Faecal Proteomics and Functional Analysis of Equine Melanocytic Neoplasm in Grey Horses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Information
2.2. Animals and Faecal Sample Collection
2.3. Faecal Sample Preparation
2.4. Liquid Chromatography-Tandem Mass Spectrometry (LC/MS-MS)
2.5. Quantification and Identification of Proteins
2.6. Functional Analysis
3. Results
3.1. The Functional Annotation Analysis Results
3.2. Analysis of Differentially Expressed Proteins and Functional Annotation of Grey Horses across EMN Stages
4. Discussion
4.1. Identification of Differently Expressed Proteins in Mild-Stage EMN
4.2. Proteins Involved in Lipid Metabolism and Linked to EMN
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seltenhammer, M.; Simhofer, H.; Scherzer, S.; Zechner, P.; Curik, I.; Solkner, J.; Brandt, S.; Jansen, B.; Pehamberger, H.; Eisenmenger, E. Equine melanoma in a population of 296 grey Lipizzaner horses. Equine Vet. J. 2003, 35, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Rieder, S.; Stricker, C.; Joerg, H.; Dummer, R.; Stranzinger, G. A comparative genetic approach for the investigation of ageing grey horse melanoma. J. Anim. Breed. Genet. 2000, 117, 73–82. [Google Scholar] [CrossRef]
- Fleury, C.; Be’rard, F.; Balme, B.; Thomas, L. The Study of Cutaneous Melanomas in Camargue-Type Gray-Skinned Horses (1) Clinical-Pathological Characterization. Pigment Cell Res. 2000, 13, 39–46. [Google Scholar] [CrossRef]
- MacGillivray, K.; Sweeney, R.; Piero, F. Metastatic Melanoma in Horses. J. Vet. Intern. Med. 2002, 16, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Gorham, S.; Robl, M. Melanoma in the grey horse: The darker side of equine ageing. Vet. Med. 1986, 81, 446–448. [Google Scholar]
- Pielberg, G.; Golovko, A.; Sundström, E.; Curik, I.; Lennartsson, J.; Seltenhammer, M.; Druml, T.; Binns, M.; Fitzsimmons, C.; Lindgren, G.; et al. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat. Genet. 2008, 40, 1004–1008. [Google Scholar] [CrossRef]
- Curik, I.; Druml, T.; Seltenhammer, M.; Sundstrom, E.; Pielberg, G.; Leif Andersson, L.; Solkner, J. Complex inheritance of melanoma and pigmentation of coat and skin in grey horses. PLoS Genet. 2013, 9, e1003248. [Google Scholar] [CrossRef] [Green Version]
- Hida, T.; Wakamatsu, K.; Sviderskaya, E.; Donkin, A.; Montoliu, L.; Lamoreux, M.; Yu, B.; Millhauser, G.; Ito, S.; Barsh, G.; et al. Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: A cAMP-independent pathway. Pigment Cell Melanoma Res. 2009, 22, 623–634. [Google Scholar] [CrossRef] [Green Version]
- Metcalfe, L.; Brien, P.; Papakonstantinou, S.; Cahalan, S.; McAllister, P.; Duggan, V. Malignant melanoma in a grey horse: Case presentation and review of equine melanoma treatment options. Ir. Vet. J. 2013, 22, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Azimi, A.; Pernemalm, M.; Frostvik Stolt, M.; Hansson, J.; Lehtiö, J.; Egyházi Brage, S.; Hertzman Johansson, S. Proteomics analysis of melanoma metastases: Association between S100A13 expression and chemotherapy resistance. Br. J. Cancer 2014, 110, 2489–2495. [Google Scholar] [CrossRef] [Green Version]
