review. Dement. Geriatr. Cogn. Disord. 2014, 38, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Vinik, A.I.; Erbas, T.; Casellini, C.M.J. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. Diabetes Investig. 2013, 4, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Febbraio, M.A.; Whitham, M. From cytokine to myokine: The emerging role of interleukin-6 in metabolic regulation. Immunol. Cell Biol. 2014, 92, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Febbraio, M. Muscle-derived interleukin-6: A possible link between skeletal muscle, adipose tissue, liver and brain. Brain Behav. Immun. 2005, 19, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T. IL-6: From its discovery to clinical applications. Int. Immunol. 2010, 22, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, U.R.; Couppe, C.; Karlsen, A.; Grosset, J.F.; Schjerling, P.; Mackey, A.L.; Klausen, H.H.; Magnusson, S.P.; Kjær, M. Life-long endurance exercise in humans: Circulating levels of inflammatory markers and leg muscle size. Mech. Ageing Dev. 2013, 134, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Steensberg, A.; Fischer, C.; Keller, C.; Keller, P.; Plomgaard, P.; Febbraio, M.; Saltin, B. Searching for the exercise factor: Is IL-6 a candidate? J. Muscle Res. Cell Motil. 2003, 24, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, A.M.W.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Steenberg, A.; Schjerling, P. Exercise and interleukin-6. Curr. Opin. Hematol. 2001, 8, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.P. Interleukin-6 in acute exercise and training; what is the biological relevance? Exerc. Immunol. Rev. 2006, 12, 6–33. [Google Scholar] [PubMed]
- Woods, J.A.; Veira, V.J.; Keylock, K.T. Exercise, inflammation and innate immunity. Immunol. Allergy Clin. N. Am. 2009, 29, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. Exercise-induced myokines and their role in chronic disease. Brain Behav. Immun. 2011, 25, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Brandt, C.; Pedersen, B.K. The role of exercise-induced myokines in muscle homeostasis and the defence against chronic diseases. J. Biomed. Biotechnol. 2010. [Google Scholar] [CrossRef] [PubMed]
- Leeuwenburgh, C. Role of apoptosis in sarcopenia. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, M999–M1001. [Google Scholar] [CrossRef]
- Demontis, F.; Rosanna, P.; Goldberg, A.L.; Perrimon, N. Mechanisms of skeletal muscle aging: Insights from Drosophila and mammalian models. Dis. Model. Mech. 2013, 6, 1339–1352. [Google Scholar] [CrossRef] [PubMed]
- Walrand, S.; Guillet, C.; Salles, J.; Cano, N.; Boirie, Y. Physiopathological mechanism of sarcopenia. Clin. Geriatr. Med. 2011, 27, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Ward, H.A.; Norat, T.; Luan, J.; May, A.M.; Weiderpasse, E.; Sharp, S.J.; Overvad, K.; Ostergaard, J.N.; Tjonneland, A.; et al. Physical activity and all-cause mortality across levels of overall and abdominal adiposity in European men and women: The European Prospective Investigation into Cancer and Nutrition study (EPIC). Am. J. Clin. Nutr. 2015. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, J.; Lindstrom, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. Prevention of type 2 diabetes mellitus by changes of lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Mijnarends, D.M.; Koster, A.; Schols, J.G.A.; Meijers, J.M.; Halfens, R.J.; Gudnason, V.; Eiriksdottir, G.; Siggeirsdottir, K.; Sigurdsson, S.; Jónsson, P.V.; et al. Physical activity and incidence of sarcopenia: The population-based AGES-Reykjavik study. Age Ageing 2016, 45, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Angevaren, M.; Aufdemkampe, G.; Verhaar, H.J.; Aleman, A.; Vanhees, L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef]
- Windle, G.; Hughes, D.; Linck, P.; Russell, I.; Woods, B. Is exercise effective in promoting mental wellbeing in older age? A systematic review. Aging Ment. Health 2010, 14, 152–169. [Google Scholar] [CrossRef] [PubMed]
- Bolton, C.E.; Bevan-Smith, E.F.; Blake, J.D.; Crowe, P.; Elkin, S.L.; Garrod, R.; Greening, N.J.; Heslop, K.; Hull, J.H. William D-C Man10, British Thoracic Society guideline on pulmonary rehabilitation in adults. Thorax 2013, 68 (Suppl. S2), ii1–ii36. [Google Scholar] [CrossRef] [PubMed]
- NICE Guideline CG172 Myocardial Infarction—Secondary Prevention. Available online: Http://www.nice.org.uk/guidance/cg172 (accessed on 1 October 2016).
