Immunohistochemical Expression of TGF-β1 in Kidneys of Cats with Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conroy, M.; Brodbelt, D.C.; O’Neill, D.; Chang, Y.-M.; Elliott, J. Chronic Kidney Disease in Cats Attending Primary Care Practice in the UK: A VetCompassTM Study. Vet. Rec. 2019, 184, 526. [Google Scholar] [CrossRef] [Green Version]
- Marino, C.L.; Lascelles, B.D.X.; Vaden, S.L.; Gruen, M.E.; Marks, S.L. Prevalence and Classification of Chronic Kidney Disease in Cats Randomly Selected from Four Age Groups and in Cats Recruited for Degenerative Joint Disease Studies. J. Feline Med. Surg. 2014, 16, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Loboda, A.; Sobczak, M.; Jozkowicz, A.; Dulak, J. TGF-Β1/Smads and MiR-21 in Renal Fibrosis and Inflammation. Mediators Inflamm. 2016, 2016, 8319283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.A.; Elliott, J.; Schmiedt, C.W.; Brown, S.A. Chronic Kidney Disease in Aged Cats: Clinical Features, Morphology, and Proposed Pathogeneses. Vet. Pathol. 2016, 53, 309–326. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Syme, H.M.; Brown, C.A.; Elliott, J. Histomorphometry of Feline Chronic Kidney Disease and Correlation with Markers of Renal Dysfunction. Vet. Pathol. 2013, 50, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.-M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The Master Regulator of Fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Mitani, S.; Yabuki, A.; Sawa, M.; Chang, H.-S.; Yamato, O. Intrarenal Distributions and Changes of Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 in Feline and Canine Chronic Kidney Disease. J. Vet. Med. Sci. 2014, 76, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Nangaku, M. Mechanisms of Tubulointerstitial Injury in the Kidney: Final Common Pathways to End-Stage Renal Failure. Intern. Med. 2004, 43, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Yabuki, A.; Mitani, S.; Fujiki, M.; Misumi, K.; Endo, Y.; Miyoshi, N.; Yamato, O. Comparative Study of Chronic Kidney Disease in Dogs and Cats: Induction of Myofibroblasts. Res. Vet. Sci. 2010, 88, 294–299. [Google Scholar] [CrossRef]
- Kajdaniuk, D.; Marek, B.; Borgiel-Marek, H.; Kos-Kudła, B. Transforming Growth Factor Β1 (TGFβ1) in Physiology and Pathology. Endokrynol. Pol. 2013, 64, 384–396. [Google Scholar] [CrossRef] [Green Version]
- Arata, S.; Ohmi, A.; Mizukoshi, F.; Baba, K.; Ohno, K.; Setoguchi, A.; Tsujimoto, H. Urinary Transforming Growth Factor-Beta1 in Feline Chronic Renal Failure. J. Vet. Med. Sci. 2005, 67, 1253–1255. [Google Scholar] [CrossRef] [Green Version]
- Habenicht, L.M.; Webb, T.L.; Clauss, L.A.; Dow, S.W.; Quimby, J.M. Urinary Cytokine Levels in Apparently Healthy Cats and Cats with Chronic Kidney Disease. J. Feline Med. Surg. 2013, 15, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Lawson, J.S.; Syme, H.M.; Wheeler-Jones, C.P.D.; Elliott, J. Urinary Active Transforming Growth Factor β in Feline Chronic Kidney Disease. Vet. J. 2016, 214, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, B.N.; Coleman, A.E.; Tarigo, J.L.; Berghaus, R.D.; Brown, C.A.; Rissi, D.R.; Stanton, J.B.; Brown, S.A.; Schmiedt, C.W. Evaluation of Profibrotic Gene Transcription in Renal Tissues from Cats with Naturally Occurring Chronic Kidney Disease. J Vet. Intern. Med. 2020, 34, 1476–1487. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the Freely Available Easy-to-Use Software “EZR” for Medical Statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Muro, P.; Faedda, R.; Fresu, P.; Masala, A.; Cigni, A.; Concas, G.; Mela, M.G.; Satta, A.; Carcassi, A.; Sanna, G.M.; et al. Urinary Transforming Growth Factor-Beta 1 in Various Types of Nephropathy. Pharmacol. Res. 2004, 49, 293–298. [Google Scholar] [CrossRef]
- Grenda, R.; Wühl, E.; Litwin, M.; Janas, R.; Sladowska, J.; Arbeiter, K.; Berg, U.; Caldas-Afonso, A.; Fischbach, M.; Mehls, O.; et al. Urinary Excretion of Endothelin-1 (ET-1), Transforming Growth Factor- Beta1 (TGF- Beta1) and Vascular Endothelial Growth Factor (VEGF165) in Paediatric Chronic Kidney Diseases: Results of the ESCAPE Trial. Nephrol. Dial. Transplant. 2007, 22, 3487–3494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, J.S.; Syme, H.M.; Wheeler-Jones, C.P.D.; Elliott, J. Investigation of the Transforming Growth Factor-Beta 1 Signalling Pathway as a Possible Link between Hyperphosphataemia and Renal Fibrosis in Feline Chronic Kidney Disease. Vet. J. 2021, 267, 105582. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.S.; Liu, H.-H.; Syme, H.M.; Purcell, R.; Wheeler-Jones, C.P.D.; Elliott, J. The Cat as a Naturally Occurring Model of Renal Interstitial Fibrosis: Characterisation of Primary Feline Proximal Tubular Epithelial Cells and Comparative pro-Fibrotic Effects of TGF-Β1. PLoS ONE 2018, 13, e0202577. [Google Scholar] [CrossRef]
