Acupuncture Improves Heart Rate Variability, Oxidative Stress Level, Exercise Tolerance, and Quality of Life in Tracheal Collapse Dogs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and the Experiment Protocol
2.2. Physical Examination
2.3. Radiographic Study
2.4. HRV Determination
2.5. Blood Collection
2.6. Oxidative Stress Determination
2.7. Acupuncture Procedure
2.8. Exercise Test
2.9. Quality of Life Determination Questionaire
2.10. Statistical Analysis
3. Results
3.1. Clinical Baseline Characteristics of Dogs
3.2. Effect of Acupuncture Treatment in the Function of the Autonomic Nervous System in Tracheal Collapse Dogs
3.3. Effect of Acupuncture Treatment on the Oxidative Stress (Serum MDA Level) in Tracheal Collapse Dogs
3.4. Acupuncture Improved Exercise Performance by Lowering HR during 6MWT in TC Dogs
3.5. Effect of Acupuncture Treatment on the Quality of Life as Measured by Reduced Coughing Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Acupuncture treatment |
ANS | Autonomic nervous system |
ASDNN | Average standard deviation of all 5-min R-R intervals |
BCS | Body condition score |
BHT | Butylated hydroxytoluene |
bpm | Beats per minute |
BW | Body weight |
COPD | Chronic obstructive pulmonary disease |
EA | Electroacupuncture |
ECG | Electrocardiography |
H3PO4 | Phosphoric acid |
HF | High frequency |
HRV | Heart rate variability |
KH2PO4 | Potassium dihydrogen phosphate |
LF | Low frequency |
LF/HF | Low frequency per high frequency |
6MWT | Six-minute walk test |
MDA | Malondialdehyde |
meanNN | Average NN intervals |
mV | Millivolt |
NAC | No acupuncture treatment |
nNOS | Neuronal nitric oxide synthase |
pNN50 | Percentage of successive NN intervals > 50 ms |
RBC | Red blood cell |
rMSSD | Root mean square of the sum of the squares of differences between adjacent NN intervals |
SDANN | Standard deviation of the averages of NN intervals in 5-min |
SDNN | Standard deviation of all NN intervals |
TBA | Thiobarbituric acid |
TBARS | Thiobarbituric acid reactive substance |
TCA | Trichloroacetic acid |
TCVM | Traditional Chinese veterinary medicine |
TP | Total power |
ULF | Ultra-low frequency |
VLF | Very low frequency |
VVTI | Vasovagal tonus index |
References
- Johnson, L.; Pollard, R. Tracheal Collapse and Bronchomalacia in Dogs: 58 Cases (7/2001-1/2008). J. Vet. Intern. Med. 2010, 24, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.R.; Johnson, L.R. Tracheal collapse. In Textbook of Respiratory Disease in Dogs and Cats; King, L.G., Ed.; W.B. Saunders: Saint Louis, MO, USA, 2004; Chapter 46; pp. 346–355. [Google Scholar]
- Bottero, E.; Bellino, C.; De Lorenzi, D.; Ruggiero, P.; Tarducci, A.; D’Angelo, A.; Gianella, P. Clinical Evaluation and Endoscopic Classification of Bronchomalacia in Dogs. J. Vet. Intern. Med. 2013, 27, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Tappin, S.W. Canine tracheal collapse. J. Small Anim. Pract. 2016, 57, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeung, S.-Y.; Sohn, S.-J.; An, J.-H.; Chae, H.-K.; Li, Q.; Choi, M.; Yoon, J.; Song, W.-J.; Youn, H.-Y. A retrospective study of theophylline-based therapy with tracheal collapse in small-breed dogs: 47 cases (2013–2017). J. Vet. Sci. 2019, 20, e57. [Google Scholar] [CrossRef]
- Maniaci, A.; Iannella, G.; Cocuzza, S.; Vicini, C.; Magliulo, G.; Ferlito, S.; Cammaroto, G.; Meccariello, G.; De Vito, A.; Nicolai, A.; et al. Oxidative Stress and Inflammation Biomarker Expression in Obstructive Sleep Apnea Patients. J. Clin. Med. 2021, 10, 277. [Google Scholar] [CrossRef]
- Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxidative Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [Green Version]
- Reichard, P.; Pihl, M. Mortality and treatment side-effects during long-term intensified conventional insulin treatment in the Stockholm Diabetes Intervention Study. Diabetes 1994, 43, 313–317. [Google Scholar] [CrossRef]
