Distribution of Corynebacterium Species and Comparative Results of Diagnostic Methods for Identifying Corynebacterium in Experimental Mice in Korea
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Consideration
2.2. Sample Collection
2.3. Identification by Biochemical Tests
2.4. Identification by MALDI-TOF MS
2.5. Molecular Identification and Sequence Analysis
2.6. Histopathological Analysis
3. Results
3.1. Distribution of Corynebacterium spp. in Laboratory Mice
3.2. Biochemical Identification
3.3. MALDI-TOF MS Identification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernard, K. The genus Corynebacterium and other medically relevant coryneform-like bacteria. J. Clin. Microbiol. 2012, 50, 3152–3158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funke, G.; von Graevenitz, A.; Clarridge, J.E.; Bernard, K.A. Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev. 1997, 10, 125–159. [Google Scholar] [CrossRef] [PubMed]
- Whitman, W.B.; Goodfellow, M.; Kämpfer, P. Bergey’s Manual of Systematic Bacteriology: Volume 5: The Actinobacteria; Springer: New York, NY, USA, 2012. [Google Scholar]
- Mähler, M.; Berard, M.; Feinstein, R.; Gallagher, A.; Illgen-Wilcke, B.; Pritchett-Corning, K.; Raspa, M. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab. Anim. 2014, 48, 178–192. [Google Scholar]
- Amao, H.; Moriguchi, N.; Komukai, Y.; Kawasumi, H.; Takahashi, K.; Sawada, T. Detection of Corynebacterium kutscheri in the faeces of subclinically infected mice. Lab. Anim. 2008, 42, 376–382. [Google Scholar] [CrossRef]
- Burr, H.N.; Lipman, N.S.; White, J.R.; Zheng, J.; Wolf, F.R. Strategies to prevent, treat, and provoke Corynebacterium-associated hyperkeratosis in athymic nude mice. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 378–388. [Google Scholar]
- Kim, T.H.; Kim, D.S.; Han, J.H.; Chang, S.N.; Kim, K.S.; Seok, S.H.; Kim, D.J.; Park, J.H.; Park, J.H. Detection of Corynebacterium bovis infection in athymic nude mice from a research animal facility in Korea. J. Vet. Sci. 2014, 15, 583. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Shin, H.J.; Park, S.H.; Lee, T.C.; Lee, H.J.; Moon, O.S.; Nam, K.H.; Yoon, W.K.; Kim, H.C.; Kwon, H.J.; et al. Microbiological survey of Korean mouse facilities from 2014 to 2019. Exp. Anim. 2022, 71, 109–115. [Google Scholar] [CrossRef]
- Soto, A.; Zapardiel, J.; Soriano, F. Evaluation of API Coryne system for identifying coryneform bacteria. J. Clin. Pathol. 1994, 47, 756–759. [Google Scholar] [CrossRef] [Green Version]
- Funke, G.; Renaud, F.; Freney, J.; Riegel, P. Multicenter evaluation of the updated and extended API (RAPID) Coryne database 2.0. J. Clin. Microbiol. 1997, 35, 3122–3126. [Google Scholar] [CrossRef] [Green Version]
- Roux, V.; Drancourt, M.; Stein, A.; Riegel, P.; Raoult, D.; La Scola, B. Corynebacterium species isolated from bone and joint infections identified by 16S rRNA gene sequence analysis. J. Clin. Microbiol. 2004, 42, 2231–2233. [Google Scholar] [CrossRef] [Green Version]
- Woese, C.R. Bacterial evolution. Microbiol. Rev. 1987, 51, 221–271. [Google Scholar] [CrossRef] [PubMed]
