Novel Sources of Bioactive Molecules: Gut Microbiome of Species Routinely Exposed to Microorganisms
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Importance of the Gut Microbiome
2.1. Fish
2.2. Reptiles
2.3. Birds
2.4. Amphibians
2.5. Invertebrates
3. Conclusions
4. Significance and Impact
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Health Statistics. 2016. Available online: https://www.who.int/gho/publications/world_health_statistics/2016/EN_WHS2016_TOC.pdf (accessed on 15 June 2021).
- World Health Organization. The Top 10 Causes of Death. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 11 January 2019).
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Mérillon, J.M.; Rivière, C. Natural Antimicrobial Agents; Springer: Berlin/Heidelberg, Germany, 2018; Volume 19, pp. 1–342. [Google Scholar]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 1929, 10, 226. [Google Scholar] [CrossRef]
- Challinor, V.L.; Bode, H.B. Bioactive natural products from novel microbial sources. Ann. New York Acad. Sci. 2015, 1354, 82–97. [Google Scholar] [CrossRef]
- Sethi, S.; Datta, A.; Gupta, B.L.; Gupta, S. Optimization of cellulase production from bacteria isolated from soil. Int. Sch. Res. Not. 2013, 2013, 985685. [Google Scholar] [CrossRef] [Green Version]
- Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; et al. A new antibiotic kills pathogen without detectable resistance. Nature 2015, 517, 455–459. [Google Scholar] [CrossRef]
- Czárán, T.L.; Hoekstra, R.F.; Pagie, L. Chemical warfare between microbes promotes biodiversity. Biol. Sci. 2002, 99, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Kelsic, E.D.; Zhao, J.; Vetsigian, K.; Kishony, R. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 2015, 521, 516–519. [Google Scholar] [CrossRef] [Green Version]
- Farré-Maduell, E.; Casals-Pascual, C. The origins of gut microbiome research in Europe: From Escherich to Nissle. Hum. Microbiome J. 2019, 14, 100065. [Google Scholar] [CrossRef]
- Cullen, C.M.; Aneja, K.K.; Beyhan, S.; Cho, C.E.; Woloszynek, S.; Convertino, M.; McCoy, S.J.; Zhang, Y.; Anderson, M.Z.; Alvarez-Ponce, D.; et al. Emerging priorities for microbiome research. Front. Microbiol. 2020, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Leeming, E.R.; Louca, P.; Gibson, R.; Menni, C.; Spector, T.D.; Le Roy, C.I. The complexities of the diet-microbiome relationship: Advances and perspectives. Genome Med. 2021, 13, 10. [Google Scholar] [CrossRef]
- Lederberg, J.; McCray, A.T. Ome SweetOmics—A genealogical treasury of words. Scientist 2001, 15, 8. [Google Scholar]
- Viaud, S.; Daillere, R.; Boneca, I.G.; Lepage, P.; Langella, P.; Chamaillard, M.; Pittet, M.J.; Ghiringhelli, F.; Trinchieri, G.; Goldszmid, R.; et al. Gut microbiome and anticancer immune response: Really hot Sh*t! Cell Death Differ. 2015, 22, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.; Bai, C.; Brown, T.D.; Hood, L.E.; Tian, Q. Human gut microbiota and gastrointestinal cancer. Genom. Proteom. Bioinform. 2018, 16, 33–49. [Google Scholar] [CrossRef]
- Lazar, V.; Ditu, L.M.; Pircalabioru, G.G.; Gheorghe, I.; Curutiu, C.; Holban, A.M.; Picu, A.; Petcu, L.; Chifiriuc, M.C. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front. Immunol. 2018, 9, 1830. [Google Scholar] [CrossRef] [Green Version]
- Wiertsema, S.P.; van Bergenhenegouwen, J.; Garssen, J.; Knippels, L.M. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients 2021, 13, 886. [Google Scholar] [CrossRef]
- Yang, W.; Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell. Mol. Immunol. 2021, 18, 866–877. [Google Scholar] [CrossRef]
- De Filippis, F.; Pasolli, E.; Ercolini, D. The food-gut axis: Lactic acid bacteria and their link to food, the gut microbiome and human health. FEMS Microbiol. Rev. 2020, 44, 454–489. [Google Scholar] [CrossRef]
- Lee, K.A.; Shaw, H.M.; Bataille, V.; Nathan, P.; Spector, T.D. Role of the gut microbiome for cancer patients receiving immunotherapy: Dietary and treatment implications. Eur. J. Cancer 2020, 138, 149–155. [Google Scholar] [CrossRef]
- Reitmeier, S.; Kiessling, S.; Clavel, T.; List, M.; Almeida, E.L.; Ghosh, T.S.; Neuhaus, K.; Grallert, H.; Linseisen, J.; Skurk, T.; et al. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe 2020, 28, 258–272. [Google Scholar] [CrossRef]
