One Hundred Years of Coat Colour Influences on Genetic Diversity in the Process of Development of a Composite Horse Breed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pedigree Registries and Software for Genetic Analyses
2.2. Genealogical Information
2.3. Inbreeding, Coancestry, and Nonrandom Mating Degree
2.4. Ancestral Contributions and Probabilities of Gene Origin
3. Results
3.1. Pedigree Evolution
3.2. Inbreeding, Coancestry/Kinship and Degree of Non-Random Mating
3.3. Ancestral Contributions and Probabilities of Gene Origin
3.4. Genetic Relationships between Coat Colour Subgroup
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neves, A.P.; Schwengber, E.B.; Albrecht, F.F.; Isola, J.V.; De Salles van der Linden, L. Beyond fifty shades: The genetics of horse colors. In Trends and Advances in Veterinary Genetics; Abubakar, M., Ed.; IntechOpen: London, UK, 2017. [Google Scholar]
- Thiruvenkadan, A.K.; Kandasamy, N.; Panneerselvam, S. Coat colour inheritance in horses. Livest. Sci. 2008, 117, 109–129. [Google Scholar] [CrossRef]
- Sponenberg, D.P.; Bellone, R. Equine Color Genetics; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Rieder, S. Molecular tests for coat colours in horses. J. Anim. Breed. Genet. 2009, 126, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Aguilera Pleguezuelo, J. El Caballo Español e Hispano-árabe en la Historia y en los Manuscritos de Al-Ándalus; Almuzara: Córdoba, Spain, 2006. [Google Scholar]
- al-Išbīlī, A.Z.Y.b.M.b.A.I.a. Kitāb Al-filāḥaẗ; Imprenta Real: Madrid, Spain, 1802. [Google Scholar]
- Fernández de Andrada, P. De la naturaleza del cavallo; Casa de Fernando Díaz: Sevilla, Spain, 1580. [Google Scholar]
- Grisone, F. Le Razze del Regno [di Napoli]; 16th Century, Biblioteca Nacional de España: Madrid, Spain, 1587. [Google Scholar]
- Tomassini, G.B. The breeds of the Kingdom. An unpublished manuscript by Federico Grisone (Part 1). History 2014, 14, 7. [Google Scholar]
- Stachurska, A.; Ussing, A.P. Coat colour versus performance in the horse (Equus caballus). Pol. J. Natur. Sc. 2007, 22, 43–49. [Google Scholar] [CrossRef]
- Junqueira, G.S.B.; Diaz, I.D.P.S.; da Cruz, V.A.R.; de Araújo Oliveira, C.A.; de Godoi, F.N.; de Camargo, G.M.F.; Costa, R.B. Influence of coat color on genetic parameter estimates in horses. J. Appl. Genet. 2021, 62, 297–306. [Google Scholar] [CrossRef]
- Marín Navas, C.; Delgado Bermejo, J.V.; McLean, A.K.; León Jurado, J.M.; Rodriguez de la Borbolla y Ruiberriz de Torres, A.; Navas González, F.J. Discriminant Canonical Analysis of the contribution of Spanish and Arabian purebred horses to the genetic diversity and population structure of Hispano-Arabian horses. Animals 2021, 11, 269. [Google Scholar] [CrossRef]
- Herrera García, M.; López Rodríguez, J. The Special Protection Horse Breeds: The Marismeña Horse Breed, The Andalusian Ass Breed and the Hispano-Arabe Horse; Junta de Andalucía: Córdoba, Spain, 2007. [Google Scholar]
- Grilz-Seger, G.; Druml, T.; Neuhauser, B.; Brem, G. Classification and nomenclature of the leopard complex spotting in the Noriker horse breed and its relevance for the breeding for color. Züchtungskunde 2017, 89, 359–374. [Google Scholar]
- Spanish Ministry of Agriculture, Fisheries and Food. ORDEN APA/3277/2002, de 13 de Diciembre, por la que se Establecen las Normas Zootécnicas de la Raza Equina Hispano-Árabe (Vigente hasta el 28 de Enero de 2009); ORDEN APA/3277/2002; Spanish Ministry of Agriculture, Fisheries and Food: Madrid, Spain, 2002. [Google Scholar]
- Bartolomé, E.; Goyache, F.; Molina, A.; Cervantes, I.; Valera, M.; Gutiérrez, J. Pedigree estimation of the (sub) population contribution to the total gene diversity: The horse coat colour case. Animal 2010, 4, 867–875. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Guerrero, M.J.; Negro-Rama, S.; Demyda-Peyras, S.; Solé-Berga, M.; Azor-Ortiz, P.J.; Valera-Córdoba, M. Morphological and genetic diversity of Pura Raza Español horse with regard to the coat colour. Anim. Sci. J. 2019, 90, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Rolf, M. Color Patterns in Crossbred Beef Cattle; Oklahoma Cooperative Extension Service: Oklahoma State University, Stillwater, OK, USA, 2014. [Google Scholar]
- Cervantes, I.; Gutiérrez, J.P.; Molina, A.; Goyache, F.; Valera, M. Genealogical analyses in open populations: The case of three Arab-derived Spanish horse breeds. J. Anim. Breed. Genet. 2009, 126, 335–347. [Google Scholar] [CrossRef]
- Iglesias Pastrana, C.; Navas González, F.J.; Ruiz Aguilera, M.J.; Dávila García, J.A.; Delgado Bermejo, J.V.; Abelló, M.T. White-naped mangabeys’ viable insurance population within European Zoo Network. Sci. Rep. 2021, 11, 674. [Google Scholar] [CrossRef] [PubMed]
- Bellone, R. Pleiotropic effects of pigmentation genes in horses. Anim. Genet. 2010, 41, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Marín Navas, C.; Navas González, F.J.; Castillo López, V.; Payeras Capellà, L.P.; Gómez Fernández, M.; Delgado Bermejo, J.V. Impact of breeding for coat and spotting patterns on the population structure and genetic diversity of an islander endangered dog breed. Res. Vet. Sci. 2020, 131, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Solé, M.; Santos, R.; Gómez, M.; Galisteo, A.; Valera, M. Evaluation of conformation against traits associated with dressage ability in unridden Iberian horses at the trot. Res. Vet. Sci. 2013, 95, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Fisker Hansen, A.; Dixon, J.; Whitaker, T. Does Horse Coat Colour Influence Performance Evaluations? In Proceedings of the 5th CARS (Center for Agricultural and Rural Sustainability) Postgraduate Symposium, Oakhampton, UK, 6 June 2014. [Google Scholar]