- Ploypetch, S.; Roytrakul, S.; Jaresitthikunchai, J.; Phaonakrop, N.; Krobthong, S.; Suriyaphol, G. Salivary proteomics of canine oral tumors using MALDI-TOF mass spectrometry and LC-tandem mass spectrometry. PLoS ONE 2019, 14, e0219390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploypetch, S.; Roytrakul, S.; Phaonakrop, N.; Kittisenachai, S.; Leetanasaksakul, K.; Pisamai, S.; Kalpravidh, C.; Rungsipipat, A.; Suriyaphol, G. In-gel digestion coupled with mass spectrometry (GeLC-MS/MS)-based salivary proteomic profiling of canine oral tumors. BMC Vet. Res. 2020, 16, 335. [Google Scholar] [CrossRef] [PubMed]
- Ploypetch, S.; Roytrakul, S.; Jaresitthikunchai, J.; Phaonakrop, N.; Teewasutrakul, P.; Rungsipipat, A.; Suriyaphol, G. Salivary proteomics in monitoring the therapeutic response of canine oral melanoma. PLoS ONE 2021, 16, e0256167. [Google Scholar] [CrossRef] [PubMed]
- Tesena, P.; Kingkaw, A.; Vongsangnak, W.; Pitikarn, S.; Phaonakrop, N.; Roytrakul, S.; Kovitvadhi, A. Preliminary study: Proteomic profiling uncovers potential proteins for biomonitoring equine melanocytic neoplasm. Animals 2021, 11, 1913. [Google Scholar] [CrossRef] [PubMed]
- Desser, H.; Niebauer, G.; Gebhart, W. Polyamin- und Hisatmingehalt im Blut von pigmentierten, depigmentierten und melanomtragenden Lipizzanerpferden. Zbl. Vet. Med. Reihe A 1980, 27, 45–53. [Google Scholar] [CrossRef]
- Koss, H.; Bunney, T.; Behjati, S. Dysfunction of phospholipase Cγ in immune disorders and cancer. Trends Biochem. Sci. 2014, 39, 603–611. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team. A Language and Environment for Statistical Computing; RStudio 1.3.1056; R Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
- Fox, J.; Bouchet-Valat, M. Rcmdr: R Commander. R Package Version 2.6-2. 2020. Available online: http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr (accessed on 20 September 2021).
- Lowry, O.; Roserough, N.; Farr, A.; Randall, R. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Johansson, C.; Samskog, J.; Sundström, L.; Wadensten, H.; Björkesten, L.; Flensburg, J. Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics 2006, 6, 4475–4485. [Google Scholar] [CrossRef]
- Thorsell, A.; Portelius, E.; Blennow, K.; Westman-Brinkmalm, A. Evaluation of sample fractionation using micro-scale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment. Rapid Commun. Mass Spectrom. 2007, 21, 771–778. [Google Scholar] [CrossRef]
- Howe, E.; Sinha, R.; Schlauch, D.; Quackenbush, J. RNA-Seq analysis in MeV. Bioinformatics 2011, 27, 3209–3210. [Google Scholar] [CrossRef] [Green Version]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.; Shaw, C.; Shaw, E.; Buechner-Maxwell, V.; Scarratt, W.; Crisman, M.; Furr, M.; Roberson, J. Melanoma in horses: Current perspectives. Equin. Vet Educ. 2013, 25, 144–151. [Google Scholar] [CrossRef]
- Seltenhammer, M.; Heere-Ress, E.; Brandt, S.; Druml, T.; Jansen, B.; Pehamberger, H.; Niebauer, G. Comparative Histopathology of Grey-Horse-Melanoma and Human Malignant Melanoma. Pigment Cell Res. 2004, 17, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Goldschmidt, M.; McManus, P. A Comparative Review of Melanocytic Neoplasms. Vet. Pathol. 2002, 39, 651–678. [Google Scholar] [CrossRef] [PubMed]
- Sever, A.; Abd Elkadir, A.; Matana, Y.; Gopas, J.; Zeiri, Y. Biomarkers for detection and monitoring of B16 melanoma in mouse urine and feces. Hindawi 2015, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Lincoln, H.; Kim, C.; Frey, J.; Goodman, C.; Zhong, X.; Hornberger, T. The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. J. Biol. Chem. 2014, 289, 1551–1563. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Lv, H.; Xia, G.; Wang, M. Does diacylglycerol serve as a signaling molecule in plants? Plant Signal. Behav. 2012, 7, 472–475. [Google Scholar] [CrossRef]
