The Impact of Dietary Berberine Supplementation during the Transition Period on Blood Parameters, Antioxidant Indicators and Fatty Acids Profile in Colostrum and Milk of Dairy Goats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Animal, and Diet
2.2. Blood Collection and Analysis
2.3. Colostrum and Milk Collection and Analysis
2.4. Antioxidants Assays in Blood Plasma, Colostrum and Milk
2.5. BCS, Energy Calculation, and Other Measurements
2.6. Data Analysis
3. Results
3.1. DMI, BCS, and EB
3.2. Biomarkers of Inflammation and Health Status
3.3. Colostrum and Milk Production and Components
3.4. Colostrum, Milk, and Blood Antioxidant Status
3.5. Colostrum and Milk Fatty Acid Profile
4. Discussion
4.1. Dry Matter Intake, Body Condition Score, and Energy Balance
4.2. Biomarkers of Inflammation and Health Status
4.3. Colostrum and Milk Performance and Components
4.4. Colostrum, Milk, and Blood Antioxidant Status
4.5. Colostrum and Milk Fatty Acid Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tosto, M.S.L.; Santos, S.A.; da Costa Pinto Filho, R.; de Carvalho Rodrigues, T.C.G.; Nicory, I.M.C.; de Carvalho, G.G.P.; de Jesus Pereira, T.C. Metabolic and behavior changings during the transition period as predictors of calving proximity and welfare of dairy goats. Vet. Anim. Sci. 2021, 11, 100–168. [Google Scholar] [CrossRef] [PubMed]
- Zamuner, F.; Cameron, A.W.N.; Carpenter, E.K.; Leury, B.J.; DiGiacomo, K. Endocrine and metabolic responses to glucose, insulin, and adrenocorticotropin infusions in early-lactation dairy goats of high and low milk yield. J. Dairy Sci. 2020, 103, 12045–12058. [Google Scholar] [CrossRef] [PubMed]
- Zamuner, F.; DiGiacomo, K.; Cameron, A.W.N.; Leury, B.J. Endocrine and metabolic status of commercial dairy goats during the transition period. J. Dairy Sci. 2020, 103, 5616–5628. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, B.F.; Cao, Y.C.; Cai, C.J.; Chao, Y.U.; Li, S.X.; Yao, J.H. Temporal dynamics of nutrient balance, plasma biochemical and immune traits, and liver function in transition dairy cows. J. Integr. Agric. 2020, 19, 820–837. [Google Scholar] [CrossRef]
- Humblet, M.F.; Guyot, H.; Boudry, B.; Mbayahi, F.; Hanzen, C.; Rollin, F.; Godeau, J.M. Relationship between haptoglobin, serum amyloid A, and clinical status in a survey of dairy herds during a 6-month period. Vet. Clin. Pathol. 2006, 35, 188–193. [Google Scholar] [CrossRef]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. Redox biology in transition periods of dairy cattle: Role in the health of periparturient and neonatal animals. Antioxidants 2019, 8, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Celi, P.; Di Trana, A.; Claps, S. Effects of plane of nutrition on oxidative stress in goats during the peripartum period. Vet. J. 2010, 184, 95–99. [Google Scholar] [CrossRef]
- Karapehlivan, M.; Kaya, I.; Sag, A.; Akin, S.; Ozcan, A. Effects of early and late lactation period on plasma oxidant/antioxidant balance of goats. Kafkas. Univ. Vet. Fak. Derg. 2013, 19, 529–533. [Google Scholar]