- Koger, M.; Mankin, J. Heritability of intensity of red color: In Hereford cattle. J. Hered. 1952, 43, 15–18. [Google Scholar] [CrossRef]
- Grilz-Seger, G.; Utzeri, V.J.; Ribani, A.; Taurisano, V.; Fontanesi, L.; Brem, G. Known loci in the KIT and TYR genes do not explain the depigmented white coat colour of Austro-Hungarian Baroque donkey. Ital. J. Anim. Sci. 2020, 19, 739–743. [Google Scholar] [CrossRef]
- Utzeri, V.; Bertolini, F.; Ribani, A.; Schiavo, G.; Dall’Olio, S.; Fontanesi, L. The albinism of the feral Asinara white donkeys (Equus asinus) is determined by a missense mutation in a highly conserved position of the tyrosinase (TYR) gene deduced protein. Anim. Genet. 2016, 47, 120–124. [Google Scholar] [CrossRef]
- Dreger, D.L.; Hooser, B.N.; Hughes, A.M.; Ganesan, B.; Donner, J.; Anderson, H.; Holtvoigt, L.; Ekenstedt, K.J. True Colors: Commercially-acquired morphological genotypes reveal hidden allele variation among dog breeds, informing both trait ancestry and breed potential. PLoS ONE 2019, 14, e0223995. [Google Scholar] [CrossRef] [Green Version]
- Cothran, E.G. What DNA tests can—and can’t—tell you about equine ancestry. Equus 2021, 11, 1. [Google Scholar]
- Gutiérrez, J.P.; Marmi, J.; Goyache, F.; Jordana, J. Pedigree information reveals moderate to high levels of inbreeding and a weak population structure in the endangered Catalonian donkey breed. J. Anim. Breed. Genet. 2005, 122, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Sargolzaei, M.; Iwaisaki, H.; Colleau, J.J. CFC: A tool for monitoring genetic diversity. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Minas Gerais, Brazil, 13–18 August 2006; pp. 13–18. [Google Scholar]
- Boichard, D.; Maignel, L.; Verrier, E. The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol. 1997, 29, 5–23. [Google Scholar] [CrossRef]
- James, J.W. A note on selection differential and generation length when generations overlap. Anim. Sci. 1977, 24, 109–112. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Luo, Z. Computing inbreeding coefficients in large populations. Genet. Sel. Evol. 1992, 24, 305–313. [Google Scholar] [CrossRef]
- Leroy, G.; Mary-Huard, T.; Verrier, E.; Danvy, S.; Charvolin, E.; Danchin-Burge, C. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse. Genet. Sel. Evol. 2013, 45, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, J.P.; Cervantes, I.; Goyache, F. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet. 2009, 126, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, I.; Goyache, F.; Molina, A.; Valera, M.; Gutiérrez, J. Estimation of effective population size from the rate of coancestry in pedigreed populations. J. Anim. Breed. Genet. 2011, 128, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Caballero, A.; Toro, M.A. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet. Res. 2000, 75, 331–343. [Google Scholar] [CrossRef]
- Wright, S. Evolution and the Genetics of Populations. Theory of Gene Frequencies; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Lacy, R.C. Analysis of founder representation in pedigrees: Founder equivalents and founder genome equivalents. Zoo Biol. 1989, 8, 111–123. [Google Scholar] [CrossRef]
- Colleau, J.J.; Sargolzaei, M. A proximal decomposition of inbreeding, coancestry and contributions. Genet. Res. 2008, 90, 191–198. [Google Scholar] [CrossRef]
- Cervantes, I.; Goyache, F.; Molina, A.; Valera, M.; Gutiérrez, J.P. Application of individual increase in inbreeding to estimate realized effective sizes from real pedigrees. J. Anim. Breed. Genet. 2008, 125, 301–310. [Google Scholar] [CrossRef] [Green Version]
- De La Rosa, A.M.; Cervantes, I.; Gutiérrez, J. Equivalent effective population size mating as a useful tool in the genetic management of the Ibicenco rabbit breed (Conill Pages d’Eivissa). Czech J. Anim. Sci 2016, 2016, 108–116. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [PubMed]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Alanzor Puente, J.M.; Pons Barro, Á.L.; de la Haba Giraldo, M.R.; Delgado Bermejo, J.V.; Navas González, F.J. Does Functionality Condition the Population Structure and Genetic Diversity of Endangered Dog Breeds under Island Territorial Isolation? Animals 2020, 10, 1893. [Google Scholar] [CrossRef] [PubMed]
- Palomo, A.G. Fin de una crisis de caballo; National Edition of 27 Novemeber 2015; El País: Málaga, Spain, 2015. [Google Scholar]
- Fernandez de Castillejo, A. La Cría de Caballos de Raza Repunta Tras Una Dura Crisis; Ganadería. Diario de Sevilla: Seville, Spain, 2016. [Google Scholar]
- Sakthivel, M.; Balasubramanyam, D.; Kumarasamy, P.; Raja, A.; Anilkumar, R.; Gopi, H.; Devaki, A. Genetic structure of a small closed population of the New Zealand white rabbit through pedigree analyses. World Rabbit Sci. 2018, 26, 101–112. [Google Scholar] [CrossRef]
- Beuchat, C. COI FAQS: Understanding the Coefficient of Inbreeding. Available online: https://www.instituteofcaninebiology.org/blog/coi-faqs-understanding-the-coefficient-of-inbreeding (accessed on 28 December 2020).