- Kadamur, G.; Ross, E. Mammalian phospholipase C. Annu. Rev. Physiol. 2013, 75, 127–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichmann, T.; Lass, A. DAG tales: The multiple faces of diacylglycerol—stereochemistry, metabolism, and signaling. Cell Mol. Life Sci. 2015, 72, 3931–3952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayuso, P.; Martín, M.; Pérez, J.; ÁvilaFlores, A.; Mérida, I. Diacylglycerol kinase α promotes 3D cancer cell growth and limits drug sensitivity through functional interaction with Src. Oncotarget 2014, 5, 9710–9726. [Google Scholar] [CrossRef] [Green Version]
- Takao, S.; Akiyama, R.; Sakane, F. Combined inhibition/silencing of diacylglycerol kinase α and ζ simultaneously and synergistically enhances interleukin-2 production in T cells and induces cell death of melanoma cells. J. Cell. Biochem. 2021, 122, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Noessner, E. DGK-α: A checkpoint in cancer-mediated immuno-inhibition and target for immunotherapy. Front. Cell Dev. Biol. 2017, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Gross, S.; Balklava, Z.; Griffin, M. Importance of tissue transglutaminase in repair of extracellular matrices and cell death of dermal fibroblasts after exposure to a solarium ultraviolet A source. J. Investig. Derm. 2003, 121, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Agnihotri, N.; Kumar, S.; Mehta, K. Tissue transglutaminase as a central mediator in inflammation-induced progression of breast cancer. Breast Cancer Res. 2013, 15, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Begum, S.; Hearn, J.; Hynes, R. GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc. Natl. Acad. Sci. USA 2006, 103, 9023–9028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Xu, A.; Liu, W. Transglutaminase 2 in cancer. Am. J. Cancer Res. 2015, 5, 2756–2776. [Google Scholar]
- Wu, L.; Sun, T.; Kobayashi, K.; Gao, P.; Griffin, J. Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol. Cell Biol. 2002, 22, 7688–7700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, H.; Okumura, Y.; Nakayama, T.; Miyabe, S.; Fujiyoshi, Y.; Hattori, H. Clinicopathological significance of MAML2 gene split in mucoepidermoid carcinoma. Cancer Sci. 2013, 104, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, M.; Osawa, M.; Mak, S.; Ohtsuka, T.; Yamamoto, N.; Han, H. Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J. Cell Biol. 2006, 173, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, H.; Liu, Z.; Zhu, D.; Amos, C.; Fang, S.; Lee, J.; Wei, Q. Functional variants in notch pathway genes NCOR2, NCSTN, and MAML2 predict survival of patients with cutaneous melanoma. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1101–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; Song, Q.; Li, C.; Chen, J.; Tang, H.; Peng, Z.; Wang, X. Structural maintenance of chromosomes 4 is a predictor of survival and a novel therapeutic target in colorectal cancer. Asian Pac. J. Cancer Prev. 2014, 15, 9459–9465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidkhori, G.; Narimani, Z.; Hosseini, A. Reconstruction of an integrated genome-scale coexpression network reveals key modules involved in lung adenocarcinoma. PLoS ONE 2013, 8, e67552. [Google Scholar] [CrossRef]