- Colbert, L.H.; Visser, M.; Simonsick, E.M.; Tracy, R.P.; Newman, A.B.; Kritchevsky, S.B.; Pahor, M.; Taaffe, D.R.; Brach, J.; Rubin, S.; et al. Physical activity, exercise and inflammatory markers in older adults. J. Am. Geriatr. Soc. 2004, 52, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Taaffe, D.R.; Harris, T.B.; Ferrucci, L.; Rowe, J.; Seeman, T.E. Cross-sectional and prospective relationships of interleukin-6 and C-reactive protein with physical performance in elderly persons. J. Gerontol. A Biol. Sci. Med. 2000, 55, 709–715. [Google Scholar] [CrossRef]
- Geffken, D.F.; Cushman, M.; Burke, G.C.; Polak, J.F.; Sakkinen, P.A.; Tracey, R.P. Association between physical activity and markers of inflammation in a healthy elderly population. Am. J. Epidemiol. 2001, 153, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Wannamethee, S.G.; Lowe, G.D.O.; Whincup, P.H.; Rumley, A.; Walker, M.; Lennon, L. Physical activity and hemostatic variables in elderly men. Circulation 2002, 105, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Elosua, R.; Bartali, B.; Ordovas, J.M.; Corsi, A.M.; Laurentian, F.; Ferrucci, L. Association between physical activity, physical performance and inflammatory biomarkers in an elderly population: The CHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Sabia, S.; Batty, G.D.; Shipley, M.J.; Tabák, A.G.; Singh-Manoux, A.; Kivimaki, M. Physical activity and inflammatory markers over 10 years: Follow-up in men and women from the Whitehall II cohort study. Circulation 2012, 126, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Nicklas, B.J.; Ambrosius, W.; Messier, S.P.; Miller, G.D.; Penninx, B.W.; Loeser, R.F.; Palla, S.; Bleecker, E.; Pahor, M. Diet-induced weight loss, exercise, and chronic inflammation in older, obese adults: A randomized controlled clinical trial. Am. J. Clin. Nutr. 2004, 79, 544–551. [Google Scholar] [PubMed]
- Hamer, M.; Steptoe, A. Prospective study of physical fitness, adiposity and inflammatory markers in healthy middle-aged man and women. Am. J. Clin Nutr 2009, 89, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Valentine, R.J.; Vieira, V.J.; Woods, J.A.; Evans, E.M. Stronger relationship between central adiposity and C-reactive protein in older women than men. Menopause 2009, 16, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.R.; Williams, P. Effects of group exercise on cognitive functioning and mood in older women. Aust N. Z. J. Public Health 1997, 21, 45–52. [Google Scholar]
- Opal, S.M.; Girard, T.D.; Ely, W.E. The immunopathogenesis of sepsis in elderly patients. Clin. Infect. Dis. 2005, 41 (Suppl. S7), S504–S512. [Google Scholar] [CrossRef] [PubMed]
- Cevenini, E.; Caruso, C.; Candore, G.; Capri, M.; Nuzzo, D.; Duro, G.; Rizzo, C.; Colonna-Romano, G.; Lio, D.; Di Carlo, D.; et al. Age-related inflammation: The contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr. Pharm. Des. 2010, 16, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Theophylline for COPD. Thorax 2006, 61, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Culpitt, S.V.; de Matos, C.; Russell, R.E.; Donnelly, L.E.; Rogers, D.F.; Barnes, P.J. Effect of theophylline on induced sputum inflammatory indices and neutrophil chemotaxis in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2002, 165, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Neuner, P.; Klosner, G.; Schauer, E.; Pourmojib, M.; Macheiner, W.; Grünwald, C.; Knobler, R.; Schwarz, A.; Luger, T.A.; Schwarz, T. Pentoxyfylline in vivo down-regulates the release of IL-1 beta, IL-6, IL-8 and TNF alpha by human peripheral blood mononuclear cells. Immunology 1994, 83, 262–267. [Google Scholar] [PubMed]
