First Report of ‘Candidatus Mycoplasma haematomacacae’ in Laboratory-Kept Rhesus Monkeys (Macaca mulatta) Maintained in Rio de Janeiro, Brazil
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Ethical Approval
2.2. Sampling
2.3. Packed Cell Volume and White Blood Cell Count
2.4. DNA Extraction and Polymerase Chain Reaction (PCR) Assays
2.5. Sequencing, Phylogenetic, Genotype Diversity, and Distance Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Institute of Medicine and National Research Council. Use of Laboratory Animals in Biomedical and Behavioral Research; The National Academies Press: Washington, DC, USA, 1998. [Google Scholar] [CrossRef]
- Baker, D.G. Natural Pathogens of Laboratory Mice, Rats, and Rabbits and Their Effects on Research. Clin. Microbiol. Rev. 1998, 11, 231–266. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, H.-E.; Schapiro, S.J.; Farah, I.; Hau, J. Use of primates in research: A global overview. Am. J. Primatol. 2004, 63, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Bernacky, B.J.; Gibson, S.V.; Keeling, M.E.; Abee, C.R. Nonhuman Primates. In Laboratory Animal Medicine, 2nd ed.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Munster, V.J.; Feldmann, F.; Williamson, B.N.; Van Doremalen, N.; Pérez-Pérez, L.; Schulz, J.; Meade-White, K.; Okumura, A.; Callison, J.; Brumbaugh, B.; et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 2020, 585, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Linsuwanon, P.; Wongwairot, S.; Auysawasdi, N.; Monkanna, T.; Richards, A.L.; Leepitakrat, S.; Sunyakumthorn, P.; Im-Erbsin, R.; Poole-Smith, K.; McCardle, P. Establishment of a Rhesus Macaque Model for Scrub Typhus Transmission: Pilot Study to Evaluate the Minimal Orientia tsutsugamushi Transmission Time by Leptotrombidium chiangraiensis Chiggers. Pathogens 2021, 10, 1028. [Google Scholar] [CrossRef] [PubMed]
- Razin, S.; Yogev, D.; Naot, Y. Molecular Biology and Pathogenicity of Mycoplasmas. Microbiol. Mol. Biol. Rev. 1998, 62, 1094–1156. [Google Scholar] [CrossRef]
- Tratchenberg, S. Quick Guide: Mollicutes. Curr. Biol. Cell Press 2005, 15, PR483–PR484. [Google Scholar]
- Taylor-Robinson, D.; Furr, P.M. Observations on the occurrence of mycoplasmas in the central nervous system of some laboratory animals. Lab. Anim. 1981, 15, 223–227. [Google Scholar] [CrossRef]
- Homberger, F.R.; Thomann, P.E. Transmission of murine viruses and mycoplasma in laboratory mouse colonies with respect to housing conditions. Lab. Anim. 1994, 28, 113–120. [Google Scholar] [CrossRef]
- Ferreira, J.B.; Yamaguti, M.; Marques, L.M.; Oliveira, R.C.; Neto, R.L.; Buzinhani, M.; Timenetsky, J. Detection of Mycoplasma pulmonis in Laboratory Rats and Technicians. Zoonoses Public Health 2008, 55, 229–234. [Google Scholar] [CrossRef]
- Mahler, M.; Kohl, W. A serological survey to evaluate contemporary prevalence of viral agents and Mycoplasma pulomins in Laboratory mice and rats in western Europe. Lab. Anim. 2009, 38, 161–165. [Google Scholar] [CrossRef]
- Hong, S.; Kim, O. Molecular identification of Mycoplasma cynos from laboratory beagle dogs with respiratory disease. Lab. Anim. Res. 2012, 28, 61–66. [Google Scholar] [CrossRef]