- Kulawiec, M.; Safina, A.; Desouki, M. Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol. 2008, 7, 1732–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Yuan, T.; Liu, M. Overexpression of the structural maintenance of chromosome 4 protein is associated with tumor de-differentiation, advanced stage and vascular invasion of primary liver cancer. Oncol. Rep. 2012, 28, 1263–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Kuang, M.; Li, M. SMC4, which is essentially involved in lung development, is associated with lung adenocarcinoma progression. Sci. Rep. 2016, 6, 34508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirtenberger, M.; Frank, B.; Hemminki, K. Interaction of Werner and Bloom syndrome genes with p53 in familial breast cancer. Carcinogenesis 2006, 27, 1655–1660. [Google Scholar] [CrossRef]
- Peng, L.; Guo, J.; Long, L.; Pan, F.; Zhao, J.; Xu, L.; Li, E. Novel clinical six-flavoprotein-gene signature predicts prognosis in esophageal squamous cell carcinoma. BioMed Res. Int. 2019, 2019, 3869825. [Google Scholar] [CrossRef]
- Dijkman, W.; Gonzalo, G.; Mattevi, A.; Fraaije, M. Flavoprotein oxidases: Classification and applications. Appl. Microbiol. Biotechnol. 2013, 97, 5177–5188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, M.; Ferreira, P.; Martinez-Julvez, M. Editorial (hot topic: Flavoproteins and flavoenzymes with biomedical and therapeutic impact). Curr. Pharm. Des. 2013, 19, 497–2498. [Google Scholar] [CrossRef]
- Maurus, K.; Hufnagel, A.; Geiger, F.; Graf, S.; Berking, C.; Heinemann, A.; Paschen, A.; Kneitz, S.; Stigloher, C.; Geissinger, E.; et al. The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation. Oncogene 2017, 36, 5110–5121. [Google Scholar] [CrossRef]
- Teutschbein, J.; Haydn, J.; Samans, B.; Krause, M.; Eilers, M.; Schartl, M.; Meierjohann, S. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins. BMC Cancer 2010, 10, 386. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Bothma, H.; Veale, R.; Willem, P. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes. World J. Gastroenterol. 2011, 17, 2909–2923. [Google Scholar] [CrossRef] [PubMed]
- Bareiss, S.; Kim, K.; Lu, Q. Delta-catenin/NPRAP: A new member of the glycogen synthase kinase-3beta signaling complex that promotes beta-catenin turnover in neurons. J. Neurosci. Res. 2010, 88, 2350–2363. [Google Scholar] [PubMed] [Green Version]
- Lu, Q.; Aguilar, B.; Li, M.; Jiang, Y.; Chen, Y. Genetic alterations of δ-catenin/NPRAP/neurojungin (CTNND2): Functional implications in complex human diseases. Hum. Genet. 2016, 135, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- van Oers, J.; Roa, S.; Werling, U.; Liu, Y.; Genschel, J.; Hou, H.; Sellers, R.; Modrich, P.; Scharff, M.; Edelmann, W. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance. Proc. Natl. Acad. Sci. USA 2010, 107, 13384–13389. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, Z.; Connelly, C.; Fabrizio, D.; Gay, L.; Ali, S.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 1–14. [Google Scholar] [CrossRef]
- Kim, H.; Choe, J.; Seo, Y. The sen1(+) gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 1999, 38, 14697–14710. [Google Scholar] [CrossRef]
- Richard, P.; Feng, S.; Tsai, Y.; Li, W.; Rinchetti, P.; Muhith, U.; Irizarry-Cole, J.; Stolz, K.; Sanz, L.; Hartono, S.; et al. SETX (senataxin), the helicase mutated in AOA2 and ALS4, functions in autophagy regulation. Autophagy 2020, 17, 1889–1906. [Google Scholar] [CrossRef]