- Mascali, J.J.; Cvietusa, P.; Negri, J.; Borish, L. Anti-inflammatory effects of theophylline: Modulation of cytokine production. Ann. Allergy Asthma Immunol. 1996, 77, 34–38. [Google Scholar] [PubMed]
- Ito, K.; Lim, S.; Caramori, G.; Cosio, B.; Chung, K.F.; Adcock, I.M.; Barnes, P.J. A molecular mechanism of the action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proc. Natl. Acad. Sci. USA 2002, 99, 8921–8926. [Google Scholar] [CrossRef] [PubMed]
- Ichiyami, T.; Hasegawa, S.; Matsubara, T.; Hayashi, T.; Furukawa, S. Theophylline inhibits NF-kappa activation and I kappa B alpha degradation in human pulmonary epithelial cells. Arch. Pharmacol. 2001, 364, 558–561. [Google Scholar] [CrossRef]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 878–888. [Google Scholar] [CrossRef] [PubMed]
- So, B.; Kim, H.-J.; Kim, J.; Song, W. Exercise-induced myokines in health and metabolic diseases. Integr. Med. Res. 2014, 3, 172–179. [Google Scholar] [CrossRef]
- Vasunilashorn, S.M.; Ngo, L.; Inouye, S.K.; Libermann, T.A.; Jones, R.N.; Alsop, D.C.; Guess, J.; Jastrzebski, S.; McElhaney, J.E.; Kuchel, G.A.; et al. Cytokines and postoperative delirium in older patients undergoing major elective surgery. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Roubenoff, R.; Parise, H.; Payette, H.A.; Abad, L.W.; D’Agostini, R.; Jacques, P.F.; Wilson, P.W.; Dinarello, A.; Harris, T.B. Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: the Framingham Heart Study. Am. J. Med. 2003, 115, 429–435. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Ketteler, M.; Johnson, R.J.; Lindholm, B.; Pecoits-Filho, R.; Riella, M.; Heimburger, O.; Cederholm, T.; Girndt, M. IL-10, IL-6 and TNF-alpha: Central factors in the altered cytokine network of uraemia—the good, the bad and the ugly. Kidney Int. 2005, 67, 1216–1233. [Google Scholar] [CrossRef] [PubMed]
- Payette, H.; Roubenoff, R.; Jacques, P.F.; Dinarello, C.A.; Wilson, W.F.; Abad, L.W.; Harris, T. Insulin-like growth factor 1 and interleukin 6 predict sarcopenia in very old community-living men and women: the Framingham Heart Study. J. Am. Geriatr. Soc. 2003, 51, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Spatafora, M.; Chiappara, G.; Merendino, A.M.; D’Amico, D.; Bellia, V.; Bonsignore, G. Theophylline suppresses the release of TNF alpha by blood monocytes and alveolar macrophages. Eur. Respir. J. 1994, 7, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, T.; Usami, E.; Kurita, C.; Watanabe, S.; Nakao, T.; Kobayashi, J.; Yamazaki, F.; Nagai, H. Effect of theophylline on the production of IL-1 beta, TNF alpha and IL-8 by human peripheral blood mononuclear cells. Biol. Pharm. Bull. 1995, 18, 1405–1408. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.; Ragulan, A.B.; Jindal, A.; Wiswambhar, V. The study of tolerability and safety of theophylline given along with formoterol plus budesonide in COPD. J. Clin. Diagn. Res. 2015, 9, 10–13. [Google Scholar]
- Hancock, R.E.W.; Nijnik, A.; Philpott, D.J. Modulating immunity as a therapy for bacterial infections. Nat. Rev. Microbiol. 2012, 10, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.N.; Chen, Y.T.; Seethala, R.; Aisiko, I.; Frendl, G.; Hou, P. Effect of the use of theophylline and sepsis outcomes. Crit. Care Med. 2015, 43 (Suppl. S1), 274. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, M.X.; Qu, J.M. Low dose theophylline showed an inhibitory effect on the production of IL-6 and IL-8 in primary lung fibroblasts from patients with COPD. Mediat. Inflamm 2012, 2012, 492901. [Google Scholar] [CrossRef] [PubMed]
- Mosire, K.; Renvall, M.J.; Ramsdell, J.W.; Spindler, A.A. The effect of theophylline on metabolic rate in COPD patients. J. Am. Coll. Nutr. 1966, 15, 403–407. [Google Scholar] [CrossRef]