- Khamis, A.; Raoult, D.; La Scola, B. rpoB gene sequencing for identification of Corynebacterium species. J. Clin. Microbiol. 2004, 42, 3925–3931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khamis, A.; Raoult, D.; La Scola, B. Comparison between rpoB and 16S rRNA Gene Sequencing for Molecular Identification of 168 Clinical Isolates of Corynebacterium. J. Clin. Microbiol. 2005, 43, 1934–1936. [Google Scholar] [CrossRef] [Green Version]
- Vila, J.; Juiz, P.; Salas, C.; Almela, M.; de la Fuente, C.G.; Zboromyrska, Y.; Navas, J.; Bosch, J.; Agüero, J.; de la Bellacasa, J.P.; et al. Identification of Clinically Relevant Corynebacterium spp., Arcanobacterium haemolyticum, and Rhodococcus equi by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2012, 50, 1745–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Won, Y.-S.; Jeong, E.-S.; Park, H.-J.; Lee, C.-H.; Nam, K.-H.; Kim, H.-C.; Hyun, B.-H.; Lee, S.-K.; Choi, Y.-K. Microbiological contamination of laboratory mice and rats in Korea from 1999 to 2003. Exp. Anim. 2006, 55, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Lane, D.J. 1. 16S/23S rRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Wiley: Hoboken, NJ, USA, 1991; pp. 115–175. [Google Scholar]
- Stackebrandt, E.; Goodfellow, M. Nucleic Acid Techniques in Bacterial Systematics; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Dole, V.S.; Henderson, K.S.; Fister, R.D.; Pietrowski, M.T.; Maldonado, G.; Clifford, C.B. Pathogenicity and genetic variation of 3 strains of Corynebacterium bovis in immunodeficient mice. J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 458–466. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Renaud, F.N.; Dutaur, M.; Daoud, S.; Aubel, D.; Riegel, P.; Monget, D.; Freney, J. Differentiation of Corynebacterium amycolatum, C. minutissimum, and C. striatum by Carbon Substrate Assimilation Tests. J. Clin. Microbiol. 1998, 36, 3698–3702. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Ye, L.; Zhao, Q.; Ma, Y.; Yang, J.; Luo, Y. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J. Thorac. Dis. 2014, 6, 534–538. [Google Scholar]
- Nhan, T.-X.; Parienti, J.-J.; Badiou, G.; Leclercq, R.; Cattoir, V. Microbiological investigation and clinical significance of Corynebacterium spp. in respiratory specimens. Diagn. Microbiol. Infect. Dis. 2012, 74, 236–241. [Google Scholar] [CrossRef]
- Konrad, R.; Berger, A.; Huber, I.; Boschert, V.; Hörmansdorfer, S.; Busch, U.; Hogardt, M.; Schubert, S.; Sing, A. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Eurosurveillance 2010, 15, 196–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alibi, S.; Ferjani, A.; Gaillot, O.; Marzouk, M.; Courcol, R.; Boukadida, J. Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches. Pathol. Biol. 2015, 63, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Barberis, C.; Almuzara, M.; Join-Lambert, O.; Ramírez, M.S.; Famiglietti, A.; Vay, C. Comparison of the Bruker MALDI-TOF Mass Spectrometry System and Conventional Phenotypic Methods for Identification of Gram-Positive Rods. PLoS ONE 2014, 9, e106303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, J.L.; Tomazi, T.; Barreiro, J.R.; de Campos Braga, P.A.; Ferreira, C.R.; Junior, J.P.; Eberlin, M.N.; dos Santos, M.V. Identification of Corynebacterium spp. isolated from bovine intramammary infections by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Vet Microbiol. 2014, 173, 147–151. [Google Scholar] [CrossRef]