- Spector, T.D.; Gardner, C.D. Challenges and opportunities for better nutrition science—An essay by Tim Spector and Christopher Gardner. BMJ 2020, 369, m2470. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.S.E.; Tay, H.L.; Tan, S.H.; Lee, T.H.; Ng, T.M.; Lye, D.C. Gut microbiota modulation: Implications for infection control and antimicrobial stewardship. Adv. Ther. 2020, 37, 4054–4067. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.R.; Schluter, J.; Coyte, K.Z.; Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 2017, 548, 43–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kho, Z.Y.; Lal, S.K. The human gut microbiome—A potential controller of wellness and disease. Front. Microbiol. 2018, 9, 1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colston, T.J.; Jackson, C.R. Microbiome evolution along divergent branches of the vertebrate tree of life: What is known and unknown. Mol. Ecol. 2016, 25, 3776–3800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerritsen, J.; Smidt, H.; Rijkers, G.T.; de Vos, W.M. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr. 2011, 6, 209–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.; Izard, J.; Walsh, E.; Batich, K.; Chongsathidkiet, P.; Clarke, G.; Sela, D.A.; Muller, A.J.; Mullin, J.M.; Albert, K.; et al. The host microbiome regulates and maintains human health: A primer and perspective for non-microbiologists. Cancer Res. 2017, 77, 1783–1812. [Google Scholar] [CrossRef] [Green Version]
- Gholamhosseini, A.; Banaee, M.; Soltanian, S.; Sakhaie, F. Heavy Metals in the Blood Serum and Feces of Mugger Crocodile (Crocodylus palustris) in Sistan and Baluchistan Province, Iran. Biol. Trace Elem. Res. 2021, 200, 3336–3345. [Google Scholar] [CrossRef]
- Roth, L.M.; Willis, E.R. The medical and veterinary importance of cockroaches. Smithson. Misc. Collect. 1957, 134, 1–147. [Google Scholar]
- Gold, R.E.; Brown, E.; Merchant, M.E.; Engler, K. Cockroaches. Recognit. Control. Tex. FARMER Collect. 2005, 1, 1–5. [Google Scholar]
- Loop, M.S.; Bailey, L.G. The effect of relative prey size on the ingestion behavior of rodent-eating snakes. Psychon. Sci. 1972, 28, 167–169. [Google Scholar] [CrossRef] [Green Version]
- Uyeda, L.; Iskandar, E.; Wirsing, A.; Kyes, R. Nocturnal activity of Varanus salvator on Tinjil Island, Indonesia. Biawak 2013, 7, 25–30. [Google Scholar]
- Jeyamogan, S.; Khan, N.A.; Siddiqui, R. Animals living in polluted environments are a potential source of anti-tumor molecule(s). Cancer Chemother. Pharmacol. 2017, 80, 919–924. [Google Scholar] [CrossRef]
- Jeyamogan, S.; Khan, N.A.; Sagathevan, K.; Siddiqui, R. Crocodylus porosus: A potential source of anticancer molecules. BMJ Open Sci. 2020, 4, e100040. [Google Scholar] [CrossRef]
- Mosaheb, M.U.-W.F.Z.; Khan, N.A.; Siddiqui, R. Cockroaches, locusts, and envenomating arthropods: A promising source of antimicrobials. Iran. J. Basic Med. Sci. 2018, 21, 873. [Google Scholar]
- Akbar, N.; Siddiqui, R.; Sagathevan, K.A.; Khan, N.A. Gut bacteria of animals/pests living in polluted environments are a potential source of antibacterials. Appl. Microbiol. Biotechnol. 2019, 103, 3955–3964. [Google Scholar] [CrossRef]
- Soopramanien, M.; Mungroo, M.R.; Sagathevan, K.A.; Khan, N.A.; Siddiqui, R. Invertebrates living in polluted environments are potential source of novel anticancer agents. Marmara Pharm. J. 2019, 23, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Soopramanien, M.; Siddiqui, R. Crocodiles and alligators: Physicians’ answer to cancer? Curr. Oncol. 2019, 26, 186. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, R.; Cruz Soares, N.; Khan, N.A. Crocodile Gut Microbiome Is a Potential Source of Novel Bioactive Molecules. ACS Pharmacol. Transl. Sci. 2021, 4, 1260–1261. [Google Scholar] [CrossRef]
- Nigam, A.; Gupta, D.; Sharma, A. Treatment of infectious disease: Beyond antibiotics. Microbiol. Res. 2014, 169, 643–651. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. 2014. Available online: https://www.who.int/drugresistance/documents/surveillancereport/en/ (accessed on 8 November 2018).