- Trevisi, E.; Minuti, A. Assessment of the innate immune response in the periparturient cow. Res. Vet Sci. 2018, 116, 47–54. [Google Scholar] [CrossRef]
- Gross, J.J.; van Dorland, H.A.; Bruckmaier, R.; Schwarz, F.J. Milk fatty acid profile related to energy balance in dairy cows. J Dairy Res. 2011, 78, 479–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, J.K.; Weber, W.J.; Moore, C.E.; Bauman, D.E.; Hansen, L.B.; Chester-Jones, H.; Baumgard, L.H. Effects of week of lactation and genetic selection for milk yield on milk fatty acid composition in Holstein cows. J. Dairy Sci. 2005, 88, 3886–3893. [Google Scholar] [CrossRef] [Green Version]
- Stoop, W.M.; Bovenhuis, H.; Heck, J.M.L.; Van Arendonk, J.A.M. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 2009, 92, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
- Strzałkowska, N.; Jóźwik, A.; Bagnicka, E.; Krzyżewski, J.; Horbańczuk, K.; Pyzel, B.; Horbańczuk, J.O. Chemical composition, physical traits and fatty acid profile of goat milk as related to the stage of lactation. Anim. Sci. Pap. 2009, 27, 311–320. [Google Scholar]
- Ducháček, J.; Stádník, L.; Ptáček, M.; Beran, J.; Okrouhla, M.; Čítek, J.; Stupka, R. Effect of cow energy status on the hypercholesterolaemic fatty acid proportion in raw milk. Czech J. Food Sci. 2014, 32, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, Z.; Perna, S.; Al-Thawadi, S.; Alalwan, T.A.; Riva, A.; Petrangolini, G.; Rondanelli, M. The effect of Berberine on weight loss in order to prevent obesity: A systematic review. Biomed. Pharmacother. 2020, 127, 110137. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Du, X.; Ma, H.; Yao, J. The anti-cancer mechanisms of berberine: A review. Cancer Manag. Res. 2020, 12, 695. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yi, X.; Ghanam, K.; Zhang, S.; Zhao, T.; Zhu, X. Berberine decreases cholesterol levels in rats through multiple mechanisms, including inhibition of cholesterol absorption. Metabolism 2014, 63, 1167–1177. [Google Scholar] [CrossRef]
- Li, Z.; Geng, Y.N.; Jiang, J.D.; Kong, W.J. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid.-Based Complement. Altern. Med. 2014, 289264. [Google Scholar] [CrossRef]
- Moghaddam, H.K.; Baluchnejadmojarad, T.; Roghani, M.; Khaksari, M.; Norouzi, P.; Ahooie, M.; Mahboobi, F. Berberine ameliorate oxidative stress and astrogliosis in the hippocampus of STZ-induced diabetic rats. Mol. Neurobiol. 2014, 49, 820–826. [Google Scholar] [CrossRef]
- Ghavipanje, N.; Fathi Nasri, M.H.; Farhangfar, S.H.; Ghiasi, S.E.; Vargas-Bello-Pérez, E. Regulation of Nutritional Metabolism in Transition Dairy Goats: Energy Balance, Liver Activity, and Insulin Resistance in Response to Berberine Supplementation. Animals 2021, 11, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Iranian Council of Animal Care. Guide to the Care and Use of Experimental Animals; Isfahan University of Technology: Isfahan, Iran, 1995; Volume 1. [Google Scholar]