- Collins, M.D.; Burton, R.A.; Jones, D. Corynebacterium amycolatum sp. nov. a new mycolic acid-less Corynebacterium species from human skin. FEMS Microbiol. Lett. 1988, 49, 349–352. [Google Scholar] [CrossRef]
- Cazanave, C.; Greenwood-Quaintance, K.E.; Hanssen, A.D.; Patel, R. Corynebacterium prosthetic joint infection. J. Clin. Microbiol. 2012, 50, 1518–1523. [Google Scholar] [CrossRef] [Green Version]
- Sugumaran, R.; Sistla, S.; Chavhan, P.; Deb, A.K. Corynebacterium amycolatum: An unusual cause of corneal ulcer. BMJ Case Rep. 2020, 13, e237818. [Google Scholar] [CrossRef]
- Toribio, J.A.; Marrodán, T.; Fernández-Natal, I. Orbital implant infection by Corynebacterium amycolatum. Orbit 2017, 36, 344–346. [Google Scholar] [CrossRef]
- Jaqueline Abel da, R.; Natalia Chilinque Zambão da, S.; Ana, S.D.N.S.; Rafael Guaresma, G.; Beatriz Meurer, M.; Ianick Souto, M. Early prosthetic valve endocarditis caused by Corynebacterium amycolatum: The first case reported in Brazil. J. Infect. Dev. Citres 2018, 12, 806–807. [Google Scholar]
- Chen, X.; Zhao, X.; Chen, L.; Zeng, W.; Xu, H. Vaginitis Caused by Corynebacterium amycolatum in a Prepubescent Girl. J Pediatr. Adolesc. Gynecol. 2015, 28, e165–e167. [Google Scholar] [CrossRef]
- Bernard, K.A.; Pacheco, A.L.; Loomer, C.; Burdz, T.; Wiebe, D.; Huynh, C.; Kaplen, B.; Olson, A.B.; Cnockaert, M.; Eguchi, H.; et al. Corynebacterium lowii sp. nov. and Corynebacterium oculi sp. nov., derived from human clinical disease and an emended description of Corynebacterium mastitidis. Int. J. Syst. Evol. Microbiol. 2016, 66, 2803–2812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eguchi, H.; Kuwahara, T.; Miyamoto, T.; Nakayama-Imaohji, H.; Ichimura, M.; Hayashi, T.; Shiota, H. High-Level Fluoroquinolone Resistance in Ophthalmic Clinical Isolates Belonging to the Species Corynebacterium macginleyi. J. Clin. Microbiol. 2008, 46, 527–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Garayzabal, J.F.; Collins, M.D.; Hutson, R.A.; Fernandez, E.; Monasterio, R.; Marco, J.; Dominguez, L. Corynebacterium mastitidis sp. nov., isolated from milk of sheep with subclinical mastitis. Int. J. Syst. Bacteriol. 1997, 47, 1082–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radaelli, E.; Manarolla, G.; Pisoni, G.; Balloi, A.; Aresu, L.; Sparaciari, P.; Maggi, A.; Caniatti, M.; Scanziani, E. Suppurative Adenitis of Preputial Glands Associated with Corynebacterium mastitidis Infection in Mice. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 69–74. [Google Scholar] [PubMed]
- Leger, A.J.; Desai, J.V.; Drummond, R.A.; Kugadas, A.; Almaghrabi, F.; Silver, P.; Raychaudhuri, K.; Gadjeva, M.; Iwakura, Y.; Lionakis, M.S.; et al. An Ocular Commensal Protects against Corneal Infection by Driving an Interleukin-17 Response from Mucosal γδ T Cells. Immunity 2017, 47, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Rau, J.; Eisenberg, T.; Peters, M.; Berger, A.; Kutzer, P.; Lassnig, H.; Hotzel, H.; Sing, A.; Sting, R.; Contzen, M. Reliable differentiation of a non-toxigenic tox gene-bearing Corynebacterium ulcerans variant frequently isolated from game animals using MALDI-TOF MS. Vet. Microbiol. 2019, 237, 108399. [Google Scholar] [CrossRef]