- Cosio, B.G.; Iglesias, A.; Rios, A.; Noguera, A.; Sala, E.; Ito, K.; Barnes, P.J.; Agusti, A. Low-dose theophylline enhances the anti-inflammatory effects of steroids during exacerbations of COPD. Thorax 2009, 64, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Bodera, P.; Stankiewicz, W. Immunomodulatory properties of thalidomide analogs: Pomalidomide and lenalidomide, experimental and therapeutic applications. Recent Pat. Endocr. Metab. Immune Drug Discov. 2011, 5, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Eski, M.; Sahin, I.; Sengezer, M.; Serdar, M.; Ifran, A. Thalidomide decreases the plasma levels of IL-1 and TNF following burn injury: Is it the new drug for modulation of systemic inflammatory response. Burns 2008, 34, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, W.; Park, H.-W.; Park, S.C.; Kim, I.K.; Chung, S.G. Anti-sarcopenic effects of diamino-diphenyl sulfone observed in elderly female leprosy survivors: A cross-sectional study. J. Cachexia Sarcopenia Muscle 2015, 7, 322–329. [Google Scholar] [CrossRef]
- Van den Borne, B.E.; Dijkmans, B.A.; de Rooij, H.H.; le Cessie, S.; Verweij, C.L. Chloroquine and hydroxychloroquine equally affect TNF alpha, IL-6 and IF gamma production by peripheral blood mononuclear cells. J. Rheumatol. 1997, 24, 55–60. [Google Scholar] [PubMed]
- Landi, F.; Marzetti, E.; Liperoti, R.; Pahor, M.; Russo, A.; Martone, A.M.; Colloca, G.; Capoluongo, E.; Bernabei, R. Nonsteroidal anti-inflammatory drug (NSAID) use and sarcopenia in older people: Results from the ilSIRENTE study. J. Am. Med. Dir. Assoc. 2013, 14, 626.e9–626.e13. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, T.; Hamada, M.; Hiasa, G. Effect of beta-blockers on circulating levels of inflammatory and anti-inflammatory cytokines in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 2001, 37, 412–417. [Google Scholar] [CrossRef]
- Ulleryd, M.A.; Bernberg, E.; Yang, L.J.; Bergstrom, G.M.L.; Johansson, M.E. Metoprolol reduces pro-inflammatory cytokines and atherosclerosis in ApoE−/− Mice. BioMed Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Tian, S.; Zhou, H.; Wu, Y. Statins protect human endothelial cells from TNF-induced inflammation via ERK5 activation. Biochem. Pharmacol. 2013, 85, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
- Saisho, Y. metformin and inflammation: Its potential beyond glucose-lowering effect. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Hattori, K.; Hayashi, T. Pleiotropic benefits of metformin: Macrophage targeting its anti-inflammatory mechanisms. Diabetes 2015, 64, 1907–1909. [Google Scholar] [CrossRef] [PubMed]
- Brotto, M.; Abreu, E.L. Sarcopenia: Pharmacology of today and tomorrow. J. Pharmacol. Exp. Ther. 2012, 343, 540–546. [Google Scholar] [CrossRef]
© 2017 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allen, S.C. Systemic Inflammation in the Genesis of Frailty and Sarcopenia: An Overview of the Preventative and Therapeutic Role of Exercise and the Potential for Drug Treatments. Geriatrics 2017, 2, 6. https://doi.org/10.3390/geriatrics2010006
Allen SC. Systemic Inflammation in the Genesis of Frailty and Sarcopenia: An Overview of the Preventative and Therapeutic Role of Exercise and the Potential for Drug Treatments. Geriatrics. 2017; 2(1):6. https://doi.org/10.3390/geriatrics2010006
Chicago/Turabian StyleAllen, Stephen C. 2017. "Systemic Inflammation in the Genesis of Frailty and Sarcopenia: An Overview of the Preventative and Therapeutic Role of Exercise and the Potential for Drug Treatments" Geriatrics 2, no. 1: 6. https://doi.org/10.3390/geriatrics2010006
APA StyleAllen, S. C. (2017). Systemic Inflammation in the Genesis of Frailty and Sarcopenia: An Overview of the Preventative and Therapeutic Role of Exercise and the Potential for Drug Treatments. Geriatrics, 2(1), 6. https://doi.org/10.3390/geriatrics2010006