- Basler, M.; Ho, B.; Mekalanos, J. Tit-for-tat: Type VI secretion system counterattack during bacterial cell-cell interactions. Cell 2013, 152, 884–894. [Google Scholar] [CrossRef] [Green Version]
- Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013, 13, 790–801. [Google Scholar] [CrossRef] [Green Version]
- Mousa, W.K.; Athar, B.; Merwin, N.J.; Magarvey, N.A. Antibiotics and specialized metabolites from the human microbiota. Nat. Prod. Rep. 2017, 34, 1302–1331. [Google Scholar] [CrossRef]
- Vijayarama, S.; Robinsonb, J.P.; Kannana, S. Synthesis of antibacterial and anticancer substances by Bacillus sp. PRV3 and Bacillus sp. PRV23, an intestinal probiotic of Indian freshwater fish. Int. J. Pharm. Sci. Rev. Res. 2017, 43, 208–219. [Google Scholar]
- Akbar, N.; Siddiqui, R.; Sagathevan, K.; Khan, N.A. Gut bacteria of animals living in polluted environments exhibit broad-spectrum antibacterial activities. Int. Microbiol. 2020, 23, 511–526. [Google Scholar] [CrossRef] [PubMed]
- Cladera-Olivera, F.; Caron, G.R.; Brandelli, A. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett. Appl. Microbiol. 2004, 38, 251–256. [Google Scholar] [CrossRef]
- Indira, K.; Jayalakshmi, S.; Gopalakrishnan, A.; Srinivasan, M. Biopreservative potential of marine Lactobacillus spp. Afr. J. Microbiol. Res. 2011, 5, 2287–2296. [Google Scholar]
- Ghanbari, M.; Jami, M.; Kneifel, W.; Domig, K.J. Antimicrobial activity and partial characterization of bacteriocins produced by lactobacilli isolated from Sturgeon fish. Food Control 2013, 32, 379–385. [Google Scholar] [CrossRef]
- Muthukumar, P.; Kandeepan, C. Isolation, identification and characterization of probiotic organisms from intestine of freshwater fishes. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 607–616. [Google Scholar]
- Jami, M.; Ghanbari, M.; Kneifel, W.; Domig, K.J. Phylogenetic diversity and biological activity of culturable Actinobacteria isolated from freshwater fish gut microbiota. Microbiol. Res. 2015, 175, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.; Khan, N.A.; Sagathevan, K.; Iqbal, M.; Tawab, A.; Siddiqui, R. Gut bacteria of Cuora amboinensis (turtle) produce broad-spectrum antibacterial molecules. Sci. Rep. 2019, 9, 17012. [Google Scholar] [CrossRef] [Green Version]
- Akbar, N.; Siddiqui, R.; Sagathevan, K.; Iqbal, M.; Khan, N.A. Gut Bacteria of Water Monitor Lizard (Varanus salvator) Are a Potential Source of Antibacterial Compound(s). Antibiotics 2019, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Zhang, Y.; Lu, H.M.; Li, D.T.; Zhang, Z.L.; Tang, Z.X.; Shi, L.E. Antimicrobial activity and safety evaluation of Enterococcus faecium KQ 2.6 isolated from peacock feces. BMC Biotechnol. 2015, 15, 30. [Google Scholar] [CrossRef] [Green Version]
- Akbar, N.; Siddiqui, R.; Iqbal, M.; Sagathevan, K.; Khan, N.A. Gut bacteria of cockroaches are a potential source of antibacterial compound(s). Lett. Appl. Microbiol. 2018, 66, 416–426. [Google Scholar] [CrossRef]
- Greenway, R.; Arias-Rodriguez, L.; Diaz, P.; Tobler, M. Patterns of macroinvertebrate and fish diversity in freshwater sulphide springs. Diversity 2014, 6, 597–632. [Google Scholar] [CrossRef] [Green Version]
- Clements, K.D.; Angert, E.R.; Montgomery, W.L.; Choat, J.H. Intestinal microbiota in fishes: What’s known and what’s not. Mol. Ecol. 2014, 23, 1891–1898. [Google Scholar] [CrossRef]