- Badell, E.; Hennart, M.; Rodrigues, C.; Passet, V.; Dazas, M.; Panunzi, L.; Bouchez, V.; Carmi–Leroy, A.; Toubiana, J.; Brisse, S. Corynebacteriumrouxii sp. nov., a novel member of the diphtheriae species complex. Res. Microbiol. 2020, 171, 122–127. [Google Scholar] [CrossRef]
Species | Strain | GenBank Accession No. | GenBank Accession No. |
16S rRNA gene | rpoB gene | ||
C. amycolatum (14) a | S160 T (14) | HE586271 | CP069513 |
C. bovis (42) | Evans T (38) | NR_118465 | CP066067 |
99BR (4) | JX298786 | ||
C. lowii (35) | R-50085 T (35) | NR_151864 | KJ938692 |
C. mastitidis (74) | S-8 T (74) | Y09806 | AY492281 |
Molecular Method | API Coryne Ver. 4.0 | Sensitivity | |
---|---|---|---|
Species name | C. amycolatum (14) | Unidentified b (11) | 2/14 (14.3%) |
C. striatum/amycolatum(2) a | |||
Brevibacterium sp.(1) | |||
C. bovis (42) | C. bovis (24) | 24/42 (57.1%) | |
Unidentified b (9) | |||
C. urealyticum (5) | |||
Corynebacterium group F1 (1) | |||
C. pseudotuberculosis (1) | |||
C. striatum/amycolatum (1) | |||
Rhodococcus sp. (1) | |||
C. lowii (35) | Unidentified b (19) | 0/35 (0%) | |
C. bovis (10) | |||
C. pseudodiphthericum (4) | |||
C. striatum/amycolatum (2) | |||
C. mastitidis (74) | Unidentified b (26) | 0/74 (0%) | |
C. bovis (9) | |||
C. pseudodiphtheriticum (5) | |||
C. pseudotuberculosis (3) | |||
C. propinquum (3) | |||
C. kutscheri (2) | |||
Brevibacterium sp. (1) | |||
C. urealyticum (25) |
Molecular Method | MALDI-TOF | Sensitivity | |
---|---|---|---|
Species name | C. amycolatum (14) | C. amycolatum (14) a | 14/14 (100%) |
C. bovis (42) | C. bovis (41) | 41/42 (97.6%) | |
C. mastitidis (1) | |||
C. lowii (35) | no identification b (26) | 0/35 (0%) | |
C. mastitidis (9) | |||
C. mastitidis (74) | C. mastitidis (72) | 72/74 (97.3%) | |
C. bovis (1) | |||
no identification b (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Shin, H.; Kim, S.; Lee, T.; Lee, H.; Nam, K.; Yoon, W.; Kim, H.; Seo, Y.; Won, Y.; et al. Distribution of Corynebacterium Species and Comparative Results of Diagnostic Methods for Identifying Corynebacterium in Experimental Mice in Korea. Vet. Sci. 2022, 9, 328. https://doi.org/10.3390/vetsci9070328
Park S, Shin H, Kim S, Lee T, Lee H, Nam K, Yoon W, Kim H, Seo Y, Won Y, et al. Distribution of Corynebacterium Species and Comparative Results of Diagnostic Methods for Identifying Corynebacterium in Experimental Mice in Korea. Veterinary Sciences. 2022; 9(7):328. https://doi.org/10.3390/vetsci9070328
Chicago/Turabian StylePark, Sehee, Hijo Shin, Sangwoon Kim, Teakchang Lee, Haejin Lee, Kihoan Nam, Wonkee Yoon, Hyoungchin Kim, Youngwon Seo, Youngsuk Won, and et al. 2022. "Distribution of Corynebacterium Species and Comparative Results of Diagnostic Methods for Identifying Corynebacterium in Experimental Mice in Korea" Veterinary Sciences 9, no. 7: 328. https://doi.org/10.3390/vetsci9070328
APA StylePark, S., Shin, H., Kim, S., Lee, T., Lee, H., Nam, K., Yoon, W., Kim, H., Seo, Y., Won, Y., & Kwon, H. (2022). Distribution of Corynebacterium Species and Comparative Results of Diagnostic Methods for Identifying Corynebacterium in Experimental Mice in Korea. Veterinary Sciences, 9(7), 328. https://doi.org/10.3390/vetsci9070328