- Petersen, J.L.; Mickelson, J.R.; Cothran, E.G.; Andersson, L.S.; Axelsson, J.; Bailey, E.; Bannasch, D.; Binns, M.M.; Borges, A.S.; Brama, P. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS ONE 2013, 8, e54997. [Google Scholar] [CrossRef] [Green Version]
- Navas González, F.J. Structural Organization of Genetic Diversity and Ethofunctional Characterization in the Andalusian Donkey Breed; University of Córdoba: Córdoba, Spain, 2019. [Google Scholar]
- Ferrari, A.; Ghittino, C. La" desconocida" peste equina. MG Mundo Ganad. 1990, 1, 59–62. [Google Scholar]
- Rico Mansilla, A. Peste equina en España. MG Mundo Ganad. 1990, 1, 31–38. [Google Scholar]
- Ministerio De Agricultura Pesca Y Alimentación. Orden APA/3319/2002, de 23 de Diciembre, por la que se Establecen las Normas Zootécnicas del Caballo de Pura Raza Española; Orden APA/3319/2002; Ministerio De Agricultura Pesca Y Alimentación: Madrid, Spain, 2002; pp. 46330–46333. [Google Scholar]
- Holl, H.M.; Pflug, K.M.; Yates, K.M.; Hoefs-Martin, K.; Shepard, C.; Cook, D.G.; Lafayette, C.; Brooks, S.A. A candidate gene approach identifies variants in SLC45A2 that explain dilute phenotypes, pearl and sunshine, in compound heterozygote horses. Anim. Genet. 2019, 50, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Sevane, N.; Sanz, C.R.; Dunner, S. Explicit evidence for a missense mutation in exon 4 of SLC45A2 gene causing the pearl coat dilution in horses. Anim. Genet. 2019, 50, 275–278. [Google Scholar] [CrossRef]
- Equine Studies Institute. The Cream Dilution Equine Coat Color Genetics. Lesson 3. In The Cream Dilution; Equine Studies Institute: Bulverde, TX, USA, 2003. [Google Scholar]
- Codina, L. Genética básica de los colores de capa de los caballos -Quarter, Paint y Appaloosa. Available online: http://lacodina.com/ (accessed on 2 March 2021).
- Sáez Castán, J.M. Análisis crítico de La civilización hispano-árabe de Titus Burckhardt. Ph.D. Thesis, Universidad de Alicante, Departamento de Didáctica General y Didácticas Específicas, Alicante, Spain, 2008. [Google Scholar]
- Denhardt, R.M. The Truth about Cortes’s Horses. Hisp. Am. Hist. Rev. 1937, 17, 525–532. [Google Scholar] [CrossRef]
- Bartolome, E.; Azor, P.; Gomez, M.; Peña, F. La Determinación Genética del Color de la Capa en el Caballo: Bases y Aplicación al Caballo de la Raza Pottoka; Departamento de genética, Universidad de Córdob: Córdoba, Spain, 2008. [Google Scholar]
- Sponenberg, D.P.; Harper, H.T.; Harper, A.L. Direct evidence for linkage of roan and extension loci in Belgian horses. J. Hered. 1984, 75, 413–414. [Google Scholar] [CrossRef] [PubMed]
- Bowling, A.T. Genetics of Colour Variation. In The Genetics of the Horse; Bowling, A.T., Ruvinsky, A., Eds.; CAB International: Wallingford, UK, 2000; pp. 53–68. [Google Scholar]
- Klungland, H.; Olsen, H.; Hassanane, M.; Mahrous, K.; Våge, D. Coat colour genes in diversity studies. J. Anim. Breed. Genet. 2000, 117, 217–224. [Google Scholar] [CrossRef]
- Reissmann, M.; Musa, L.; Zakizadeh, S.; Ludwig, A. Distribution of coat-color-associated alleles in the domestic horse population and Przewalski’s horse. J. Appl. Genet. 2016, 57, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Penedo, M.C.T. Genetic Tests for Equine Coat Color. Genetic Tests for Equine Coat Color; Pusterla, N., Higgins, J., Eds.; Interpretation of Equine Laboratory Diagnostics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; p. 349. [Google Scholar]
- Gregory, K.; Cundiff, L.V.; Koch, R.M. Composite Breeds-What Does the Research Tell Us? In Proceedings of the Range Beef Cow Symposium XIII, Cheyenne, WY, USA, 6–8 December 1993. [Google Scholar]