- Moreira, M.; Klur, S.; Watanabe, M. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat. Genet. 2004, 36, 225–227. [Google Scholar] [CrossRef]
- Chen, Y.; Bennett, C.; Huynh, H. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 2004, 74, 1128–1135. [Google Scholar] [CrossRef] [Green Version]
- Chook, Y.; Suel, K. Nuclear import by karyopherin-betas: Recognition and inhibition. Biochim. Biophys. Acta 2011, 1813, 1593–1606. [Google Scholar] [CrossRef] [Green Version]
- Cagatay, T.; Chook, Y. Karyopherins in cancer. Curr. Opin. Cell Biol. 2018, 52, 30–42. [Google Scholar] [CrossRef]
- Stelma, T.; Chi, A.; van der Watt, P.; Verrico, A.; Lavia, P.; Leaner, V. Targeting nuclear transporters in cancer:diagnostic, prognostic and therapeutic potential. Int. Union Biochem. Mol. Biol. 2016, 68, 268–280. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.; Gopal, Y.; McQuade, J.; Peng, W.; DeBerardinis, R.; Davies, M. Metabolic trategies of melanoma cells: Mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res. 2018, 31, 11–30. [Google Scholar] [CrossRef]
- Koundouros, N.; Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 2020, 122, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Carracedo, A.; Cantley, L.; Pandolfi, P. Cancer metabolism: Fatty acid oxidation in the limelight. Nat. Rev. Cancer 2013, 13, 227–232. [Google Scholar] [CrossRef]
- Dumas, S.; García-Caballero, M.; Carmeliet, P. Metabolic signatures of distinct endothelial phenotypes. Trends Endocrinol. Metab. 2020, 31, 580–595. [Google Scholar] [CrossRef]
- Messias, M.; Mecatti, G.; Priolli, D. Plasmalogen lipids: Functional mechanism and their involvement in gastrointestinal cancer. Lipids Health Dis. 2018, 17, 41. [Google Scholar] [CrossRef] [Green Version]
- Athenstaedt, K.; Daum, G. Phosphatidic acid, a key intermediate in lipid metabolism. Eur. J. Biochem. 1999, 266, 1–16. [Google Scholar] [CrossRef]
- Wood, W.; Li, L.; Muller, W.; Eckert, G. Cholesterol as a causative factor in Alzheimer disease: A debatable hypothesis. J. Neurochem. 2014, 129, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Heilmann, S.; Kansler, E.; Zhang, Y.; Zimmer, M.; Ratnakumar, K.; Bowman, R.; Simon-Vermot, T.; Fennell, M.; Garippa, R.; et al. Microenvironment-derived factors driving metastatic plasticity in melanoma. Nat. Commun. 2017, 8, 14343. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Martino, J.; Bowman, R.; Campbell, N.; Baksh, S.; Simon-Vermot, T. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov. 2018, 8, 1006–1025. [Google Scholar] [CrossRef] [Green Version]
- Pellerin, L.; Carrie, L.; Dufau, C.; Nieto, L.; Ségui, B.; Levade, T. Lipid metabolic reprogramming: Role in melanoma progression and therapeutic perspectives. Cancers 2020, 12, 3147. [Google Scholar] [CrossRef]
- Mckenzie, H. Equine hyperlipidemias. Vet. Clin. N. Am. Equine Pract. 2011, 27, 59–72. [Google Scholar] [CrossRef]
- Alves-Bezerra, M.; Cohen, D. Triglyceride metabolism in the liver. Compr. Physiol. 2019, 8, 1–8. [Google Scholar] [CrossRef]
- Breidenbach, A.; Fuhrmann, H.; Deegen, E.; Lindholm, A.; Sallmann, H. Studies on equine lipid metabolism. 2. lipolytic activities of plasma and tissue lipases in large horses and ponies. Zent. Vet. A 1999, 46, 39–48. [Google Scholar] [CrossRef]
ID | Age (Years) | Sex | Breed | The Location of Tumor | EMN Categories * |