- National Research Council, Committee on the Nutrient Requirements of Small Ruminants, Board on Agriculture, Division on Earth & Life Studies. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Ferré, N.; Camps, J.; Prats, E.; Vilella, E.; Paul, A.; Figuera, L.; Joven, J. Serum paraoxonase activity: A new additional test for the improved evaluation of chronic liver damage. Clin. Chem. 2002, 48, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Kaylegian, K.E.; Lynch, J.M.; Fleming, J.R.; Barbano, D.M. Influence of fatty acid chain length and unsaturation on mid-infrared milk analysis. J. Dairy Sci. 2009, 92, 2485–2501. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists. Official Methods of Analysis. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Arington, VA, USA, 2000. [Google Scholar]
- Woolpert, M.E.; Dann, H.M.; Cotanch, K.W.; Melilli, C.; Chase, L.E.; Grant, R.J.; Barbano, D.M. Management, nutrition, and lactation performance are related to bulk tank milk de novo fatty acid concentration on northeastern US dairy farms. J. Dairy Sci. 2016, 99, 8486–8497. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, K.L.; Barbano, D.M. Prediction of fatty acid chain length and unsaturation of milk fat by mid-infrared milk analysis. J. Dairy Sci. 2016, 99, 8561–8570. [Google Scholar] [CrossRef] [Green Version]
- Placer, Z.A.; Cushman, L.L.; Johnson, B. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. 1966, 16, 359–364. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Smet, K.; Raes, K.; De Block, J.; Herman, L.; Dewettinck, K.; Coudijzer, K. A change in antioxidative capacity as a measure of onset to oxidation in pasteurized milk. Int. Dairy J. 2008, 18, 520–530. [Google Scholar] [CrossRef]
- Villaquiran, M.; Gipson, T.A.; Merkel, R.C.; Goetsch, A.L.; Sahlu, T. Body Condition Scores in Goats; American Institute for Goat Research, Langston University: Langston, OK, USA, 2004. [Google Scholar]
- SAS Institute. STAT User’s Guide: Statistics, Version 9.1; Statistical Analysis System Institute, Inc.: Cary, NC, USA, 2007. [Google Scholar]
- Folnožić, I.; Turk, R.; Đuričić, D.; Vince, S.; Pleadin, J.; Flegar–Meštrić, Z.; Samardžija, M. Influence of body condition on serum metabolic indicators of lipid mobilization and oxidative stress in dairy cows during the transition period. Reprod. Domest. Anim. 2015, 50, 910–917. [Google Scholar] [CrossRef]
- Pinotti, L.; Campagnoli, A.; D’ambrosio, F.; Susca, F.; Innocenti, M.; Rebucci, R.; Baldi, A. Rumen-protected choline and vitamin E supplementation in periparturient dairy goats: Effects on milk production and folate, vitamin B12 and vitamin E status. Animal 2008, 2, 1019–1027. [Google Scholar] [CrossRef]