- Saeki, Y.; Atogami, F.; Takahashi, K.; Yoshizawa, T. Reflex control of autonomic function induced by posture change during the menstrual cycle. J. Auton. Nerv. Syst. 1997, 66, 69–74. [Google Scholar] [CrossRef]
- Taylor, J.A.; Carr, D.L.; Myers, C.W.; Eckberg, D.L. Mechanisms Underlying Very-Low-Frequency RR-Interval Oscillations in Humans. Circulation 1998, 98, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.P.; Larson, M.; O’Donnell, C.J.; Wilson, P.F.; Tsuji, H.; Lloyd-Jones, D.; Levy, D. Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am. J. Cardiol. 2000, 86, 309–312. [Google Scholar] [CrossRef]
- Sato, N.; Miyake, S. Cardiovascular Reactivity to Mental Stress: Relationship with Menstrual Cycle and Gender. J. Physiol. Anthr. Appl. Hum. Sci. 2004, 23, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolarz, K.; Staessen, J.A.; Kawecka-Jaszcz, K.; Brand, E.; Bianchi, G.; Kuznetsova, T.; Tikhonoff, V.; Thijs, L.; Reineke, T.; Babeanu, S.; et al. Genetic Variation in CYP11B2 and AT1R Influences Heart Rate Variability Conditional on Sodium Excretion. Hypertension 2004, 44, 156–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharya, U.R.; Joseph, K.P.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef] [PubMed]
- Manzo, A.; Ootaki, Y.; Ootaki, C.; Kamohara, K.; Fukamachi, K. Comparative study of heart rate variability between healthy human subjects and healthy dogs, rabbits and calves. Lab. Anim. 2009, 43, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Piccirillo, G.; Magrì, D.; Ogawa, M.; Song, J.; Chong, V.J.; Han, S.; Joung, B.; Choi, E.-K.; Hwang, S.; Chen, L.S.; et al. Autonomic Nervous System Activity Measured Directly and QT Interval Variability in Normal and Pacing-Induced Tachycardia Heart Failure Dogs. J. Am. Coll. Cardiol. 2009, 54, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.S.; Muzzi, R.A.L.; Araújo, R.B.; Ferreira, D.F.; Nogueira, R.; Silva, E.F. Heart rate variability parameters of myxomatous mitral valve disease in dogs with and without heart failure obtained using 24-hour Holter electrocardiography. Vet. Rec. 2012, 170, 622. [Google Scholar] [CrossRef]
- Pirintr, P.; Chansaisakorn, W.; Trisiriroj, M.; Kalandakanond-Thongsong, S.; Buranakarl, C. Heart rate variability and plasma norepinephrine concentration in diabetic dogs at rest. Vet. Res. Commun. 2012, 36, 207–214. [Google Scholar] [CrossRef]
- Drawz, P.E.; Babineau, D.C.; Brecklin, C.; He, J.; Kallem, R.R.; Soliman, E.Z.; Xie, D.; Appleby, D.; Anderson, A.H.; Rahman, M.; et al. Heart Rate Variability Is a Predictor of Mortality in Chronic Kidney Disease: A Report from the CRIC Study. Am. J. Nephrol. 2014, 38, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Chompoosan, C.; Buranakarl, C.; Chaiyabutr, N.; Chansaisakorn, W. Decreased sympathetic tone after short-term treatment with enalapril in dogs with mild chronic mitral valve disease. Res. Vet. Sci. 2014, 96, 347–354. [Google Scholar] [CrossRef]
- Shen, M.J.; Zipes, D.P. Role of the Autonomic Nervous System in Modulating Cardiac Arrhythmias. Circ. Res. 2014, 114, 1004–1021. [Google Scholar] [CrossRef] [Green Version]
- Pastarapatee, N.; Kijtawornrat, A.; Buranakarl, C. Imbalance of autonomic nervous systems involved in ventricular arrhythmia after splenectomy in dogs. J. Vet. Med. Sci. 2017, 79, 2002–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frick, L.; Schwarzwald, C.C.; Mitchell, K.J. The use of heart rate variability analysis to detect arrhythmias in horses undergoing a standard treadmill exercise test. J. Vet. Intern. Med. 2019, 33, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, A.; Castejon-Riber, C.; Castejón, F.; Rubio, D.M.; Riber, C. Heart rate variability parameters as markers of the adaptation to a sealed environment (a hypoxic normobaric chamber) in the horse. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1538–1545. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Bédard, M.-E.; Marquis, K.; Poirier, P.; Provencher, S. Reduced Heart Rate Variability in Patients with Chronic Obstructive Pulmonary Disease Independent of Anticholinergic or β-agonist Medications. COPD: J. Chronic Obstr. Pulm. Dis. 2010, 7, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Araujo, A.S.; Pires Di Lorenzo, V.A.; Labadessa, I.G.; Juergensen, S.P.; Di Thommazo-Luporini, L.; Garbim, C.L.; Borghi-Silva, A. Increased sympathetic modulation and decreased response of the heart rate variability in controlled asthma. J. Asthma 2015, 52, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-C.; Kor, C.-T.; Lin, C.-H.; Kuo, J.; Tsai, J.-Z.; Ko, W.-J.; Kuo, C.-D. High-frequency power of heart rate variability can predict the outcome of thoracic surgical patients with acute respiratory distress syndrome on admission to the intensive care unit: A prospective, single-centric, case-controlled study. BMC Anesthesiol. 2018, 18, 34. [Google Scholar] [CrossRef] [Green Version]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardio-vascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef]
- Rose, W.J.; Sargeant, J.M.; Hanna, W.J.B.; Kelton, D.; Wolfe, D.M.; Wisener, L.V. A scoping review of the evidence for efficacy of acupuncture in companion animals. Anim. Heal. Res. Rev. 2017, 18, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Koski, M.A. Acupuncture for Zoological Companion Animals. Vet. Clin. N. Am. Exot. Anim. Pract. 2011, 14, 141–154. [Google Scholar] [CrossRef]
- Schoen, A.M. Veterinary Acupuncture: Ancient Art to Modern Medicine; Mosby: Saint Louis, MO, USA, 2001. [Google Scholar]
- Gao, J.I.; Ouyang, B.-S.; Sun, G.; Fan, C.; Wu, Y.-J.; Ji, L.-L. Comparative research on effect of warm needling therapy on pulmonary function and life quality of patients with COPD in the stable phase. Zhongguo Zhen Jiu Chin. Acupunct. Moxibustion 2011, 31, 893–897. [Google Scholar]
- Cheuk, D.K.; Yeung, W.F.; Chung, K.F.; Wong, V. Acupuncture for insomnia. Cochrane Database Syst. Rev. 2012, 9, Cd005472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinman, R.; McCrory, P.; Pirotta, M.; Relf, I.; Forbes, A.; Crossley, K.; Williamson, E.; Kyriakides, M.; Novy, K.; Metcalf, B.; et al. Acupuncture for chronic knee pain: A randomized clinical trial. Dtsch. Z. Akupunkt. 2015, 58, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.-C.; Liao, C.-C.; Sun, M.-F.; Su, Y.-C.; Wen, C.-P.; Morisky, D.E.; Sung, F.-C.; Hsu, C.Y.; Lin, J.-G. A Retrospective Cohort Study Comparing Stroke Recurrence Rate in Ischemic Stroke Patients with and Without Acupuncture Treatment. Medicine 2015, 94, e1572. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Peng, W.; Xu, M.; Li, W.; Liu, Z. The effectiveness and safety of acupuncture for patients with Alzheimer disease: A systematic review and meta-analysis of randomized controlled trials. Medicine 2015, 94, e933. [Google Scholar] [CrossRef]
- Lau, C.; Wu, X.; Chung, V.; Liu, X.; Hui, E.P.; Cramer, H.; Lauche, R.; Wong, S.; Lau, A.; Sit, R.; et al. Acupuncture and related therapies for symptom management in palliative cancer care: Systematic review and meta-analysis. Medicine 2016, 95, e2901. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Wu, J.; Zhou, J.; Liu, Z. Systematic Review of Acupuncture for Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Medicine 2016, 95, e3095. [Google Scholar] [CrossRef]
- Yang, Y.; Que, Q.; Ye, X.; Zheng, G.H. Verum versus Sham Manual Acupuncture for Migraine: A Systematic Review of Randomised Controlled Trials. Acupunct. Med. 2016, 34, 76–83. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Y.; Zhang, W.; Zeng, F.; Zhou, S.Y.; Zheng, H.B.; Zhu, W.Z.; Jing, X.H.; Rong, P.J.; Tang, C.Z.; et al. Electroacupuncture for patients with diarrhea-predominant irritable bowel syndrome or functional diarrhea: A randomized controlled trial. Medicine 2016, 95, e3884. [Google Scholar] [CrossRef]