- Ceola, C.F.; Sampaio, J.; Blatt, S.L.; Cordova, C.M.M. Mycoplasma infection and inflammatory effects on laboratory rats bred for experimental research. Rev. Pan-Amaz. Saúde 2016, 7, 59–66. [Google Scholar] [CrossRef]
- Messick, J.B. Hemotrophic mycoplasmas (hemoplasmas): A review and new insights into pathogenic potential. Veter. Clin. Pathol. 2004, 33, 2–13. [Google Scholar] [CrossRef]
- Bartlett, R.; Pease, P. Latent Haemobartonella muris infection: Its transmission and decline in an inbred, ectoparasite-free strain of Wistar rat. Parasitology 1975, 71, 35–40. [Google Scholar] [CrossRef]
- Glasgow, L.A.; Murrer, A.T.; Lombardi, P.S. Eperythrozoon coccoides II. Effect on Interferon Production and Role of Humoral Antibody in Host Resistance. Infect. Immun. 1974, 9, 266–272. [Google Scholar] [CrossRef]
- Ott, K.J.; Stauber, L.A. Eperythrozoon coccoides: Influence on Course of Infection of Plasmodium chabaudi in Mouse. Science 1967, 155, 1546–1548. [Google Scholar] [CrossRef]
- Molyneux, D.H. Relationship between Epery throzoon coccoides and Trypanosoma (Trypanozoon) brucei brucei in experimentally infected mice. Ann. Trop. Med. Parasitol. 1970, 64, 325–328. [Google Scholar] [CrossRef]
- Hsu, D.Y.M.; Geiman, Q.M. Synergistic Effect of Haemobartonella Muris on Plasmodium Berghei in White Rats 1. Am. J. Trop. Med. Hyg. 1952, 1, 747–760. [Google Scholar] [CrossRef]
- Andrade, H.F.D., Jr.; Laurenti, M.D.; Goto, H.; Duarte, M.I.S.; Corbett, C.E.P. Malária experimental: Contaminação de cepas e animais de biotério por eperythrozoon coccoides. Rev. Inst. Med. Trop. São Paulo 1986, 28, 246–252. [Google Scholar] [CrossRef]
- Glasgow, L.A.; Odugbemi, T.; Dwyer, P.; Ritterson, A.L. Eperythrozoon coccoides I. Effect on the Interferon Response in Mice. Infect. Immun. 1971, 4, 425–430. [Google Scholar] [CrossRef]
- Nelson, J.B. An ascites tumor appearing during the passage of Eperythrozoon coccoides in mice. J. Exp. Med. 1956, 103, 743–752. [Google Scholar] [CrossRef]
- Kemming, G.; Messick, J.; Mueller, W.; Enders, G.; Meisner, F.; Muenzing, S.; Kisch-Wedel, H.; Schropp, A.; Wojtczyk, C.; Packert, K.; et al. Can We Continue Research in Splenectomized Dogs? Mycoplasma haemocanis: Old Problem—New Insight. Eur. Surg. Res. 2004, 36, 198–205. [Google Scholar] [CrossRef]
- Hampel, J.A.; Spath, S.N.; Bergin, I.L.; Lim, A.; Bolin, S.R.; Dyson, M.C. Prevalence and diagnosis of hemotrophic mycoplasma infection in research sheep and its effects on hematology variables and erythrocyte membrane fragility. Comp. Med. 2014, 64, 478–485. [Google Scholar]
- Neimark, H.; Barnaud, A.; Gounon, P.; Michel, J.-C.; Contamin, H. The putative haemobartonella that influences Plasmodium falciparum parasitaemia in squirrel monkeys is a haemotrophic mycoplasma. Microbes Infect. 2002, 4, 693–698. [Google Scholar] [CrossRef]
- Barker, E.N.; Helps, C.R.; Neimark, H.; Peters, I.R.; Peters, W.; Tasker, S. A novel haemoplasma species identified in archived primate blood smears. Veter. Microbiol. 2011, 149, 478–481. [Google Scholar] [CrossRef]
- Maggi, R.G.; Compton, S.M.; Trull, C.L.; Mascarelli, P.E.; Mozayeni, B.R.; Breitschwerdt, E.B. Infection with hemotropic Mycoplasma species in patients with or without extensive arthropod or animal contact. J. Clin. Microbiol. 2013, 51, 3237–3241. [Google Scholar] [CrossRef]