---|---|---|---|---|---|
Normal 1 | 12 | Mare | Lusitano | - | 0 |
Normal 2 | 13 | Mare | Lusitano | - | 0 |
Normal 3 | 13 | Mare | Lusitano | - | 0 |
Normal 4 | 15 | Mare | Pony | - | 0 |
Normal 5 | 15 | Mare | Lusitano | - | 0 |
Normal 6 | 15 | Mare | Thoroughbred | - | 0 |
Normal 7 | 18 | Mare | Lusitano | - | 0 |
Normal 8 | 19 | Mare | Lusitano | - | 0 |
Normal 9 | 19 | Mare | Lusitano | - | 0 |
Normal10 | 26 | Gelding | Pony | - | 0 |
Mild 1 | 15 | Gelding | Lusitano | Underside of the tail | 1 |
Mild 2 | 18 | Mare | Lusitano | Underside of the tail | 1 |
Mild 3 | 18 | Mare | Lusitano | Underside of the tail | 1 |
Mild 4 | 22 | Mare | Pony | Underside of the tail | 1 |
Mild 5 | 24 | Mare | Lusitano | Underside of the tail | 1 |
Mild 6 | 31 | Mare | Pony | Underside of the tail | 1 |
Severe 1 | 10 | Gelding | Thoroughbred | Underside of the tail, peri-anal | 2 |
Severe 2 | 17 | Gelding | Lusitano | Underside of the tail, peri-anal | 2 |
Severe 3 | 26 | Stallion | Pony | Underside of the tail, peri-anal | 2 |
Severe 4 | 29 | Stallion | Lusitano | Underside of the tail, peri-anal | 2 |
Severe 5 | 22 | Mare | Pony | Underside of the tail, peri-anal, vulva | 3 |
Severe 6 | 23 | Mare | Lusitano | Underside of the tail, peri-anal, vulva | 4 |
Severe 7 | 23 | Mare | Thoroughbred | Underside of the tail, peri-anal, vulva | 2 |
Severe 8 | 26 | Mare | Pony | Underside of the tail, peri-anal, vulva | 2 |
Severe 9 | 26 | Mare | Lusitano | Underside of the tail, peri-anal, vulva | 3 |
Parameters | Groups | SEM | p-Value | Reference Range | |||
---|---|---|---|---|---|---|---|
Normal | Mild EMN | Severe EMN | |||||
Haematology | |||||||
WBC (cell/mm3) | 10.7 | 9.5 | 11.5 | 0.469 | 0.30 | 5.6–12.10 | |
Neutrophils | 5.43 | 5.34 | 6.82 | 0.311 | 0.08 | 5.2–7.0 | |
Band neutrophils (Cell/mm3) | 0.00 | 0.00 | 0.00 | – | – | 0–1 | |
Lymphocyte | 4.85 | 3.83 | 4.14 | 0.381 | 0.56 | 2.1–4.2 | |
Monocyte | 0.36 | 0.25 | 0.34 | 0.020 | 0.08 | 0–6 | |
Eosinophils | 0.09 | 0.10 | 0.15 | 0.031 | 0.70 | 0–7 | |
Basophils | 0.00 | 0.00 | 0.00 | – | – | 0–0.2 | |
Platelets | 249 b | 196 a | 230 a,b | 8.228 | 0.04 | 117–256 | |
RBC (cell/mm3) | 7.55 | 7.68 | 7.47 | 0.176 | 0.90 | 6.0–10.4 | |
Hematocrit (%) | 33.7 | 34.2 | 34.4 | 0.800 | 0.94 | 27–43 | |
Hemoglobin | 11.1 | 11.4 | 11.3 | 0.255 | 0.91 | 10.1–16.1 | |
MCV | 44.8 | 44.9 | 46.1 | 0.480 | 0.48 | 37–49 | |
MCH | 14.8 | 14.9 | 15.1 | 0.129 | 0.54 | 13.7–18.2 | |
MCHC | 33.1 | 33.5 | 32.9 | 0.211 | 0.62 | 35.3–39.3 | |
RDW–CV | 26.6 | 26.2 | 26.6 | 0.507 | 0.95 | – | |
Fibrinogen | 420 | 633 | 567 | 63.32 | 0.39 | 100–400 | |
Blood chemistry | |||||||
Creatinine | 1.82 | 1.67 | 1.87 | 0.044 | 0.22 | 0.4–2.2 | |
Total protein | 7.05 | 6.65 | 6.96 | 0.081 | 0.15 | 5.6–7.6 | |
Albumin | 3.34 | 3.30 | 3.32 | 0.027 | 0.85 | 2.6–4.1 | |
AST (SGOT) | 280 | 289 | 284 | 8.533 | 0.91 | 160–412 |
Main–Functional KEGG Categories | Groups | ||
---|---|---|---|
Normal Grey Horse | Mild EMN | Severe EMN | |
Metabolism | 573 | 572 | 573 |
Human diseases | 189 | 189 | 189 |
Cellular processes | 255 | 255 | 257 |
Organismal systems | 81 | 82 | 82 |
Genetic information processing | 450 | 450 | 454 |
Environmental information processing | 602 | 612 | 614 |
Sub–Functional KEGG Categories | Groups | ||
---|---|---|---|
Normal Grey Horse | Mild EMN | Severe EMN | |
Lipid metabolism | 107 | 106 | 107 |