- Hostetter, T.H. Hyperfiltration and Glomerulosclerosis. Semin. Nephrol. 2003, 23, 194–199. [Google Scholar] [CrossRef]
- Liu, H.-C.; Liao, T.-N.; Lee, T.-C.; Chuang, L.-Y.; Guh, J.-Y.; Liu, S.-F.; Hu, M.-S.; Yang, Y.-L.; Lin, S.-H.; Hung, M.-Y.; et al. Albumin Induces Cellular Fibrosis by Upregulating Transforming Growth Factor-Beta Ligand and Its Receptors in Renal Distal Tubule Cells. J. Cell Biochem. 2006, 97, 956–968. [Google Scholar] [CrossRef] [PubMed]
- Shankland, S.J. The Podocyte’s Response to Injury: Role in Proteinuria and Glomerulosclerosis. Kidney Int. 2006, 69, 2131–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.-C.; Wang, G.-H.; Lu, J.; Chen, P.-P.; Zhang, Y.; Hu, Z.-B.; Ma, K.-L. Role of Podocyte Injury in Glomerulosclerosis. Adv. Exp. Med. Biol. 2019, 1165, 195–232. [Google Scholar] [CrossRef] [PubMed]
- Lees, G.E.; Brown, S.A.; Elliott, J.; Grauer, G.E.; Vaden, S.L. Assessment and Management of Proteinuria in Dogs and Cats: 2004 ACVIM Forum Consensus Statement (Small Animal). J. Vet. Intern. Med. 2005, 19, 377–385. [Google Scholar] [CrossRef]
- King, J.N.; Tasker, S.; Gunn-Moore, D.A.; Strehlau, G. Prognostic Factors in Cats with Chronic Kidney Disease. J. Vet. Intern. Med. 2007, 21, 906–916. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Syme, H.M.; Elliott, J. Clinicopathological Variables Predicting Progression of Azotemia in Cats with Chronic Kidney Disease. J. Vet. Intern. Med. 2012, 26, 275–281. [Google Scholar] [CrossRef]
- Van Beusekom, C.D.; Zimmering, T.M. Profibrotic Effects of Angiotensin II and Transforming Growth Factor Beta on Feline Kidney Epithelial Cells. J. Feline Med. Surg. 2019, 21, 780–787. [Google Scholar] [CrossRef]
- Gewin, L.S. Renal Fibrosis: Primacy of the Proximal Tubule. Matrix Biol. 2018, 68–69, 248–262. [Google Scholar] [CrossRef]
- Ahamed, J.; Laurence, J. Role of Platelet-Derived Transforming Growth Factor-Β1 and Reactive Oxygen Species in Radiation-Induced Organ Fibrosis. Antioxid. Redox Signal. 2017, 27, 977–988. [Google Scholar] [CrossRef]
- Ghafoory, S.; Varshney, R.; Robison, T.; Kouzbari, K.; Woolington, S.; Murphy, B.; Xia, L.; Ahamed, J. Platelet TGF-Β1 Deficiency Decreases Liver Fibrosis in a Mouse Model of Liver Injury. Blood Adv. 2018, 2, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Varshney, R.; Murphy, B.; Woolington, S.; Ghafoory, S.; Chen, S.; Robison, T.; Ahamed, J. Inactivation of Platelet-Derived TGF-Β1 Attenuates Aortic Stenosis Progression in a Robust Murine Model. Blood Adv. 2019, 3, 777–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, A.; Wang, W.; Qu, J.; Croft, L.; Degen, J.L.; Coller, B.S.; Ahamed, J. Platelet TGF-Β1 Contributions to Plasma TGF-Β1, Cardiac Fibrosis, and Systolic Dysfunction in a Mouse Model of Pressure Overload. Blood 2012, 119, 1064–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
TGF-β1-Positive Sites | Urea | Creatinine | GS | TIF |
---|---|---|---|---|
Bowman’s capsules | NS | NS | NS | NS |
Glomerular mesangial cells | NS | NS | NS | NS |
Proximal tubules | NS | −0.576 * | NS | NS |
Luminal space in DN | NS | 0.590 * | 0.652 * | NS |
Apical surface in DN | NS | NS | NS | NS |
Platelets in blood vessels | −0.609 * | −0.813 ** | NS | NS |
Vascular walls | NS | NS | NS | NS |
Infiltrated cells | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uehara, Y.; Furusawa, Y.; Islam, M.S.; Yamato, O.; Hatai, H.; Ichii, O.; Yabuki, A. Immunohistochemical Expression of TGF-β1 in Kidneys of Cats with Chronic Kidney Disease. Vet. Sci. 2022, 9, 114. https://doi.org/10.3390/vetsci9030114
Uehara Y, Furusawa Y, Islam MS, Yamato O, Hatai H, Ichii O, Yabuki A. Immunohistochemical Expression of TGF-β1 in Kidneys of Cats with Chronic Kidney Disease. Veterinary Sciences. 2022; 9(3):114. https://doi.org/10.3390/vetsci9030114
Chicago/Turabian StyleUehara, Yuki, Yu Furusawa, Md Shafiqul Islam, Osamu Yamato, Hitoshi Hatai, Osamu Ichii, and Akira Yabuki. 2022. "Immunohistochemical Expression of TGF-β1 in Kidneys of Cats with Chronic Kidney Disease" Veterinary Sciences 9, no. 3: 114. https://doi.org/10.3390/vetsci9030114