- Liu, H. Acupuncture Combined with Acupoint Application Improves Symptoms, Daily Life Quality and Lung Function in Chronic Obstructive Pulmonary Disease Patients during Acute Exacerbation. Zhen Ci Yan Jiu Acupunct. Res. 2016, 41, 251–254. [Google Scholar]
- Guan, J.-S.; Liu, X.-M.; Fan, T.; Mao, B. Effects of Acupuncture at Zusanli on Plasma Dopamine and Lung Function of Rats with COPD. Sichuan Da Xue Xue Bao Yi Xue Ban J. Sichuan Univ. Med Sci. Ed. 2019, 50, 203–209. [Google Scholar]
- Hsieh, P.-C.; Yang, M.-C.; Wu, Y.-K.; Chen, H.-Y.; Tzeng, I.-S.; Hsu, P.-S.; Lee, C.-T.; Chen, C.-L.; Lan, C.-C. Acupuncture therapy improves health-related quality of life in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. Complement. Ther. Clin. Pract. 2019, 35, 208–218. [Google Scholar] [CrossRef]
- Eshkevari, L.; Permaul, E.; Mulroney, S.E. Acupuncture blocks cold stress-induced increases in the hypothalamus–pituitary–adrenal axis in the rat. J. Endocrinol. 2013, 217, 95–104. [Google Scholar] [CrossRef]
- Ouyang, H.; Yin, J.; Wang, Z.; Pasricha, P.J.; Chen, J.D.Z. Electroacupuncture accelerates gastric emptying in association with changes in vagal activity. Am. J. Physiol. Liver Physiol. 2002, 282, G390–G396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishijo, K.; Mori, H.; Yosikawa, K.; Yazawa, K. Decreased heart rate by acupuncture stimulation in humans via facilitation of cardiac vagal activity and suppression of cardiac sympathetic nerve. Neurosci. Lett. 1997, 227, 165–168. [Google Scholar] [CrossRef]
- Sparrow, K.; Golianu, B. Does Acupuncture Reduce Stress Over Time? A Clinical Heart Rate Variability Study in Hypertensive Patients. Med. Acupunct. 2014, 26, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-I.; Kim, Y.-S.; Kang, S.-K.; Kim, C.; Park, C.; Lee, M.S.; Huh, Y. Electroacupuncture decreases nitric oxide synthesis in the hypothalamus of spontaneously hypertensive rats. Neurosci. Lett. 2008, 446, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.F.; Chien, L.W. Efficacy of acupuncture in children with asthma: A systematic review. Ital. J. Pediatr. 2015, 41, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Cao, X.; Ohara, H.; Nakamura, Y.; Izumi-Nakaseko, H.; Ando, K.; Liu, W.; Sugiyama, A.; Zhu, B.; Shengfeng, L.; et al. Common parameters of acupuncture for the treatment of hypertension used in animal models. J. Tradit. Chin. Med. 2015, 35, 343–348. [Google Scholar]
- Meng, X.D.; Gao, W.Q.; Sun, Z. Amiodarone and acupuncture for cardiac arrhythmia: Study protocol for a systematic review. Medicine 2019, 98, e14544. [Google Scholar] [CrossRef]
- Li, W.M.; Sato, A.; Suzuki, A. The inhibitory role of nitric oxide (NO) in the somatocardiac sympathetic C-reflex in anesthetized rats. Neurosci. Res. 1995, 22, 375–380. [Google Scholar] [CrossRef]
- Su, X.-T.; Wang, L.; Ma, S.-M.; Cao, Y.; Yang, N.-N.; Lin, L.-L.; Fisher, M.; Yang, J.-W.; Liu, C.-Z. Mechanisms of Acupuncture in the Regulation of Oxidative Stress in Treating Ischemic Stroke. Oxidative Med. Cell. Longev. 2020, 2020, 7875396. [Google Scholar] [CrossRef] [PubMed]
- Campese, V.M.; Ye, S.; Zhong, H.; Yanamadala, V.; Ye, Z.; Chiu, J. Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity. Am. J. Physiol. Circ. Physiol. 2004, 287, H695–H703. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Nie, K.; Jia, Y.; Yu, J. Effects of acupuncture on declined cerebral blood flow, impaired mitochondrial respiratory function and oxidative stress in multi-infarct dementia rats. Neurochem. Int. 2014, 65, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Pongkan, W.; Jitnapakarn, W.; Phetnoi, W.; Punyapornwithaya, V.; Boonyapakorn, C. Obesity-Induced Heart Rate Variability Impairment and Decreased Systolic Function in Obese Male Dogs. Animals 2020, 10, 1383. [Google Scholar] [CrossRef]