- Fages, A.; Hanghøj, K.; Khan, N.; Gaunitz, C.; Seguin-Orlando, A.; Leonardi, M.; Constantz, C.M.; Gamba, C.; Al-Rasheid, K.A.; Albizuri, S. Tracking five millennia of horse management with extensive ancient genome time series. Cell 2019, 177, 1419–1435.e1431. [Google Scholar] [CrossRef] [PubMed]
- Charon, K.M.; Lipka, K.R. The Effect of a Coat Colour-Associated Genes Polymorphism on Animal Health—A Review. Ann. Anim. Sci. 2015, 15, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Navas, F.J.; Jordana, J.; León, J.M.; Barba, C.; Delgado, J.V. A model to infer the demographic structure evolution of endangered donkey populations. Animal 2017, 11, 2129–2138. [Google Scholar] [CrossRef]
- Alderson, G. A system to maximize the maintenance of genetic variability in small populations. In Genetic Conservation of Domestic Livestock; Alderson, L.J., Bodó, I., Eds.; CAB International: Oxford, UK, 1990; Volume 2, pp. 18–29. [Google Scholar]
- FAO. Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans: Management of small populations at risk. Initiative for Domestic Animal Diversity; FAO: Rome, Italy, 1998. [Google Scholar]
- Fernández, J.; Villanueva, B.; Pong-Wong, R.; Toro, M.Á. Efficiency of the Use of Pedigree and Molecular Marker Information in Conservation Programs. Genetics 2005, 170, 1313–1321. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.; Toro, M.; Caballero, A. Management of subdivided populations in conservation programs: Development of a novel dynamic system. Genetics 2008, 179, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Oldenbroek, K. Utilisation and Conservation of Farm Animal Genetic Resources; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007. [Google Scholar]
- Villanueva, B.; Pong-Wong, R.; Woolliams, J.; Avendaño, S. Managing genetic resources in selected and conserved populations. BSAS Occas. Publ. 2004, 30, 113–132. [Google Scholar] [CrossRef]
- Weigel, K. Controlling inbreeding in modern breeding programs. J. Dairy Sci. 2001, 84, E177–E184. [Google Scholar] [CrossRef]
- McManus, C.; Santos, S.A.; Dallago, B.S.L.; Paiva, S.R.; Martins, R.F.S.; Braccini Neto, J.; Marques, P.R.; Abreu, U.G.P.d. Evaluation of conservation program for the Pantaneiro horse in Brazil. Rev. Bras. Zootec. 2013, 42, 404–413. [Google Scholar] [CrossRef] [Green Version]
- Franklin, I.; Soulé, M.; Wilcox, B. Conservation Biology: An Evolutionary-Ecological Perspective; Sinauer Associates: Sunderland, MA, USA, 1980. [Google Scholar]
- Ministerio De Agricultura Pesca Y Alimentación. Real Decreto 1682/1997, de 7 de noviembre, por el que se actualiza el Catálogo Oficial de Razas de Ganado de España. BOE » núm. 279, de 21 de noviembre de 1997; Real Decreto 1682/1997; Ministerio De Agricultura Pesca Y Alimentación: Madrid, Spain, 1997; pp. 34205–34207. [Google Scholar]
- Druml, T.; Baumung, R.; Sölkner, J. Pedigree analysis in the Austrian Noriker draught horse: Genetic diversity and the impact of breeding for coat colour on population structure. J. Anim. Breed. Genet. 2009, 126, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Santiago, E.; Caballero, A. Prediction and estimation of effective population size. Heredity 2016, 117, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granado-Tajada, I.; Rodríguez-Ramilo, S.; Legarra, A.; Ugarte, E. Inbreeding, effective population size, and coancestry in the Latxa dairy sheep breed. J. Dairy Sci. 2020, 103, 5215–5226. [Google Scholar] [CrossRef] [PubMed]
- Marín Navas, C.; Delgado Bermejo, J.V.; McLean, A.K.; León Jurado, J.M.; Navas González, F.J. Análisis del número efectivo de rebaños en la raza equina Hispanoárabe. In Proceedings of the XXI Simposio Iberoamericano sobre Conservación y Uso de Recursos Zoogenéticos Locales, Córdoba, Spain, 15–16 December 2020. [Google Scholar]