- Jiang, S.J. Comparison on Antimicrobial Activity of Different Solvent Extracts from Aerial Stem and Rhizome of Douttuynia cordata. In Advanced Materials Research; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2013; Volume 706, pp. 44–47. [Google Scholar]
- Idan, S.A.; Al-Marzoqi, A.H.; Hameed, I.H. Spectral analysis and anti-bacterial activity of methanolic fruit extract of Citrullus colocynthis using gas chromatography-mass spectrometry. Afr. J. Biotechnol. 2015, 14, 3131–3158. [Google Scholar]
- Jadhav, V.; Kalase, V.; Patil, P. GC-MS analysis of bioactive compounds in methanolic extract of Holigarna grahamii (wight) Kurz. IJHM 2014, 35, 35–39. [Google Scholar]
- Song, M.X.; Deng, X.Q.; Wei, Z.Y.; Zheng, C.J.; Wu, Y.; An, C.S.; Piao, H.R. Synthesis and Antibacterial Evaluation of (S, Z)-4-methyl-2-(4-oxo-5-((5-substituted phenylfuran-2-yl) methylene)-2-thioxothiazolidin-3-yl) Pentanoic Acids. Iran. J. Pharm. Res. IJPR 2015, 14, 89. [Google Scholar]
- Vitt, L.J.; Caldwell, J.P. Herpetology: An Introductory Biology of Amphibians and Reptiles; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Zhang, B.; Ren, J.; Yang, D.; Liu, S.; Gong, X. Comparative analysis and characterization of the gut microbiota of four farmed snakes from southern China. PeerJ 2019, 7, e6658. [Google Scholar] [CrossRef]
- Tang, W.; Zhu, G.; Shi, Q.; Yang, S.; Ma, T.; Mishra, S.K.; Wen, A.; Xu, H.; Wang, Q.; Jiang, Y.; et al. Characterizing the microbiota in gastrointestinal tract segments of Rhabdophis subminiatus: Dynamic changes and functional predictions. MicrobiologyOpen 2019, 8, e00789. [Google Scholar] [CrossRef]
- Smith, S.N.; Colston, T.J.; Siler, C.D. Venomous Snakes Reveal Ecological and Phylogenetic Factors Influencing Variation in Gut and Oral Microbiomes. Front. Microbiol. 2021, 12, 603. [Google Scholar] [CrossRef]
- Niranjan, A.; Prakash, D. Chemical constituents and biological activities of turmeric (Curcuma longa L.)—A review. J. Food Sci. Technol. 2008, 45, 109. [Google Scholar]
- Khan, N.A.; Soopramanien, M.; Maciver, S.K.; Anuar, T.S.; Sagathevan, K.; Siddiqui, R. Crocodylus porosus Gut Bacteria: A Possible Source of Novel Metabolites. Molecules 2021, 26, 4999. [Google Scholar] [CrossRef]
- Tobias, J.A.; Ottenburghs, J.; Pigot, A.L. Avian diversity: Speciation, macroevolution, and ecological function. Annu. Rev. Ecol. Evol. Syst. 2020, 51, 533–560. [Google Scholar] [CrossRef]
- Waite, D.W.; Taylor, M. Exploring the avian gut microbiota: Current trends and future directions. Front. Microbiol. 2015, 6, 673. [Google Scholar] [CrossRef] [Green Version]
- Soopramanien, M.; Khan, N.A.; Neerooa, B.N.H.M.; Sagathevan, K.; Siddiqui, R. Gut Bacteria of Columbia livia Are a Potential Source of Anti-Tumour Molecules. Asian Pac. J. Cancer Prev. APJCP 2021, 22, 733. [Google Scholar] [CrossRef]
- Kemp, T.S. Amphibians: A Very Short Introduction; Oxford University Press: Oxford, UK, 2021; Volume 670. [Google Scholar]
- Wang, Y.; Smith, H.K.; Goossens, E.; Hertzog, L.; Bletz, M.C.; Bonte, D.; Verheyen, K.; Lens, L.; Vences, M.; Pasmans, F.; et al. Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders. Sci. Rep. 2021, 11, 20493. [Google Scholar] [CrossRef] [PubMed]
- Kohl, K.D.; Yahn, J. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. 2016, 18, 1561–1565. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, R.R.; Sommer, S. The amphibian microbiome: Natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers. Conserv. 2017, 26, 763–786. [Google Scholar] [CrossRef]
- May, R.M. How many species are there on earth? Science 1988, 241, 1441–1449. [Google Scholar] [CrossRef]