- Oren, A.; Garrity, G.M.; Parker, C.T.; Chuvochina, M.; Trujillo, M.E. Lists of names of prokaryotic Candidatus taxa. Int. J. Syst. Evol. Microbiol. 2020, 70, 3956–4042. [Google Scholar] [CrossRef]
- Santos, L.C.; Cubilla, M.P.; De Moraes, W.; Cubas, Z.S.; Oliveira, M.J.; Estrada, M.; Leutenegger, C.M.; Sykes, J.E.; Lindsay, L.L.; Marcondes, M.; et al. Hemotropic Mycoplasma in a Free-ranging Black Howler Monkey (Alouatta caraya) in Brazil. J. Wildl. Dis. 2013, 49, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Cubilla, M.P.; Santos, L.C.; de Moraes, W.; Cubas, Z.S.; Leutenegger, C.M.; Estrada, M.; Vieira, R.F.; Soares, M.J.; Lindsay, L.L.; Sykes, J.E.; et al. Occurrence of hemotropic mycoplasmas in non-human primates (Alouatta caraya, Sapajus nigritus and Callithrix jacchus) of southern Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2017, 52, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Bonato, L.; Figueiredo, M.A.P.; Gonçalves, L.R.; Machado, R.Z.; André, M.R. Occurrence and molecular characterization of Bartonella spp. and hemoplasmas in neotropical primates from Brazilian Amazon. Comp. Immunol. Microbiol. Infect. Dis. 2015, 42, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, A.C.; Guerra, R.R.; Mongruel, A.C.; Vidotto, O.; Lucena, R.B.; Guerra, M.V.; Vieira, T.S.; Vieira, R.F. Mycoplasma sp. infection in captive Marcgrave’s capuchin monkeys (Sapajus flavius). Comp. Immunol. Microbiol. Infect. Dis. 2017, 51, 34–36. [Google Scholar] [CrossRef]
- Melo, C.M.F.; Daneze, E.R.; Mendes, N.S.; Ramos, I.A.D.S.; Morales-Donoso, J.A.; Fernandes, S.J.; Machado, R.Z.; André, M.R.; Sobreira, M.F.D.R. Genetic diversity and hematological and biochemical alterations in Alouatta primates naturally infected with hemoplasmas in Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2019, 63, 104–111. [Google Scholar] [CrossRef]
- Andrade, M.C.R.; Ribeiro, C.T.; Silva, V.F.; Molinaro, E.M.; Gonçalves, M.A.B.; Marques, M.A.P.; Cabello, P.H.; Leite, J.P.G. Biologic data of Macaca mulatta, Macaca fascicularis and Saimiri sciureus used for research at the Fiocruz Primate Center. Memórias Do Inst. Oswaldo Cruz 2004, 99, 584–589. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, S.; Ding, Y.; Wei, L.; Zhang, J.; Li, H.; Bu, H.; Lu, Y.; Cheng, J. Reference values of clinical chemistry and hematology parameters in rhesus monkeys (Macaca mulatta). Xenotransplantation 2009, 16, 496–501. [Google Scholar] [CrossRef]
- Birkenheuer, A.J.; Levy, M.G.; Breitschwerdt, E.B. Development and Evaluation of a Seminested PCR for Detection and Differentiation of Babesia gibsoni (Asian Genotype) and B. canis DNA in Canine Blood Samples. J. Clin. Microbiol. 2003, 41, 4172–4177. [Google Scholar] [CrossRef]
- Hoelzle, K.; Winkler, M.; Kramer, M.M.; Wittenbrink, M.M.; Dieckmann, S.M.; Hoelzle, L.E. Detection of Candidatus Mycoplasma haemobos in cattle with anaemia. Veter. J. 2011, 187, 408–410. [Google Scholar] [CrossRef]
- Machado, C.A.; Vidotto, O.; Conrado, F.O.; Santos, N.J.; Valente, J.D.; Barbosa, I.C.; Trindade, P.W.; Garcia, J.L.; Biondo, A.W.; Vieira, T.S.; et al. Mycoplasma ovis infection in goat farms from northeastern Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2017, 55, 1–5. [Google Scholar] [CrossRef]