- Marín Navas, C.; Delgado Bermejo, J.V.; McLean, A.K.; León Jurado, J.M.; Navas González, F.J. Estudio de las distancias genéticas de Nei y conexión entre ganaderías en la raza equina Hispanoárabe. In Proceedings of the XXI Simposio Iberoamericano sobre Conservación y Uso de Recursos Zoogenéticos Locales, Córdoba, Spain, 15–16 December 2020. [Google Scholar]
- Wang, J.; Caballero, A. Developments in predicting the effective size of subdivided populations. Heredity 1999, 82, 212–226. [Google Scholar] [CrossRef] [Green Version]
- Toro, M.; Nieto, B.; Salgado, C. A note on minimization of inbreeding in small-scale selection programmes. Livest. Prod. Sci. 1988, 20, 317–323. [Google Scholar] [CrossRef]
- Cervantes, I. Population Genetic Structure in the Spanish Arab Horse and its Influence on Arab Derived Spanish Horse Breeds: Application of New Methodologies in the Computation of the Effective Population Size; Universidad Complutense de Madrid: Madrid, Spain, 2008. [Google Scholar]
- Vassallo, J.; Díaz, C.; García-Medina, J. A note on the population structure of the Avileña breed of cattle in Spain. Livest. Prod. Sci. 1986, 15, 285–288. [Google Scholar] [CrossRef]
- Gutiérrez, J.P.; Cervantes, I.; Molina, A.; Valera, M.; Goyache, F. Individual increase in inbreeding allows estimating effective sizes from pedigrees. Genet. Sel. Evol. 2008, 40, 359–378. [Google Scholar] [CrossRef]
- Sørensen, A.C.; Sørensen, M.K.; Berg, P. Inbreeding in Danish dairy cattle breeds. J. Dairy Sci. 2005, 88, 1865–1872. [Google Scholar] [CrossRef] [Green Version]
Set | Breed | Source | Number of Animals | Males/Females | Period (Birthdates) |
---|---|---|---|---|---|
Historic | Hispano-Arabian | Spanish Union of Purebred Hispano-Arabian Horses Breeders (UEGHá) | 11,010 | 4268 males and 6742 females | January 1950 and April 2019 |
Spanish Purebred | National Association of Purebred Spanish Horse Breeders (ANCCE) | 172,797 | 83,408 males and 89,389 females | January 1884 and July 2019 | |
Arabian Purebred | Spanish Association of Arabian Horse Breeders (AECCA) | 23,293 | 11,143 males and 12,150 females | January 1898 and June 2019 | |
Current | Hispano-Arabian | Spanish Union of Purebred Hispano-Arabian Horses Breeders (UEGHá) | 9997 | 4031 males and 5966 females | December 1984 and April 2019 |
Spanish Purebred | National Association of Purebred Spanish Horse Breeders (ANCCE) | 141,357 | 69,184 males and 72,163 females | April 1984 and July 2019 | |
Arabian Purebred | Spanish Association of Arabian Horse Breeders (AECCA) | 13,576 | 6632 males and 6944 females | June 1985 and June 2019 |
Parameter | Maximum Number of Traced Generations, n | Number of Maximum Generations (Mean ± SD) | Number of Complete Generations (Mean ± SD) | Number of Equivalent Generations (Mean ± SD) | ||||
---|---|---|---|---|---|---|---|---|
Population Set | Historic | Current | Historic | Current | Historic | Current | Historic | Current |
Grey | 20.00 | 20.00 | 13.67 ± 3.47 | 14.59 ± 3.46 | 4.36 ± 1.43 | 4.65 ± 1.42 | 7.98 ± 2.09 | 8.53 ± 2.09 |
Bay | 21.00 | 21.00 | 14.01 ± 3.47 | 15.11 ± 3.46 | 4.44 ± 1.43 | 4.79 ± 1.42 | 8.03 ± 2.09 | 8.69 ± 2.09 |
Chestnut/Sorrel | 20.00 | 20.00 | 11.66 ± 3.47 | 13.54 ± 3.46 | 3.66 ± 1.43 | 4.12 ± 1.42 | 6.51 ± 2.09 | 7.51 ± 2.09 |
Black | 20.00 | 20.00 | 15.01 ± 3.46 | 15.66 ± 3.46 | 4.81 ± 1.43 | 5.01 ± 1.42 | 8.71 ± 2.09 | 9.09 ± 2.09 |
Overo | 17.00 | 17.00 | 11.24 ± 3.34 | 13.29 ± 3.21 | 3.73 ± 1.40 | 4.23 ± 1.38 | 6.57 ± 2.02 | 7.79 ± 1.95 |
Roan | 19.00 | 19.00 | 14.48 ± 3.44 | 15.42 ± 3.54 | 4.51 ± 1.42 | 4.78 ± 1.44 | 8.29 ± 2.08 | 8.84 ± 2.12 |
Dun | 19.00 | 19.00 | 14.14 ± 3.43 | 14.74 ± 3.47 | 4.33 ± 1.42 | 4.51 ± 1.42 | 8.00 ± 2.07 | 8.34 ± 2.08 |
White | 18.00 | 18.00 | 10.17 ± 3.43 | 15.36 ± 3.64 | 3.32 ± 1.42 | 5.08 ± 1.47 | 5.94 ± 2.07 | 8.92 ± 2.18 |
Isabelline | 18.00 | 18.00 | 9.74 ± 3.42 | 9.97 ± 3.48 | 2.93 ± 1.42 | 3.03 ± 1.43 | 5.36 ± 2.06 | 5.52 ± 2.09 |