- Migula, P.J. Ecotoxicology, Invertebrate. Encyclopedia of Toxicology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 133–137. [Google Scholar]
- Clark, R.I.; Walker, D.W. Role of gut microbiota in aging-related health decline: Insights from invertebrate models. Cell. Mol. Life Sci. 2018, 75, 93–101. [Google Scholar] [CrossRef]
- Ng, Q.X. To Investigate the Antimicrobial Potential of Lucilia sericata Larvae. Pharm. Eng. 2014, 34, 56–58. [Google Scholar]
- Ali, S.M.; Siddiqui, R.; Ong, S.K.; Shah, M.R.; Anwar, A.; Heard, P.J.; Khan, N.A. Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana). Appl. Microbiol. Biotechnol. 2017, 101, 253–286. [Google Scholar] [CrossRef] [Green Version]
- Soopramanien, M.; Khan, N.A.; Ghimire, A.; Sagathevan, K.; Siddiqui, R. Heterometrus spinifer: An Untapped Source of Anti-Tumor Molecules. Biology 2020, 9, 150. [Google Scholar] [CrossRef]
- Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155–176. [Google Scholar] [CrossRef]
- Plaxkett, B. Why big pharma has abandoned antibiotics. Nature 2020, 586, S50. [Google Scholar] [CrossRef]
- Siddiqui, R.; Maciver, S.; Elmoselhi, A.; Soares, N.C.; Khan, N.A. Longevity, cellular senescence and the gut microbiome: Lessons to be learned from crocodiles. Heliyon 2021, 7, e08594. [Google Scholar] [CrossRef]
- Sonnenborn, U. Escherichia coli strain Nissle 1917—From bench to bedside and back: History of a special Escherichia coli strain with probiotic properties. FEMS Microbiol. Lett. 2016, 363, fnw212. [Google Scholar] [CrossRef] [Green Version]
- Ali Mohammadie Kojour, M.; Han, Y.S.; Jo, Y.H. An overview of insect innate immunity. Entomol. Res. 2020, 50, 282–291. [Google Scholar] [CrossRef]
- Mohd Zubir, M.Z.; Holloway, S.; Mohd Noor, N. Maggot therapy in wound healing: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 6103. [Google Scholar] [CrossRef]
Animal | Bacteria | Efficacy against Test Organisms | Molecules with Previously Reported Antibacterial Activity | |
---|---|---|---|---|
Class | Scientific Name | |||
Fish | Hypselo barbuskolus (koora), Oreochromis mossambicus (tilapia), Punitus melanampyx (kudukonda), Channa murulius (cherumeen) & Nemacheilus menoni (ayira) | Bacillus sp. PRV3 & Bacillus sp. PRV23 | Escherichia coli, Klebshiella, Proteus mirabilis, Serratia marcescens, Staphylococcus aureus, Vibrio parahaemolyticus, & Vibrio chlorae [48,49]. | Neopentyl Glycol, Hentriacontane, Phenol, 2,4-Bis(1,1-Dimethylethyl, Heptacosane & Methyl 3-(1-Pyrrolo)Thiophene-2 [48,49]. |
Oreochromis mossambicus (tilapia) | Escherichia coli, Staphylococcus auricularis, G-pos-bacilli, Staphylococcus aureus, Aeromonas hydrophila, & G-neg-bacilli | Escherichia coli K1, Pseudomonas aeruginosa, methicillin-resistant S. aureus, Streptococcus pyogenes & Escherichia coli K-12 [50]. | ||
Leporinus sp. | Bacillus licheniformis strain P40 | B. cereus, L. monocytogenes, & Streptococcus spp. [51]. | ||
Mugil cephalus (mullet fish) | Lactobacillus sp. lactic acid bacteria (LBA) | 18kDa bacteriocin (further characterization is needed) [52]. | ||
Huso (beluga) & Acipenser persicus (persian sturgeon) | Listeria monocytogenes & Salmonella enterica subsp. enterica serovar Typhimurium | Escherichia coli, Listeria spp., Salmonella spp., Staphylococcus aureus, Aeromonas hydrophila, Vibrio anguillarum, & Bacillus cereus [52]. | 5 & 3 kDa bacteriocins [52]. | |
Catla catla, Labeo rohita, Cirrhinus mirigala & Cyprinus carpio | Aeromonas hydrophila [53]. | |||