- Mongruel, A.C.B.; Spanhol, V.C.; Valente, J.D.M.; Porto, P.P.; Ogawa, L.; Otomura, F.H.; Marquez, E.D.S.; André, M.R.; Vieira, T.S.W.J.; Vieira, R.F.D.C. Survey of vector-borne and nematode parasites involved in the etiology of anemic syndrome in sheep from Southern Brazil. Rev. Bras. Parasitol. Veterinária 2020, 29, e007320. [Google Scholar] [CrossRef]
- Marcondes, M.; Hirata, K.Y.; Vides, J.P.; Sobrinho, L.S.V.; Azevedo, J.S.; Vieira, T.S.W.J.; Vieira, R.F.C. Infection by Mycoplasma spp., feline immunodeficiency virus and feline leukemia virus in cats from an area endemic for visceral leishmaniasis. Parasites Vectors 2018, 11, 131. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Sela, I.; Ashkenazy, H.; Katoh, K.; Pupko, T. GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015, 43, W7–W14. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. Popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2005, 23, 254–267. [Google Scholar] [CrossRef]
- Peters, W.; Molyneux, D.H.; Howells, R.E. Eperythrozoon and Haemobartonellain monkeys. Ann. Trop. Med. Parasitol. 1974, 68, 47–50. [Google Scholar] [CrossRef]
- Sashida, H.; Suzuki, Y.; Rokuhara, S.; Nagai, K.; Harasawa, R. Molecular Demonstration of Hemotropic Mycoplasmas in Wild Japanese Monkeys (Macaca fuscata). J. Veter. Med. Sci. 2014, 76, 97–101. [Google Scholar] [CrossRef]
- Vilhena, H.; Tvarijonaviciute, A.; Cerón, J.J.; Pastorinho, M.R.; Pastor, J.; Silvestre-Ferreira, A.C.; Martinez-Subiela, S. Acute phase proteins response in cats naturally infected by hemotropic mycoplasmas. Comp. Immunol. Microbiol. Infect. Dis. 2018, 56, 1–5. [Google Scholar] [CrossRef]
- Hulme-Moir, K.L.; Barker, E.N.; Stonelake, A.; Helps, C.R.; Tasker, S. Use of Real-Time Quantitative Polymerase Chain Reaction to Monitor Antibiotic Therapy in a Dog with Naturally Acquired Mycoplasma haemocanis Infection. J. Veter. Diagn. Investig. 2010, 22, 582–587. [Google Scholar] [CrossRef]
- Novacco, M.; Sugiarto, S.; Willi, B.; Baumann, J.; Spiri, A.M.; Oestmann, A.; Riond, B.; Boretti, F.S.; Naegeli, H.; Hofmann-Lehmann, R. Consecutive antibiotic treatment with doxycycline and marbofloxacin clears bacteremia in Mycoplasma haemofelis—infected cats. Veter. Microbiol. 2018, 217, 112–120. [Google Scholar] [CrossRef]
- Tagawa, M.; Yamakawa, K.; Aoki, T.; Matsumoto, K.; Ishii, M.; Inokuma, H. Effect of Chronic Hemoplasma Infection on Cattle Productivity. J. Veter. Med. Sci. 2013, 75, 1271–1275. [Google Scholar] [CrossRef]
- Mongruel, A.C.B.; Medici, E.P.; Canena, A.D.C.; Calchi, A.C.; Machado, R.Z.; André, M.R. Expanding the Universe of Hemoplasmas: Multi-Locus Sequencing Reveals Putative Novel Hemoplasmas in Lowland Tapirs (Tapirus terrestris), the Largest Land Mammals in Brazil. Microorganisms 2022, 10, 614. [Google Scholar] [CrossRef]
- Vieira, R.F.; Santos, N.J.; Valente, J.D.; Santos, L.P.; Lange, R.R.; Duque, J.C.; Ferrari, M.V.; Filho, I.R.B.; Collere, F.C.; Ferrari, L.D.; et al. ‘Candidatus Mycoplasma haematohydrochoerus’, a novel hemoplasma species in capybaras (Hydrochoerus hydrochaeris) from Brazil. Infect. Genet. Evol. 2021, 93, 104988. [Google Scholar] [CrossRef]