Cremello | 18.00 | 18.00 | 9.21 ± 3.46 | 9.15 ± 3.46 | 2.88 ± 1.42 | 2.82 ± 1.42 | 5.16 ± 2.07 | 5.10 ± 2.07 |
Pearl | 19.00 | 19.00 | 13.09 ± 3.72 | 13.07 ± 1.08 | 1.63 ± 1.49 | 1.62 ± 1.49 | 4.44 ± 2.23 | 4.42 ± 2.23 |
Palomino | 19.00 | 19.00 | 15.31 ± 4.23 | 15.31 ± 4.23 | 3.94 ± 1.67 | 3.94 ± 1.67 | 8.05 ± 2.53 | 8.05 ± 2.53 |
Smokey Cream | 18.00 | 18.00 | 18.00 ± 0.00 | 18.00 ± 0.00 | 5.00 ± 0.00 | 5.00 ± 0.00 | 5.00 ± 0.00 | 9.61 ± 0.00 |
Coat Colour Subgroup | Population Sets | Inbreeding Coefficient (F), (%) | Individual Increase of Mean Inbreeding (ΔF), (%) | Maximum Inbreeding Coefficient % | Inbred Animals, % | Highly Inbred Animals, % | Average Coancestry (C), % | Average Relatedness Coefficient (ΔR), % | Non-Random Mating Rate (α) | GCI |
---|---|---|---|---|---|---|---|---|---|---|
Grey | Historic | 8.33 | 1.12 | 55.04 | 18.41 | 26.28 | 5.08 | 10.15 | 0.03 | 9.37 |
Current | 8.52 | 1.06 | 55.04 | 16.90 | 26.07 | 5.23 | 10.47 | 0.03 | 9.81 | |
Bay | Historic | 7.38 | 1.03 | 53.91 | 31.12 | 18.65 | 4.85 | 9.69 | 0.03 | 9.25 |
Current | 7.56 | 0.94 | 49.61 | 32.10 | 17.86 | 5.02 | 10.04 | 0.03 | 9.83 | |
Chestnut/Sorrel | Historic | 6.95 | 1.10 | 46.88 | 75.78 | 26.75 | 1.64 | 3.28 | 0.05 | 9.74 |
Current | 7.76 | 1.12 | 46.88 | 81.66 | 29.83 | 1.90 | 3.80 | 0.06 | 10.73 | |
Black | Historic | 7.54 | 0.96 | 45.31 | 95.27 | 16.64 | 5.18 | 10.36 | 0.03 | 9.66 |
Current | 7.64 | 0.90 | 43.38 | 98.01 | 16.21 | 5.26 | 10.51 | 0.03 | 10.00 | |
Overo | Historic | 7.81 | 1.22 | 22.72 | 90.00 | 31.25 | 3.55 | 6.42 | 0.05 | 9.59 |
Current | 7.31 | 0.98 | 17.89 | 94.29 | 25.71 | 3.55 | 7.10 | 0.04 | 9.95 | |
Roan | Historic | 7.59 | 0.95 | 28.62 | 91.16 | 21.29 | 4.71 | 9.43 | 0.03 | 9.61 |
Current | 7.87 | 0.93 | 28.62 | 93.90 | 20.19 | 4.96 | 9.91 | 0.03 | 10.03 | |
Dun | Historic | 7.19 | 1.12 | 32.42 | 89.43 | 14.00 | 4.68 | 9.35 | 0.03 | 8.69 |
Current | 7.41 | 1.09 | 32.42 | 92.72 | 14.24 | 4.76 | 9.52 | 0.03 | 8.92 | |
White | Historic | 6.25 | 1.24 | 25.00 | 64.79 | 21.13 | 4.86 | 9.71 | 0.01 | 6.98 |
Current | 8.80 | 1.01 | 21.52 | 94.87 | 28.21 | 5.31 | 10.62 | 0.04 | 9.86 | |
Isabelline | Historic | 6.78 | 1.68 | 37.19 | 7.67 | 1.49 | 2.61 | 5.21 | 0.04 | 5.85 |
Current | 6.96 | 1.67 | 37.19 | 80.77 | 14.84 | 2.63 | 5.25 | 0.04 | 5.83 | |
Cremello | Historic | 7.41 | 1.86 | 23.67 | 89.24 | 20.59 | 2.33 | 4.67 | 0.05 | 5.68 |
Current | 7.32 | 1.87 | 23.67 | 87.88 | 18.18 | 2.38 | 4.75 | 0.05 | 5.45 | |
Pearl | Historic | 2.86 | 0.60 | 22.66 | 30.26 | 8.93 | 1.20 | 2.39 | 0.02 | 4.06 |
Current | 2.91 | 0.61 | 22.66 | 30.91 | 9.09 | 1.16 | 2.33 | 0.02 | 4.04 | |
Palomino | Historic | 4.75 | 0.70 | 11.10 | 62.50 | 12.50 | 3.69 | 7.38 | 0.01 | 9.44 |
Current | 4.75 | 0.70 | 11.10 | 62.50 | 12.50 | 3.69 | 7.38 | 0.01 | 9.44 | |
Smokey Cream | Historic | 1.81 | 0.20 | 1.81 | 1.00 | 0.00 | 3.65 | 7.30 | −0.02 | 15.07 |
Current | 1.81 | 0.21 | 1.81 | 1.00 | 0.00 | 3.65 | 7.30 | −0.02 | 15.07 |
Coat Colour Subgroup | Population Set | Base Population (One or More Unknown Parents) | Actual Base Population (One Unknown Parent = Half Founder) | Number of Founders, n | Number of Ancestors, n | Effective Number of Non-Founders (Nef) | Number of Founder Equivalents (fe) | Effective Number of Ancestors (fa) | Founder Genome Equivalents (fg) | fa/fe Ratio | fg/fe Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
Grey | Historic | 1503.00 | 331.00 | 1172.00 | 2144.00 | 14.66 | 26.50 | 17.00 | 9.23 | 0.64 | 0.35 |
Current | 277.00 | 49.00 | 228.00 | 1138.00 | 12.99 | 26.03 | 17.00 | 8.67 | 0.65 | 0.33 | |
Bay | Historic | 600.00 | 84.00 | 516.00 | 1490.00 | 16.14 | 25.14 | 17.00 | 9.83 | 0.68 | 0.39 |
Current | 128.00 | 28.00 | 100.00 | 840.00 | 14.31 | 25.68 | 17.00 | 9.19 | 0.66 | 0.36 | |