- Douhard, F.; Friggens, N.C.; Tessier, J.; Martin, O.; Tichit, M.; Sauvant, D. Characterization of a changing relationship between milk production and liveweight for dairy goats undergoing extended lactation. J. Dairy Sci. 2013, 96, 5698–5711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, F.S.; Sá Filho, M.F.; Greco, L.F.; Santos, J.E.P. Effects of feeding rumen-protected choline on incidence of diseases and reproduction of dairy cows. Vet. J. 2012, 193, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.W.; Hsu, K.C.; Lee, J.W.; Ham, M.; Huh, J.Y.; Shin, H.J.; Kim, J.B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. 2009, 296, E955–E964. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.H.; Lin, H.Y.; Chen, F.L.; Che, X.Q.; Bi, W.K.; Shi, S.L.; Zhao, J.J. Berberine improves intralipid-induced insulin resistance in murine. Acta Pharmacol. Sin. 2021, 42, 735–743. [Google Scholar] [CrossRef]
- Shen, N.; Huan, Y.; Shen, Z.F. Berberine inhibits mouse insulin gene promoter through activation of AMP activated protein kinase and may exert beneficial effect on pancreatic β-cell. Eur. J. Pharmacol. 2012, 694, 120–126. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Song, Y.; Wu, D.; Zheng, X.; Li, P.; Li, L. Effects of berberine on amelioration of hyperglycemia and oxidative stress in high glucose and high fat diet-induced diabetic hamsters in vivo. Biomed Res. Int. 2015, 2015, 313808. [Google Scholar] [CrossRef]
- Collard, B.L.; Boettcher, P.J.; Dekkers, J.C.; Petitclerc, D.; Schaeffer, L.R. Relationships between energy balance and health traits of dairy cattle in early lactation. J. Dairy Sci. 2000, 83, 2683–2690. [Google Scholar] [CrossRef]
- De Vries, M.J.; Veerkamp, R.F. Energy balance of dairy cattle in relation to milk production variables and fertility. J. Dairy Sci. 2000, 83, 62–69. [Google Scholar] [CrossRef]
- Hsu, Y.Y.; Chen, C.S.; Wu, S.N.; Jong, Y.J.; Lo, Y.C. Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells. Eur. J. Pharm. Sci. 2012, 46, 415–425. [Google Scholar] [CrossRef]
- Bae, J.; Lee, D.; Kim, Y.K.; Gil, M.; Lee, J.Y.; Lee, K.J. Berberine protects 6-hydroxydopamine-induced human dopaminergic neuronal cell death through the induction of heme oxygenase-1. Mol. Cells 2013, 35, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Zamuner, F.; Cameron, A.W.N.; Leury, B.J.; DiGiacomo, K. Comparison of measures of insulin sensitivity in early-lactation dairy goats. JDS Commun. 2021, 300–304. [Google Scholar] [CrossRef]
- Van Knegsel, A.T.; van der Drift, S.G.; Čermáková, J.; Kemp, B. Effects of shortening the dry period of dairy cows on milk production, energy balance, health, and fertility: A systematic review. Vet. J. 2013, 198, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Farney, J.K.; Mamedova, L.K.; Coetzee, J.F.; KuKanich, B.; Sordillo, L.M.; Stoakes, S.K.; Bradford, B.J. Anti-inflammatory salicylate treatment alters the metabolic adaptations to lactation in dairy cattle. Am. J. Physiol. Regul. 2013, 305, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Tsiplakou, E.; Mitsiopoulou, C.; Mavrommatis, A.; Karaiskou, C.; Chronopoulou, E.G.; Mavridis, G.; Zervas, G. Effect of under-and overfeeding on sheep and goat milk and plasma enzymes activities related to oxidation. J. Anim. Physiol. Anim. Nutr. 2018, 102, e288–e298. [Google Scholar] [CrossRef]