- Gonçalves, L.R.; Herrera, H.M.; Nantes, W.A.G.; Santos, F.M.; Porfírio, G.E.D.O.; Barreto, W.T.G.; de Macedo, G.C.; Assis, W.D.O.; Campos, J.B.V.; da Silva, T.M.V.; et al. Genetic diversity and lack of molecular evidence for hemoplasma cross-species transmission between wild and synanthropic mammals from Central-Western Brazil. Acta Trop. 2019, 203, 105303. [Google Scholar] [CrossRef]
- Cohen, C.; Shemesh, M.; Garrido, M.; Messika, I.; Einav, M.; Khokhlova, I.; Tasker, S.; Hawlena, H. Haemoplasmas in wild rodents: Routes of transmission and infection dynamics. Mol. Ecol. 2018, 27, 3714–3726. [Google Scholar] [CrossRef]
- Dillberger, J.E.; Loudy, D.E.; Adler, R.R.; Gass, J.H. Hemobartonella-like Parasites in Cynomolgus Monkeys (Macaca fascicularis). Veter. Pathol. 1994, 31, 301–307. [Google Scholar] [CrossRef]
- Finerty, J.F.; Evans, C.B.; Hyde, C.L. Plasmodium berghei and Eperythrozoon coccoides: Antibody and immunoglobulin synthesis in germfree and and conventional mice simultaneously infected. Exp. Parasitol. 1973, 34, 76–84. [Google Scholar] [CrossRef]
- Peters, W. Competitive relationship between Eperythrozoon coccoides and Plasmodium berghei in the mouse. Exp. Parasitol. 1965, 16, 158–166. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
Animal | T1 | T2 | Sequence Size (bp) | BLASTn Identity | Query Cover (%) | E Value |
---|---|---|---|---|---|---|
1 | Negative | Negative | - | - | - | - |
2 | Positive | NS | 535 | 99.81%—’Ca. M. haematomacacae’ from Japan (AB820288) | 100 | 0.0 |
3 | Positive | Positive | - | - | - | - |
4 | Positive | Positive | 709 | 100%—‘Ca. M. haematomacacae’ from Japan (AB820288) | 100 | 0.0 |
5 | Negative | Positive | 761 | 99.61%—‘Ca. M. haematomacacae’ from Japan (AB820288) | 100 | 0.0 |
6 | Positive | NS | - | - | - | - |
7 | Positive | Positive | - | - | - | - |
8 | Negative | Negative | - | - | - | - |
Number of Sequences (N) | Number of Genotypes (h) | Number of Variable Sites (S) | Average Number of Nucleotide Differences (k) | Π (Mean (SD)) | Genotype Diversity (Mean (SD)) | G + C Content (%) |
---|---|---|---|---|---|---|
10 | 2 | 17 | 9.06667 | 0.0000056 [0.00236] | 0.00896 [0.095] | 46.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mongruel, A.C.B.; Somma, A.T.; Pinto, A.C.A.; Campos, C.d.F.; Calado, M.I.Z.; Montiani-Ferreira, F.; Vieira, T.S.W.J.; Vieira, R.F.d.C. First Report of ‘Candidatus Mycoplasma haematomacacae’ in Laboratory-Kept Rhesus Monkeys (Macaca mulatta) Maintained in Rio de Janeiro, Brazil. Vet. Sci. 2022, 9, 443. https://doi.org/10.3390/vetsci9080443
Mongruel ACB, Somma AT, Pinto ACA, Campos CdF, Calado MIZ, Montiani-Ferreira F, Vieira TSWJ, Vieira RFdC. First Report of ‘Candidatus Mycoplasma haematomacacae’ in Laboratory-Kept Rhesus Monkeys (Macaca mulatta) Maintained in Rio de Janeiro, Brazil. Veterinary Sciences. 2022; 9(8):443. https://doi.org/10.3390/vetsci9080443
Chicago/Turabian StyleMongruel, Anna Claudia Baumel, André Tavares Somma, Ana Cristina Araújo Pinto, Carla de Freitas Campos, Mônica Ingeborg Zuege Calado, Fabiano Montiani-Ferreira, Thállitha Samih Wischral Jayme Vieira, and Rafael Felipe da Costa Vieira. 2022. "First Report of ‘Candidatus Mycoplasma haematomacacae’ in Laboratory-Kept Rhesus Monkeys (Macaca mulatta) Maintained in Rio de Janeiro, Brazil" Veterinary Sciences 9, no. 8: 443. https://doi.org/10.3390/vetsci9080443