Chestnut/Sorrel | Historic | 558.00 | 88.00 | 470.00 | 1283.00 | 20.26 | 58.99 | 31.00 | 15.08 | 0.53 | 0.26 |
Current | 108.00 | 22.00 | 86.00 | 762.00 | 17.44 | 58.61 | 27.00 | 13.44 | 0.46 | 0.23 | |
Black | Historic | 84.00 | 22.00 | 62.00 | 500.00 | 13.67 | 22.41 | 15.00 | 8.49 | 0.67 | 0.38 |
Current | 23.00 | 3.00 | 20.00 | 383.00 | 12.74 | 23.25 | 15.00 | 8.23 | 0.65 | 0.35 | |
Overo | Historic | 4.00 | 0.00 | 4.00 | 106.00 | 16.89 | 51.02 | 29.00 | 12.69 | 0.57 | 0.25 |
Current | 2.00 | 0.00 | 2.00 | 52.00 | 14.04 | 45.66 | 26.00 | 10.74 | 0.57 | 0.24 | |
Roan | Historic | 5.00 | 0.00 | 5.00 | 195.00 | 15.38 | 31.39 | 20.00 | 10.32 | 0.64 | 0.33 |
Current | 1.00 | 0.00 | 1.00 | 177.00 | 13.70 | 28.97 | 19.00 | 9.30 | 0.66 | 0.32 | |
Dun | Historic | 14.00 | 2.00 | 12.00 | 210.00 | 13.30 | 27.76 | 18.00 | 8.99 | 0.65 | 0.32 |
Current | 31.00 | 21.00 | 10.00 | 191.00 | 12.21 | 28.60 | 18.00 | 8.56 | 0.63 | 0.30 | |
White | Historic | 5.00 | 0.00 | 5.00 | 107.00 | 17.72 | 13.55 | 10.00 | 7.68 | 0.64 | 0.35 |
Current | 1.00 | 0.00 | 1.00 | 69.00 | 9.89 | 23.10 | 15.00 | 6.93 | 0.65 | 0.33 | |
Isabelline | Historic | 11.00 | 0.00 | 11.00 | 138.00 | 12.51 | 26.40 | 12.00 | 8.49 | 0.68 | 0.39 |
Current | 11.00 | 0.00 | 11.00 | 129.00 | 10.52 | 27.46 | 10.00 | 7.61 | 0.66 | 0.36 | |
Cremello | Historic | 4.00 | 0.00 | 4.00 | 27.00 | 8.79 | 28.17 | 9.00 | 6.70 | 0.53 | 0.26 |
Current | 4.00 | 0.00 | 4.00 | 26.00 | 8.37 | 26.66 | 9.00 | 6.37 | 0.46 | 0.23 | |
Pearl | Historic | 9.00 | 0.00 | 9.00 | 39.00 | 14.53 | 32.87 | 16.00 | 10.08 | 0.67 | 0.38 |
Current | 9.00 | 0.00 | 9.00 | 38.00 | 14.67 | 32.83 | 17.00 | 10.14 | 0.65 | 0.35 | |
Palomino | Historic | 0.00 | 0.00 | 0.00 | 19.00 | 8.85 | 42.81 | 17.00 | 7.33 | 0.57 | 0.25 |
Current | 0.00 | 0.00 | 0.00 | 19.00 | 8.85 | 42.51 | 17.00 | 7.33 | 0.57 | 0.24 | |
Smokey Cream | Historic | 0.00 | 0.00 | 0.00 | 1.00 | 1.01 | 37.35 | 1.00 | 0.98 | 0.46 | 0.23 |
Current | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.39 | 0.19 |
Coat Colour Subgroup | Population Set | Genetic Diversity GD (%) | Genetic Diversity Loss GDL (%) | GDL Due to Genetic Drift since Founders (%) | GDL Due to Bottlenecks and Genetic Drift since Founders (GL) (%) | GDL Due to Unequal Founder Contributions (%) | Ancestors Explaining 25% of the Gene Pool (n) | Ancestors Explaining 50% of the Gene Pool (n) | Ancestors Explaining 75% of the Gene Pool (n) |
---|---|---|---|---|---|---|---|---|---|
Grey | Historic | 95 | 5 | 2 | 4 | 5 | 2 | 6 | 20 |
Current | 94 | 6 | 2 | 4 | 6 | 2 | 6 | 18 | |
Bay | Historic | 95 | 5 | 2 | 3 | 5 | 2 | 6 | 22 |
Current | 95 | 5 | 2 | 3 | 5 | 2 | 6 | 20 | |
Chestnut/Sorrel | Historic | 97 | 3 | 1 | 2 | 3 | 3 | 12 | 48 |
Current | 96 | 4 | 1 | 3 | 4 | 3 | 11 | 35 | |
Black | Historic | 94 | 6 | 2 | 4 | 6 | 2 | 6 | 17 |
Current | 94 | 6 | 2 | 4 | 6 | 2 | 6 | 17 | |
Overo | Historic | 96 | 4 | 1 | 3 | 4 | 4 | 11 | 28 |
Current | 95 | 5 | 1 | 4 | 5 | 4 | 10 | 23 | |
Roan | Historic | 95 | 5 | 2 | 3 | 5 | 3 | 8 | 26 |
Current | 95 | 5 | 2 | 4 | 5 | 3 | 7 | 22 | |
Dun | Historic | 94 | 6 | 2 | 4 | 6 | 2 | 7 | 17 |
Current | 94 | 6 | 2 | 4 | 6 | 3 | 7 | 17 | |
White | Historic | 93 | 7 | 4 | 3 | 7 | 2 | 4 | 16 |
Current | 93 | 7 | 2 | 5 | 7 | 2 | 6 | 15 | |
Isabelline | Historic | 94 | 6 | 2 | 4 | 6 | 2 | 4 | 16 |
Current | 93 | 7 | 2 | 5 | 7 | 2 | 4 | 15 | |
Cremello | Historic | 93 | 7 | 2 | 6 | 7 | 2 | 4 | 12 |
Current | 92 | 8 | 2 | 6 | 8 | 2 | 4 | 11 | |
Pearl | Historic | 95 | 5 | 2 | 3 | 5 | 2 | 7 | 18 |
Current | 95 | 5 | 2 | 3 | 5 | 2 | 7 | 18 | |
Palomino | Historic | 93 | 7 | 1 | 6 | 7 | 3 | 7 | 12 |
Current | 93 | 7 | 1 | 6 | 7 | 3 | 7 | 12 | |
Smokey Cream | Historic | 49 | 51 | 1 | 50 | 51 | 1 | 1 | 1 |
Current | 0 | 0 | N/A | N/A | N/A | 1 | 1 | 1 |