- Puppel, K.; Nałęcz-Tarwacka, T.; Kuczyńska, B.; Gołębiewski, M.; Kordyasz, M. Effect of different fat supplements on the antioxidant capacity of cow’s milk. Arch. Anim. Breed. 2013, 56, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Albera, E.; Kankofer, M. Antioxidants in colostrum and milk of sows and cows. Reprod. Domest. Anim. 2009, 44, 606–611. [Google Scholar] [CrossRef]
- Sayiner, S.; Darbaz, I.; Ergene, O.; Aslan, S. Changes in antioxidant enzyme activities and metabolic parameters in dairy cows during different reproductive periods. Theriogenology 2021, 159, 116–122. [Google Scholar] [CrossRef]
- Malekinezhad, P.; Ellestad, L.E.; Afzali, N.; Farhangfar, S.H.; Omidi, A.; Mohammadi, A. Evaluation of berberine efficacy in reducing the effects of aflatoxin B1 and ochratoxin A added to male broiler rations. Poult. Sci. 2021, 100, 797–809. [Google Scholar] [CrossRef]
- Ghavipanje, N.; Fathi Nasri, M.H.; Farhangfar, H.; Modaresi, J. In situ, in vitro and in vivo nutritive value assessment of Barberry leaf as a roughage for goat feeding. Small Rumin. Res. 2016, 141, 94–98. [Google Scholar] [CrossRef]
- Thirupurasundari, C.J.; Padmini, R.; Devaraj, S.N. Effect of berberine on the antioxidant status, ultrastructural modifications and protein bound carbohydrates in azoxymethane-induced colon cancer in rats. Chem.-Biol. Interact. 2009, 177, 190–195. [Google Scholar] [CrossRef]
- Bionaz, M.; Vargas-Bello-Pérez, E.; Busato, S. Advances in fatty acids nutrition in dairy cows: From gut to cells and effects on performance. J. Anim. Sci. Biotechnol. 2020, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Eknæs, M.; Kolstad, K.; Volden, H.; Hove, K. Changes in body reserves and milk quality throughout lactation in dairy goats. Small Rumin. Res. 2006, 63, 1–11. [Google Scholar] [CrossRef]
Diets a | ||
---|---|---|
Pre-Partum | Post-Partum | |
Ingredient (% of DM) | ||
Alfalfa hay | 4.00 | 29.5 |
Corn silage | 34.3 | 10.8 |
Wheat straw | 17.9 | 5.00 |
Barley grain, ground | 7.70 | 10.8 |
Corn grain, ground | 31.5 | 22.2 |
Soybean meal | 1.00 | 17.0 |
Wheat bran | 1.80 | 2.20 |
Calcium–carbonate | 0.90 | 1.00 |
Minerals and vitamins premix b | 0.90 | 0.50 |
Salt | 0.00 | 1.00 |
Chemical composition | ||
Metabolizable energy, Mcal/kg of DM | 2.60 | 2.90 |
Crude protein (% DM) | 18.5 | 15.5 |
Ether extract (% DM) | 2.50 | 2.50 |
Ash (% DM) | 7.60 | 8.00 |
Natural detergent fiber (% DM) | 43.0 | 37.3 |
Non-fibrous carbohydrates (% DM) c | 38.0 | 36.7 |
Item 2 | Treat 3 | SEM 5 | p Values | |||
---|---|---|---|---|---|---|
CON | BBR1 | BBR2 | BBR4 | |||
DMI, Kg/d | 1.58 b | 1.68 b | 1.97 a | 1.94 a | 0.040 | <0.001 |
NEL intake, Mcal/d | 1.99 b | 2.13 b | 2.50 a | 2.45 a | 0.054 | <0.001 |
MP intake, g/d | 208.37 b | 224.77 b | 264.09 a | 258.47 a | 6.152 | <0.001 |
Energy balance, Mcal/d | 0.58 c | 0.73 bc | 1.25 a | 1.22 ab | 0.121 | 0.004 |
Energy balance, % | 123.46 b | 138.27 b | 182.63 a | 183.72 a | 6.670 | <0.001 |
Body weight, Kg | 46.12 | 46.92 | 47.26 | 46.51 | 1.511 | 0.854 |
BCS 4, point | 3.31 | 3.34 | 3.48 | 3.47 | 0.0570 | 0.102 |