- Pavithran, P.; Nandeesha, H.; Sathiyapriya, V.; Bobby, Z.; Madanmohan, T. Short-Term Heart Variability and Oxidative Stress in Newly Diagnosed Essential Hypertension. Clin. Exp. Hypertens. 2008, 30, 486–496. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Li, L.L.; Hu, X.; Tang, H.T. Effect of acupuncture on oxidative stress and apoptosis-related proteins in obese mice induced by high-fat diet. Zhongguo Zhen Jiu 2020, 40, 983–988. [Google Scholar]
- Bartoli, M.L.; Novelli, F.; Costa, F.; Malagrinò, L.; Melosini, L.; Bacci, E.; Cianchetti, S.; Dente, F.L.; Di Franco, A.; Vagaggini, B.; et al. Malondialdehyde in Exhaled Breath Condensate as a Marker of Oxidative Stress in Different Pulmonary Diseases. Mediat. Inflamm. 2011, 2011, 891752. [Google Scholar] [CrossRef]
- Leelarungrayub, J.; Borisuthibandit, T.; Yankai, A.; Boontha, K. Changes in oxidative stress from tracheal aspirates sampled during chest physical therapy in hos-pitalized intubated infant patients with pneumonia and secretion retention. Ther. Clin. Risk Manag. 2016, 12, 1377–1386. [Google Scholar] [CrossRef] [Green Version]
- Jokinen, K.; Palva, T.; Sutinen, S.; Nuutinen, J. Acquired tracheobronchomalacia. Ann. Clin. Res. 1977, 9, 52–57. [Google Scholar]
- Clarke, D.L. Interventional Radiology Management of Tracheal and Bronchial Collapse. Vet. Clin. N. Am. Small Anim. Pract. 2018, 48, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.W.Y.; Yan, V.C.M.; Zhang, H. Effect of Acupuncture on Heart Rate Variability: A Systematic Review. Evid. Based Complement. Altern. Med. 2014, 2014, 819871. [Google Scholar] [CrossRef] [PubMed]
- House, A.; Celly, C.; Skeans, S.; Lamca, J.; Egan, R.W.; Hey, J.A.; Chapman, R.W. Cough reflex in allergic dogs. Eur. J. Pharmacol. 2004, 492, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, S.B. An overview of the sensory receptors regulating cough. Cough 2005, 1, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef]
- Agudelo, C.; Schanilec, P. Evaluation of the functional capacity in dogs with naturally acquired heart disease. Vet. Med. 2013, 58, 264–270. [Google Scholar] [CrossRef] [Green Version]
Parameter | Mean (SE) | Range |
---|---|---|
Age (years) | 6.8 (0.90) | 2–16 |
Body weight (kg) | 5.18 (0.69) | 1.8–11.8 |
Body condition score | 7.4 (0.13) | 7–9 |
Sex | ||
Female (not spayed) (No., %) | 5, 25 | |
Female (spayed) (No., %) | 5, 25 | |
Male (not castrated) (No., %) | 4, 20 | |
Male (castrated) (No., %) | 6, 30 |
n = 20 | NAC Period | AC Period | ||
---|---|---|---|---|
At Baseline | End of 5th Week | At Baseline | End of 5th Week | |
MDA level (µM/L) | 1.68 ± 0.18 | 1.62 ± 0.12 | 1.78 ± 0.17 | 1.36 ± 0.12 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chueainta, P.; Punyapornwithaya, V.; Tangjitjaroen, W.; Pongkan, W.; Boonyapakorn, C. Acupuncture Improves Heart Rate Variability, Oxidative Stress Level, Exercise Tolerance, and Quality of Life in Tracheal Collapse Dogs. Vet. Sci. 2022, 9, 88. https://doi.org/10.3390/vetsci9020088
Chueainta P, Punyapornwithaya V, Tangjitjaroen W, Pongkan W, Boonyapakorn C. Acupuncture Improves Heart Rate Variability, Oxidative Stress Level, Exercise Tolerance, and Quality of Life in Tracheal Collapse Dogs. Veterinary Sciences. 2022; 9(2):88. https://doi.org/10.3390/vetsci9020088
Chicago/Turabian StyleChueainta, Phurion, Veerasak Punyapornwithaya, Weerapongse Tangjitjaroen, Wanpitak Pongkan, and Chavalit Boonyapakorn. 2022. "Acupuncture Improves Heart Rate Variability, Oxidative Stress Level, Exercise Tolerance, and Quality of Life in Tracheal Collapse Dogs" Veterinary Sciences 9, no. 2: 88. https://doi.org/10.3390/vetsci9020088