Energy metabolism | 38 | 38 | 38 |
Nucleotide metabolism | 52 | 52 | 52 |
Amino acid metabolism | 104 | 105 | 105 |
Carbohydrate metabolism | 139 | 138 | 139 |
Metabolism of other amino acids | 9 | 9 | 9 |
Glycan biosynthesis and metabolism | 66 | 66 | 66 |
Metabolism of cofactors and vitamins | 48 | 48 | 47 |
Metabolism of terpenoids and polyketides | 4 | 4 | 4 |
Xenobiotics biodegradation and metabolism | 6 | 6 | 6 |
Protein ID | Protein Function | PELs a | ||
---|---|---|---|---|
N | M | S | ||
This study; significantly expressed faecal proteins | ||||
A0A5F9CKF0 | Diacylglycerol kinase (DGKB) | 0 (6/10) | 14.9254 | 12.529 |
H0VXN6 | TGc domain-containing protein (Tgm2) | 0 (9/10) | 15.3301 | 13.542 |
A0A5F9C4M4 | IG domain-containing protein (PILRA) | 0 (6/10) | 15.2587 | 14.44 |
G1U159 | Beta_elim_lyase domain-containing protein | 0 (7/10) | 16.1641 | 15.13 |
A0A5F9CRH3 | Structural maintenance of chromosomes 4 (SMC4) | 0 (6/10) | 17.5259 | 15.934 |
H0VCJ5 | Mastermind like transcriptional coactivator 2 (MAML2) | 0 (7/10) | 8.15043 | 17.374 |
A0A286Y4H6 | Nuclear receptor subfamily 3 group C member 2 (NR3C2) | 0 (9/10) | 19.3616 | 0 (5/9) |
G1PHB6 | FOS like 1, AP-1 transcription factor subunit (FOSL1) | 0 (10/10) | 8.73988 | 0 (5/9) |
H0VZS6 | Catenin delta 2 (CTNND2) | 0 (10/10) | 15.8651 | 0 (5/9) |
G1PQ83 | Karyopherin subunit beta 1 (KPNB1) | 0 (10/10) | 6.99422 | 0 (5/9) |
A0A5F9C6H5 | Flavoprotein domain-containing protein (PPCDC) | 0 (7/10) | 14.9349 | 0 (6/9) |
A0A286XHI2 | COesterase domain-containing protein | 0 (9/10) | 14.5562 | 0 (7/9) |
H0UWB8 | Senataxin (SETX) | 0 (9/10) | 14.9092 | 0 (8/9) |
H0UU64 | PMS1 homolog 2, mismatch repair system component (PMS2) | 0 (8/10) | 16.1875 | 0 (9/9) |
Previous study; significantly expressed serum proteins | ||||
Q9BDT7 | BRCA1 (Fragment) | 16.73 | 17.77 | 17.90 |
G1U3S4 | Phosphorylase b kinase regulatory subunit (PHKA1) | 16.30 | 18.29 | 18.33 |
G1SEQ3 | Tyrosine-protein kinase receptor (ALK) | 0 (7/10) | 20.00 | 19.52 |
H0VGZ3 | Rho-associated protein kinase (ROCK1) | 0 (6/10) | 18.55 | 17.69 |
PLPP6 | phospholipid phosphatase 6 | 0 (10/10) | 13.57 | 0 (7/10) |
G1PKF6 | sodium/potassium-transporting ATPase subunit alpha | 0 (10/10) | 14.68 | 14.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesena, P.; Kingkaw, A.; Phaonakrop, N.; Roytrakul, S.; Limudomporn, P.; Vongsangnak, W.; Kovitvadhi, A. Faecal Proteomics and Functional Analysis of Equine Melanocytic Neoplasm in Grey Horses. Vet. Sci. 2022, 9, 94. https://doi.org/10.3390/vetsci9020094
Tesena P, Kingkaw A, Phaonakrop N, Roytrakul S, Limudomporn P, Vongsangnak W, Kovitvadhi A. Faecal Proteomics and Functional Analysis of Equine Melanocytic Neoplasm in Grey Horses. Veterinary Sciences. 2022; 9(2):94. https://doi.org/10.3390/vetsci9020094
Chicago/Turabian StyleTesena, Parichart, Amornthep Kingkaw, Narumon Phaonakrop, Sittiruk Roytrakul, Paviga Limudomporn, Wanwipa Vongsangnak, and Attawit Kovitvadhi. 2022. "Faecal Proteomics and Functional Analysis of Equine Melanocytic Neoplasm in Grey Horses" Veterinary Sciences 9, no. 2: 94. https://doi.org/10.3390/vetsci9020094
APA StyleTesena, P., Kingkaw, A., Phaonakrop, N., Roytrakul, S., Limudomporn, P., Vongsangnak, W., & Kovitvadhi, A. (2022). Faecal Proteomics and Functional Analysis of Equine Melanocytic Neoplasm in Grey Horses. Veterinary Sciences, 9(2), 94. https://doi.org/10.3390/vetsci9020094