Item 2 | Treat 3 | SEM 4 | p Values | |||
---|---|---|---|---|---|---|
CON | BBR1 | BBR2 | BBR4 | |||
Inflammation | ||||||
Albumin, mg/dL | 4.05 b | 4.22 b | 4.94 a | 4.76 a | 0.063 | <0.001 |
Cholesterol, mg/dL | 70.62 a | 68.61 ab | 64.38 b | 64.80 b | 1.433 | 0.041 |
Bilirubin, mg/dL | 0.30 | 0.28 | 0.23 | 0.25 | 0.019 | 0.091 |
Haptoglobin, g/L | 0.46 a | 0.40 a | 0.31 b | 0.29 b | 0.016 | 0.004 |
Ceruloplasmin, μmol/L | 3.70 a | 3.60 ab | 3.30 b | 3.36 b | 0.078 | 0.018 |
Paraoxonase, U/mL | 125.90 c | 126.71 bc | 132.19 a | 131.14 ab | 1.260 | 0.017 |
Energy balance | ||||||
Glucose, mg/dL | 59.62 | 56.90 | 61.28 | 61.14 | 2.011 | 0.432 |
Insulin, μ/mL | 19.40 b | 21.57 b | 26.27 a | 27.13 a | 0.905 | 0.001 |
Non-esterified fatty acids, mmol/L | 0.16 a | 0.15 ab | 0.10 b | 0.11 b | 0.012 | 0.028 |
β-hydroxybutyrate, mmol/L | 0.48 | 0.43 | 0.32 | 0.34 | 0.051 | 0.100 |
Item 2 | Treat 3 | SEM 4 | p Values | |||
---|---|---|---|---|---|---|
Control | BBR1 | BBR2 | BBR4 | |||
Colostrum | ||||||
Yield, kg/first 2 milkings | 0.80 b | 1.20 b | 1.62 a | 1.40 ab | 0.197 | 0.050 |
Protein, % | 9.41 | 8.22 | 9.13 | 8.10 | 0.914 | 0.680 |
Fat, % | 9.83 | 8.75 | 7.01 | 7.82 | 1.783 | 0.596 |
Lactose, % | 4.01 | 4.15 | 4.10 | 4.19 | 0.123 | 0.743 |
Total solids, % | 21.54 | 19.90 | 19.74 | 18.63 | 1.639 | 0.668 |
Solid non-fat, % | 13.77 | 12.87 | 13.73 | 12.93 | 0.790 | 0.725 |
Milk | ||||||
Yield, kg/d | 1.70 b | 1.98 ab | 2.54 a | 2.15 a | 0.155 | 0.013 |
Protein, % | 4.56 | 3.92 | 3.76 | 3.63 | 0.363 | 0.314 |
Fat, % | 4.96 | 4.74 | 4.55 | 4.15 | 0.582 | 0.695 |
Lactose, % | 3.94 | 4.47 | 4.52 | 4.70 | 0.253 | 0.227 |
Total solids, % | 14.01 | 13.89 | 12.16 | 12.82 | 0.598 | 0.101 |
Solid non-fat, % | 9.28 | 9.27 | 8.61 | 9.31 | 0.196 | 0.074 |
Item 2,3 | Treat 4 | SEM 5 | p Values | |||
---|---|---|---|---|---|---|
CON | BBR1 | BBR2 | BBR4 | |||
Blood | ||||||
TAC, mmol/L | 0.26 b | 0.28 b | 0.34 a | 0.34 a | 0.012 | 0.002 |
MDA, nmol/L | 1.76 a | 1.60 a | 1.32 b | 1.34 b | 0.110 | 0.050 |
SOD, U/g Hb | 1498.16 b | 1555.30 b | 1771.22 a | 1725.20 a | 47.301 | 0.009 |
GSH-Px, U/g Hb | 39.95 b | 42.15 a | 46.68 a | 44.34 a | 1.421 | 0.048 |
CAT, U/g Hb | 17.68 b | 21.34 ab | 25.94 a | 27.52 a | 2.350 | 0.050 |
Colostrum | ||||||
TAC, mmol/L | 1.07 c | 1.15 bc | 1.42 ab | 1.51 a | 0.081 | 0.014 |
MDA, nmol/L | 2.50 a | 2.27 ab | 1.90 b | 1.95 b | 0.134 | 0.044 |
SOD, U/mL | 22.73 b | 24.4 ab | 26.9 a | 26.57 a | 0.814 | 0.021 |
GSH-Px, U/mL | 59.34 b | 63.68 ab | 77.00 a | 73.00 a | 3.912 | 0.041 |
CAT, U/mL | 15.75 b | 17.43 ab | 22.23 a | 21.08 a | 1.490 | 0.047 |
Milk | ||||||
TAC, mmol/L | 1.26 b | 1.37 b | 1.67 a | 1.65 a | 0.064 | 0.003 |
MDA, nmol/L | 3.24 a | 2.97 ab | 2.41 c | 2.52 bc | 0.122 | 0.004 |
SOD, U/mL | 23.87 c | 25.31 bc | 29.01 a | 28.73 ab | 1.291 | 0.050 |
GSH-Px, U/mL | 74.89 b | 83.78 b | 97.34 a | 82.17 a | 2.54 | 0.005 |
CAT, U/mL | 20.17 b | 21.93 b | 27.35 a | 27.21 a | 1.342 | 0.011 |
Item 2,3 | Treat 4 | SEM 5 | p Values | |||
---|---|---|---|---|---|---|