Schizothorax zarudnyi & Schizocypris altidorsalis | Actinobacteria | Streptomyces, Nocardiopsis, Micromonospora & Saccharomonospora species [54]. | ||
Reptile | Malayopython reticulatus (python) | Citrobacter freundii, Citrobacter braakii, Proteus mirabilis, & Escherichia fergusonii | Pseudomonas aeruginosa, methicillin-resistant S. aureus, Streptococcus pyogenes [49]. | |
Cuora amboinensis (turtle) | Enterobacter cloacae, Aeromonas hydrophila, & Pseudomonas aeruginosa | Bacillus cereus, Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus, Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica & Klebsiella pneumoniae [55]. | ||
Varanus salvator (water monitor lizard) | P. mirabilis, A. hydrophila, C. freundii, E. coli, Staphylococcus sp. & S. aureus | Bacillus cereus, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pyogenes, Serratia marcescens, & Klebsiella pneumoniae [56]. | Flavonoids, alkaloids, terpenes, oxygenated fatty acids, hydroxylated fatty acids, & pyrazine derivative [56]. | |
Bird | Pavo cristatus (peacock) | Enterococcus faecium KQ 2.6 | Bacillus subtilis, B. cereus, S. pyogenes, S. aureus, Staphylococcus epidermidis, E. faecalis, E. coli, P. aeruginosa, K. pneumoniae, Salmonella paratyphi, Candida albicans & Aspergillus niger [57]. | |
Gallus gallus domesticus (chicken) | Escherichia fergusonii, Shigella flexneri, B. cereus, & E. faecalis | E. coli K1, S. pyogenes, P. aeruginosa & methicillin-resistant Staphylococcus aureus [49]. | ||
Amphibian | Lithobates catesbeianus (American bull frog) | Proteus mirabilis & Proteus vulgaris | E. coli K1, P. aeruginosa, S. pyogenes & methicillin-resistant Staphylococcus aureus [49]. | |
Invertebrate | Scolopendra subspinipes (red-headed centipede) | Lysinibacillus fusiformis, Kluyvera georgiana, P. aeruginosa, & Bacillus proteolyticus | E. coli K1, P. aeruginosa, S. pyogenes & methicillin-resistant Staphylococcus aureus [50]. | |
Grammostola rosea (rose hair tarantula) | S. aureus, B. subtilis, Pseudomonas putida, & G-neg-bacilli | E. coli K1, P. aeruginosa, S. pyogenes & methicillin-resistant Staphylococcus aureus [50]. | ||
Scylla serrata (mud crab) | K. pneumoniae, Proteus alimentorum, & P. vulgaris | E. coli K1, P. aeruginosa, S. pyogenes & methicillin-resistant Staphylococcus aureus [50]. | ||
Gromphadorhina portentosa (Madagascar cockroach) | S. marcescens & E. coli | B. cereus, S. pyogenes & methicillin-resistant Staphylococcus aureus [58]. | ||
Blaptica dubia (Dubia cockroach) | Klebsiella sp., Citrobacter sp., Bacillus sp., Klebsiella sp., & Streptococcus sp. | B. cereus, S. pyogenes & methicillin-resistant Staphylococcus aureus [58]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, R.; Soopramanien, M.; Alharbi, A.M.; Alfahemi, H.; Khan, N.A. Novel Sources of Bioactive Molecules: Gut Microbiome of Species Routinely Exposed to Microorganisms. Vet. Sci. 2022, 9, 380. https://doi.org/10.3390/vetsci9080380
Siddiqui R, Soopramanien M, Alharbi AM, Alfahemi H, Khan NA. Novel Sources of Bioactive Molecules: Gut Microbiome of Species Routinely Exposed to Microorganisms. Veterinary Sciences. 2022; 9(8):380. https://doi.org/10.3390/vetsci9080380
Chicago/Turabian StyleSiddiqui, Ruqaiyyah, Morhanavallee Soopramanien, Ahmad M. Alharbi, Hasan Alfahemi, and Naveed Ahmed Khan. 2022. "Novel Sources of Bioactive Molecules: Gut Microbiome of Species Routinely Exposed to Microorganisms" Veterinary Sciences 9, no. 8: 380. https://doi.org/10.3390/vetsci9080380