Parameter | Population Set | Effective Population Size Calculated through of the Individual Inbreeding Rate | Effective Size of the Population Calculated through the Individual Coancestry Rate | Number of Equivalent Subpopulations | Rate of Loss Heterozygosity Due to Inbreeding per Generation | ||
---|---|---|---|---|---|---|---|
Coat Colour Subgroup | |||||||
Grey | Historic | 96.15 | 16.13 | 0.17 | 0.005 | ||
Current | 138.89 | 10.06 | 0.07 | 0.004 | |||
Bay | Historic | 44.64 | 4.93 | 0.11 | 0.011 | ||
Current | 47.17 | 4.78 | 0.10 | 0.011 | |||
Chestnut/Sorrel | Historic | 48.54 | 5.16 | 0.11 | 0.010 | ||
Current | 53.19 | 4.98 | 0.09 | 0.009 | |||
Black | Historic | 45.45 | 15.24 | 0.34 | 0.011 | ||
Current | 44.64 | 13.16 | 0.29 | 0.011 | |||
Overo | Historic | 52.08 | 4.83 | 0.09 | 0.010 | ||
Current | 55.56 | 4.76 | 0.09 | 0.009 | |||
Roan | Historic | 40.98 | 7.79 | 0.19 | 0.012 | ||
Current | 51.02 | 7.04 | 0.14 | 0.010 | |||
Dun | Historic | 60.98 | 6.35 | 0.10 | 0.008 | ||
Current | 75.76 | 6.35 | 0.08 | 0.007 | |||
White | Historic | 44.64 | 5.35 | 0.12 | 0.011 | ||
Current | 45.87 | 5.25 | 0.11 | 0.011 | |||
Isabelline | Historic | 40.32 | 5.15 | 0.13 | 0.012 | ||
Current | 49.50 | 4.71 | 0.10 | 0.010 | |||
Cremello | Historic | 29.76 | 9.60 | 0.32 | 0.017 | ||
Current | 29.94 | 9.52 | 0.32 | 0.017 | |||
Pearl | Historic | 26.88 | 10.71 | 0.40 | 0.019 | ||
Current | 26.74 | 10.53 | 0.39 | 0.019 | |||
Palomino | Historic | 83.33 | 20.92 | 0.25 | 0.006 | ||
Current | 81.97 | 21.46 | 0.26 | 0.006 | |||
Smokey Cream | Historic | N/A | N/A | N/A | N/A | ||
Current | N/A | N/A | N/A | N/A |
Parameters | Coat Colour Subgroup | |
---|---|---|
Populational Set | Historic | Current |
FIS (Inbreeding coefficient relative to the subpopulation) | 0.029 | 0.018 |
FST (Correlation between random gametes drawn from the subpopulation relative to the total population) | 0.004 | 0.014 |
FIT (Inbreeding coefficient relative to the total population) | 0.033 | 0.032 |
Mean inbreeding within subpopulations | 0.079 | 0.057 |
Mean number of horses per subpopulation | 12,943.75 | 10,308.81 |
Number of Nei genetic distances | 78 | 78 |
Average Nei genetic distance | 0.004 | 0.014 |
Mean coancestry within subpopulations | 0.052 | 0.040 |
Self coancestry | 0.540 | 0.528 |
Mean coancestry in the metapopulation | 0.048 | 0.026 |
Subpopulations | 13 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín Navas, C.; Delgado Bermejo, J.V.; McLean, A.K.; León Jurado, J.M.; Torres, A.R.d.l.B.y.R.d.; Navas González, F.J. One Hundred Years of Coat Colour Influences on Genetic Diversity in the Process of Development of a Composite Horse Breed. Vet. Sci. 2022, 9, 68. https://doi.org/10.3390/vetsci9020068
Marín Navas C, Delgado Bermejo JV, McLean AK, León Jurado JM, Torres ARdlByRd, Navas González FJ. One Hundred Years of Coat Colour Influences on Genetic Diversity in the Process of Development of a Composite Horse Breed. Veterinary Sciences. 2022; 9(2):68. https://doi.org/10.3390/vetsci9020068
Chicago/Turabian StyleMarín Navas, Carmen, Juan Vicente Delgado Bermejo, Amy Katherine McLean, José Manuel León Jurado, Antonio Rodríguez de la Borbolla y Ruiberriz de Torres, and Francisco Javier Navas González. 2022. "One Hundred Years of Coat Colour Influences on Genetic Diversity in the Process of Development of a Composite Horse Breed" Veterinary Sciences 9, no. 2: 68. https://doi.org/10.3390/vetsci9020068
APA StyleMarín Navas, C., Delgado Bermejo, J. V., McLean, A. K., León Jurado, J. M., Torres, A. R. d. l. B. y. R. d., & Navas González, F. J. (2022). One Hundred Years of Coat Colour Influences on Genetic Diversity in the Process of Development of a Composite Horse Breed. Veterinary Sciences, 9(2), 68. https://doi.org/10.3390/vetsci9020068