CON | BBR1 | BBR2 | BBR4 | |||
Colostrum | ||||||
De novo fatty acids, % | 32.63 b | 32.50 b | 39.52 a | 38.22 a | 1.414 | 0.007 |
Mixed fatty acids, % | 26.18 | 30.51 | 28.50 | 32.12 | 2.855 | 0.637 |
Preformed fatty acids, % | 40.19 a | 36.77 ab | 31.90 b | 29.66 b | 2.244 | 0.025 |
FFA, meq/100g fat | 15.37 a | 14.90 a | 10.35 b | 11.03 b | 0.826 | 0.001 |
SFA, % | 61.70 b | 63.82 ab | 69.20 a | 69.55 a | 1.910 | 0.030 |
UFA, % | 23.51 | 22.31 | 18.19 | 19.10 | 2.348 | 0.359 |
MUFA, % | 14.30 a | 16.77 a | 8.44 b | 9.91 ab | 1.900 | 0.032 |
PUFA, % | 6.73 | 5.53 | 5.74 | 5.14 | 0.501 | 0.283 |
C16:0, % | 21.84 | 19.77 | 20.02 | 21.73 | 1.075 | 0.411 |
C18:0, % | 7.72 a | 6.15 ab | 4.24 b | 3.57 b | 0.824 | 0.016 |
C18:1 c9, % | 12.73 a | 14.93 a | 5.97 b | 7.96 ab | 1.890 | 0.020 |
Milk | ||||||
De novo fatty acids, % | 38.02 a | 38.46 ab | 39.77 ab | 41.03 b | 0.831 | 0.050 |
Mixed fatty acids, % | 34.09 | 40.08 | 38.19 | 38.60 | 1.646 | 0.114 |
Preformed fatty acids, % | 27.88 a | 21.47 ab | 21.25 ab | 20.27 b | 1.857 | 0.049 |
FFA, meq/100g fat | 10.85 a | 9.54 a | 6.51 b | 6.98 b | 0.540 | 0.003 |
SFA, % | 64.97 b | 65.17 b | 69.65 a | 70.02 a | 1.01 | 0.045 |
UFA, % | 21.84 a | 19.88 a | 18.28 ab | 17.29 b | 1.06 | 0.049 |
MUFA, % | 14.54 a | 15.73 a | 12.61 b | 12.02 b | 0.623 | 0.004 |
PUFA, % | 4.03 | 4.12 | 3.90 | 3.92 | 0.599 | 0.901 |
C16:0, % | 29.38 | 28.83 | 29.56 | 29.19 | 0.940 | 0.796 |
C18:0, % | 8.04 | 7.40 | 6.96 | 5.84 | 1.171 | 0.612 |
C18:1 c9, % | 14.84 | 14.58 | 10.66 | 10.77 | 1.373 | 0.081 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghavipanje, N.; Fathi Nasri, M.H.; Farhangfar, S.H.; Ghiasi, S.E.; Vargas-Bello-Pérez, E. The Impact of Dietary Berberine Supplementation during the Transition Period on Blood Parameters, Antioxidant Indicators and Fatty Acids Profile in Colostrum and Milk of Dairy Goats. Vet. Sci. 2022, 9, 76. https://doi.org/10.3390/vetsci9020076
Ghavipanje N, Fathi Nasri MH, Farhangfar SH, Ghiasi SE, Vargas-Bello-Pérez E. The Impact of Dietary Berberine Supplementation during the Transition Period on Blood Parameters, Antioxidant Indicators and Fatty Acids Profile in Colostrum and Milk of Dairy Goats. Veterinary Sciences. 2022; 9(2):76. https://doi.org/10.3390/vetsci9020076
Chicago/Turabian StyleGhavipanje, Navid, Mohammad Hasan Fathi Nasri, Seyyed Homayoun Farhangfar, Seyyed Ehsan Ghiasi, and Einar Vargas-Bello-Pérez. 2022. "The Impact of Dietary Berberine Supplementation during the Transition Period on Blood Parameters, Antioxidant Indicators and Fatty Acids Profile in Colostrum and Milk of Dairy Goats" Veterinary Sciences 9, no. 2: 76. https://doi.org/10.3390/vetsci9020076
APA StyleGhavipanje, N., Fathi Nasri, M. H., Farhangfar, S. H., Ghiasi, S. E., & Vargas-Bello-Pérez, E. (2022). The Impact of Dietary Berberine Supplementation during the Transition Period on Blood Parameters, Antioxidant Indicators and Fatty Acids Profile in Colostrum and Milk of Dairy Goats. Veterinary Sciences, 9(2), 76. https://doi.org/10.3390/vetsci9020076